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radareqpow
Peak power estimate from radar equation

Syntax
Pt = radareqpow(lambda,tgtrng,SNR,tau)
Pt = radareqpow(lambda,tgtrng,SNR,tau,Name,Value)

Description
Pt = radareqpow(lambda,tgtrng,SNR,tau) estimates the peak transmit power, Pt, required
for a radar operating at a wavelength of lambda meters to achieve the specified signal-to-noise ratio,
SNR, in decibels for a target at a range of tgtrng meters. tau is the pulse width. The target has a
nonfluctuating radar cross section (RCS) of 1 square meter.

Pt = radareqpow(lambda,tgtrng,SNR,tau,Name,Value) estimates the required peak transmit
power with additional options specified by one or more Name,Value pair arguments.

Examples

Compute Required Transmit Power

Estimate the required peak transmit power required to achieve a minimum SNR of 6 dB for a target
at a range of 50 km. The target has a nonfluctuating RCS of 1 m². The radar operating frequency is 1
GHz. The pulse duration is 1 μs.

fc = 1.0e9;
lambda = physconst('LightSpeed')/fc;
tgtrng = 50e3;
tau = 1e-6;
SNR = 6;
Pt = radareqpow(lambda,tgtrng,SNR,tau)

Pt = 2.1996e+05

Compute Required Transmit Power at Specified System Temperature

Estimate the required peak transmit power required to achieve a minimum SNR of 10 dB for a target
with an RCS of 0.5 m² at a range of 50 km. The radar operating frequency is 10 GHz. The pulse
duration is 1 μs. Assume a transmit and receive gain of 30 dB and an overall loss factor of 3 dB. The
system temperature is 300 K.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
Pt = radareqpow(lambda,50e3,10,1e-6,'RCS',0.5, ...
    'Gain',30,'Ts',300,'Loss',3)

Pt = 2.2809e+06
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Compute Required Transmit Power for Bistatic Radar

Estimate the required peak transmit power for a bistatic radar to achieve a minimum SNR of 6 dB for
a target with an RCS of 1 m². The target is 50 km from the transmitter and 75 km from the receiver.
The radar operating frequency is 10 GHz and the pulse duration is 10 μs. The transmitter and
receiver gains are 40 dB and 20 dB, respectively.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
SNR = 6;
tau = 10e-6;
TxRng = 50e3;
RvRng = 75e3;
TxRvRng =[TxRng RvRng];
TxGain = 40;
RvGain = 20;
Gain = [TxGain RvGain];
Pt = radareqpow(lambda,TxRvRng,SNR,tau,'Gain',Gain)

Pt = 4.9492e+04

Input Arguments
lambda — Wavelength of radar operating frequency
positive scalar

Wavelength of radar operating frequency, specified as a positive scalar. The wavelength is the ratio of
the wave propagation speed to frequency. Units are in meters. For electromagnetic waves, the speed
of propagation is the speed of light. Denoting the speed of light by c and the frequency (in hertz) of
the wave by f, the equation for wavelength is:

λ = c
f

Data Types: double

tgtrng — Target range
positive scalar | two-element row vector of positive values | length-J column vector of positive values |
J-by-2 matrix of positive values

Target ranges for a monostatic or bistatic radar.

• Monostatic radar - the transmitter and receiver are co-located. tgtrng is a real-valued positive
scalar or length-J real-valued positive column vector. J is the number of targets.

• Bistatic radar - the transmitter and receiver are separated. tgtrng is a 1-by-2 row vector with
real-valued positive elements or a J-by-2 matrix with real-valued positive elements. J is the number
of targets. Each row of tgtrng has the form [TxRng RxRng], where TxRng is the range from the
transmitter to the target and RxRng is the range from the receiver to the target.

Units are in meters.
Data Types: double
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SNR — Input signal-to-noise ratio at receiver
scalar | length-J real-valued vector

Input signal-to-noise ratio (SNR) at the receiver, specified as a scalar or length-J real-valued vector. J
is the number of targets. Units are in dB.
Data Types: double

tau — Single pulse duration
positive scalar

Single pulse duration, specified as a positive scalar. Units are in seconds.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RCS',3.0

RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section specified as a positive scalar or length-J vector of positive values. J is the number
of targets. The target RCS is nonfluctuating (Swerling case 0). Units are in square meters.
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. The system noise temperature is the product
of the system temperature and the noise figure. Units are in Kelvin.
Data Types: double

Gain — Transmitter and receiver gains
20 (default) | scalar | real-valued 1-by-2 row vector

Transmitter and receiver gains, specified as a scalar or real-valued 1-by-2 row vector. When the
transmitter and receiver are co-located (monostatic radar), Gain is a real-valued scalar. Then, the
transmit and receive gains are equal. When the transmitter and receiver are not co-located (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. If Gain is a two-element row vector it
has the form [TxGain RxGain] representing the transmit antenna and receive antenna gains.
Example: [15,10]
Data Types: double

Loss — System losses
0 (default) | scalar | length-J real-valued vector

System losses, specified as a scalar. Units are in dB.
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Example: 1
Data Types: double

AtmosphericLoss — Atmospheric absorption loss
0 (default) | scalar | two-element row vector of real values | length-J column vector of real values | J-
by-2 matrix of real values

Atmospheric absorption losses for the transmit and receive paths.

• When the absorption is a scalar or length-J column vector, the loss specifies the atmospheric
absorption loss for a one-way path.

• When the absorption is a 1-by-2 row vector or J-by-2 column vector, the first column specifies the
atmospheric absorption loss for the transmit path and the second column of contains the
atmospheric absorption loss for the receive path

Example: [10,20]
Data Types: double

PropagationFactor — Propagation factor
0 (default) | scalar | two-element row vector of real values | length-J column vector of real values | J-
by-2 matrix of real values

Propagation factor for the transmit and receive paths.

• When the propagation factor is a scalar or length-J column vector, the propagation factor is
specified for a one-way path.

• When the propagation factor is a 1-by-2 row vector or J-by-2 column vector, the first column
specifies the propagation factor for the transmit path and the second column of contains the
propagation factor for the receive path

Units are in dB.
Example: [10,20]
Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | length-J column vector of real values

Custom loss factors specified as a scalar or length-J column vector of real values. J is the number of
targets. These factors contribute to the reduction of the received signal energy and can include
range-dependent STC, eclipsing, and beam-dwell factors. Units are in dB.
Example: [10,20]
Data Types: double

Output Arguments
Pt — Transmitter peak power
positive scalar

Transmitter peak power, returned as positive scalar. Units are in watts.
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More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmit antenna gain
• Gr — Receive antenna gain. If the radar is monostatic, the transmit and receive antenna gains are

identical.
• λ — Radar wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the equation in the form 10x/10

where x denotes the variable. For example, the default loss factor of 0 dB results in a loss term of
100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature. This value is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

Define the output SNR. The receiver output SNR is:
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Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 1-12
• Output noise power in “Receiver Output Noise Power” on page 1-12

Theoretical Maximum Detectable Range

Compute the maximum detectable range of a target.

For monostatic radars, the range from the target to the transmitter and receiver is identical.
Denoting this range by R, you can express this relationship as R4 = Rt

2Rr
2.

Solving for R

R = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

For bistatic radars, the theoretical maximum detectable range is the geometric mean of the ranges
from the target to the transmitter and receiver:

RtRr = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

Version History
Introduced in R2021a

References
[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
phased.Transmitter | phased.ReceiverPreamp | noisepow | radareqrng | radareqsnr |
systemp
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radareqrng
Maximum theoretical range estimate

Syntax
maxrng = radareqrng(lambda,SNR,Pt,tau)
maxrng = radareqrng(lambda,SNR,Pt,tau,Name,Value)

Description
maxrng = radareqrng(lambda,SNR,Pt,tau) estimates the theoretical maximum detectable
range maxrng for a radar operating with a wavelength of lambda meters with a pulse duration of
Tau seconds. The signal-to-noise ratio is SNR decibels, and the peak transmit power is Pt watts.

maxrng = radareqrng(lambda,SNR,Pt,tau,Name,Value) estimates the theoretical maximum
detectable range with additional options specified by one or more Name,Value pair arguments.

Examples

Estimate Maximum Detectable Range

Estimate the theoretical maximum detectable range for a monostatic radar operating at 10 GHz using
a pulse duration of 10 μs. Assume the output SNR of the receiver is 6 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
maxrng = radareqrng(lambda,SNR,Pt,tau)

maxrng = 4.1057e+04

Estimate Maximum Detectable Range With Target RCS

Estimate the theoretical maximum detectable range for a monostatic radar operating at 10 GHz using
a pulse duration of 10 μs. The target RCS is 0.1 m². Assume the output SNR of the receiver is 6 dB.
The transmitter-receiver gain is 40 dB. Assume a loss factor of 3 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
RCS = 0.1;
Gain = 40;
Loss = 3;
maxrng2 = radareqrng(lambda,SNR,Pt,tau,'Gain',Gain, ...
    'RCS',RCS,'Loss',Loss)
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maxrng2 = 1.9426e+05

Input Arguments
lambda — Wavelength of radar operating frequency
positive scalar

Wavelength of radar operating frequency, specified as a positive scalar. The wavelength is the ratio of
the wave propagation speed to frequency. Units are in meters. For electromagnetic waves, the speed
of propagation is the speed of light. Denoting the speed of light by c and the frequency (in hertz) of
the wave by f, the equation for wavelength is:

λ = c
f

Data Types: double

SNR — Input signal-to-noise ratio at receiver
scalar | length-J real-valued vector

Input signal-to-noise ratio (SNR) at the receiver, specified as a scalar or length-J real-valued vector. J
is the number of targets. Units are in dB.
Data Types: double

Pt — Transmitted peak power
positive scalar

Transmitter peak power, specified as a positive scalar. Units are in watts.
Data Types: double

tau — Single pulse duration
positive scalar

Single pulse duration, specified as a positive scalar. Units are in seconds.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SNR,10

RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section specified as a positive scalar or length-J vector of positive values. J is the number
of targets. The target RCS is nonfluctuating (Swerling case 0). Units are in square meters.
Data Types: double

1 Functions
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Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. The system noise temperature is the product
of the system temperature and the noise figure. Units are in Kelvin.
Data Types: double

Gain — Transmitter and receiver gains
20 (default) | scalar | real-valued 1-by-2 row vector

Transmitter and receiver gains, specified as a scalar or real-valued 1-by-2 row vector. When the
transmitter and receiver are co-located (monostatic radar), Gain is a real-valued scalar. Then, the
transmit and receive gains are equal. When the transmitter and receiver are not co-located (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. If Gain is a two-element row vector it
has the form [TxGain RxGain] representing the transmit antenna and receive antenna gains.
Example: [15,10]
Data Types: double

Loss — System losses
0 (default) | scalar | length-J real-valued vector

System losses, specified as a scalar. Units are in dB.
Example: 1
Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | length-J column vector of real values

Custom loss factors specified as a scalar or length-J column vector of real values. J is the number of
targets. These factors contribute to the reduction of the received signal energy and can include
range-dependent STC, eclipsing, and beam-dwell factors. Units are in dB.
Example: [10,20]
Data Types: double

unitstr — Units of the estimated maximum theoretical range
'm' (default) | 'km''mi''nmi'

Units of the estimated maximum theoretical range, specified as one of:

• 'm' meters
• 'km' kilometers
• 'mi' miles
• 'nmi' nautical miles (U.S.)

Output Arguments
maxrng — Estimated theoretical maximum detectable range
positive scalar

 radareqrng
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The estimated theoretical maximum detectable range, returned as a positive scalar. The units of
maxrng are specified by unitstr. For bistatic radars, maxrng is the geometric mean of the range
from the transmitter to the target and the receiver to the target.

More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmit antenna gain
• Gr — Receive antenna gain. If the radar is monostatic, the transmit and receive antenna gains are

identical.
• λ — Radar wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the equation in the form 10x/10

where x denotes the variable. For example, the default loss factor of 0 dB results in a loss term of
100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.
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The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature. This value is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

Define the output SNR. The receiver output SNR is:

Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 1-12
• Output noise power in “Receiver Output Noise Power” on page 1-12

Theoretical Maximum Detectable Range

Compute the maximum detectable range of a target.

For monostatic radars, the range from the target to the transmitter and receiver is identical.
Denoting this range by R, you can express this relationship as R4 = Rt

2Rr
2.

Solving for R

R = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

For bistatic radars, the theoretical maximum detectable range is the geometric mean of the ranges
from the target to the transmitter and receiver:

RtRr = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

Version History
Introduced in R2021a

References
[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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Does not support variable-size inputs.

See Also
phased.Transmitter | phased.ReceiverPreamp | noisepow | radareqpow | radareqsnr |
systemp

Topics
“Modeling Target Position Errors Due to Refraction”
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radareqsnr
SNR estimate from radar equation

Syntax
SNR = radareqsnr(lambda,tgtrng,Pt,tau)
SNR = radareqsnr(lambda,tgtrng,Pt,tau,Name,Value)

Description
SNR = radareqsnr(lambda,tgtrng,Pt,tau) estimates the output signal-to-noise ratio, SNR, at
the receiver based on the wavelength lambda, the range tgtrng, the peak transmit power Pt, and
the pulse width tau.

SNR = radareqsnr(lambda,tgtrng,Pt,tau,Name,Value) estimates the output SNR at the
receiver with additional options specified by one or more Name,Value pair arguments.

Examples

Compute SNR Using Radar Equation

Estimate the output SNR for a target with an RCS of 1 m² at a range of 50 km. The system is a
monostatic radar operating at 1 GHz with a peak transmit power of 1 MW and pulse width of 0.2 μs.
The transmitter and receiver gain is 20 dB. The system temperature has the default value of 290 K.

fc = 1.0e9;
lambda = physconst('LightSpeed')/fc;
tgtrng = 50e3;
Pt = 1e6;
tau = 0.2e-6;
snr = radareqsnr(lambda,tgtrng,Pt,tau)

snr = 5.5868

Compute SNR with Specified System Temperature

Estimate the output SNR for a target with an RCS of 0.5 m² at 100 km. The system is a monostatic
radar operating at 10 GHz with a peak transmit power of 1 MW and pulse width of 1 μs. The
transmitter and receiver gain is 40 dB. The system temperature is 300 K and the loss factor is 3 dB.

fc = 10.0;
T = 300.0;
lambda = physconst('LightSpeed')/10e9;
snr = radareqsnr(lambda,100e3,1e6,1e-6,'RCS',0.5, ...
    'Gain',40,'Ts',T,'Loss',3)

snr = 14.3778
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Compute SNR for Bistatic Radar

Estimate the output SNR for a target with an RCS of 1 m². The radar is bistatic. The target is located
50 km from the transmitter and 75 km from the receiver. The radar operating frequency is 10.0 GHz.
The transmitter has a peak transmit power of 1 MW with a gain of 40 dB. The pulse width is 1 μs. The
receiver gain is 20 dB.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
tau = 1e-6;
Pt = 1e6;
txrvRng =[50e3 75e3];
Gain = [40 20];
snr = radareqsnr(lambda,txrvRng,Pt,tau,'Gain',Gain)

snr = 9.0547

Input Arguments
lambda — Wavelength of radar operating frequency
positive scalar

Wavelength of radar operating frequency, specified as a positive scalar. The wavelength is the ratio of
the wave propagation speed to frequency. Units are in meters. For electromagnetic waves, the speed
of propagation is the speed of light. Denoting the speed of light by c and the frequency (in hertz) of
the wave by f, the equation for wavelength is:

λ = c
f

Data Types: double

tgtrng — Target range
positive scalar | two-element row vector of positive values | length-J column vector of positive values |
J-by-2 matrix of positive values

Target ranges for a monostatic or bistatic radar.

• Monostatic radar - the transmitter and receiver are co-located. tgtrng is a real-valued positive
scalar or length-J real-valued positive column vector. J is the number of targets.

• Bistatic radar - the transmitter and receiver are separated. tgtrng is a 1-by-2 row vector with
real-valued positive elements or a J-by-2 matrix with real-valued positive elements. J is the number
of targets. Each row of tgtrng has the form [TxRng RxRng], where TxRng is the range from the
transmitter to the target and RxRng is the range from the receiver to the target.

Units are in meters.
Data Types: double

Pt — Transmitted peak power
positive scalar

Transmitter peak power, specified as a positive scalar. Units are in watts.
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Data Types: double

tau — Single pulse duration
positive scalar

Single pulse duration, specified as a positive scalar. Units are in seconds.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RCS',5.0,'Ts',295

RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section specified as a positive scalar or length-J vector of positive values. J is the number
of targets. The target RCS is nonfluctuating (Swerling case 0). Units are in square meters.
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. The system noise temperature is the product
of the system temperature and the noise figure. Units are in Kelvin.
Data Types: double

Gain — Transmitter and receiver gains
20 (default) | scalar | real-valued 1-by-2 row vector

Transmitter and receiver gains, specified as a scalar or real-valued 1-by-2 row vector. When the
transmitter and receiver are co-located (monostatic radar), Gain is a real-valued scalar. Then, the
transmit and receive gains are equal. When the transmitter and receiver are not co-located (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. If Gain is a two-element row vector it
has the form [TxGain RxGain] representing the transmit antenna and receive antenna gains.
Example: [15,10]
Data Types: double

Loss — System losses
0 (default) | scalar | length-J real-valued vector

System losses, specified as a scalar. Units are in dB.
Example: 1
Data Types: double

 radareqsnr
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AtmosphericLoss — Atmospheric absorption loss
0 (default) | scalar | two-element row vector of real values | length-J column vector of real values | J-
by-2 matrix of real values

Atmospheric absorption losses for the transmit and receive paths.

• When the absorption is a scalar or length-J column vector, the loss specifies the atmospheric
absorption loss for a one-way path.

• When the absorption is a 1-by-2 row vector or J-by-2 column vector, the first column specifies the
atmospheric absorption loss for the transmit path and the second column of contains the
atmospheric absorption loss for the receive path

Example: [10,20]
Data Types: double

PropagationFactor — Propagation factor
0 (default) | scalar | two-element row vector of real values | length-J column vector of real values | J-
by-2 matrix of real values

Propagation factor for the transmit and receive paths.

• When the propagation factor is a scalar or length-J column vector, the propagation factor is
specified for a one-way path.

• When the propagation factor is a 1-by-2 row vector or J-by-2 column vector, the first column
specifies the propagation factor for the transmit path and the second column of contains the
propagation factor for the receive path

Units are in dB.
Example: [10,20]
Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | length-J column vector of real values

Custom loss factors specified as a scalar or length-J column vector of real values. J is the number of
targets. These factors contribute to the reduction of the received signal energy and can include
range-dependent STC, eclipsing, and beam-dwell factors. Units are in dB.
Example: [10,20]
Data Types: double

Output Arguments
SNR — Minimum output signal-to-noise ratio at receiver
scalar

Minimum output signal-to-noise ratio at the receiver, returned as a scalar. Units are in dB.
Data Types: double
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More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmit antenna gain
• Gr — Receive antenna gain. If the radar is monostatic, the transmit and receive antenna gains are

identical.
• λ — Radar wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the equation in the form 10x/10

where x denotes the variable. For example, the default loss factor of 0 dB results in a loss term of
100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature. This value is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

Define the output SNR. The receiver output SNR is:

 radareqsnr

1-19



Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 1-12
• Output noise power in “Receiver Output Noise Power” on page 1-12

Theoretical Maximum Detectable Range

Compute the maximum detectable range of a target.

For monostatic radars, the range from the target to the transmitter and receiver is identical.
Denoting this range by R, you can express this relationship as R4 = Rt

2Rr
2.

Solving for R

R = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

For bistatic radars, the theoretical maximum detectable range is the geometric mean of the ranges
from the target to the transmitter and receiver:

RtRr = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

Version History
Introduced in R2021a

References
[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.Transmitter | phased.ReceiverPreamp | noisepow | radareqpow | radareqrng |
systemp
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Topics
“Radar Vertical Coverage over Terrain”
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blakechart
Range-angle-height (Blake) chart

Syntax
blakechart(vcp,vcpangles)
blakechart(vcp,vcpangles,rmax,hmax)
blakechart( ___ ,Name,Value)

Description
blakechart(vcp,vcpangles) creates a range-angle-height plot (also called a Blake chart) for a
narrowband radar antenna. This chart shows the maximum radar range as a function of target
elevation. In addition, the Blake chart displays lines of constant range and lines of constant height.
The input consists of the vertical coverage pattern vcp and vertical coverage pattern angles
vcpangles, both produced by radarvcd.

The range in the range-height-angle chart is the propagated range and the height is relative to the
origin of the ray. It is assumed that the antenna height is less than 1000 ft (about 305 meters) above
ground level. Normal atmospheric refraction is taken into account using the “CRPL Exponential
Reference Atmosphere Model” on page 1-30. Scattering and ducting are assumed to be negligible.

blakechart(vcp,vcpangles,rmax,hmax), in addition, specifies the maximum range and height
of the Blake chart. You can specify range and height units separately in the name-value arguments
RangeUnit and HeightUnit.

blakechart( ___ ,Name,Value) allows you to specify additional input parameters using name-
value arguments. You can specify multiple name-value arguments in any order with any of the
previous syntaxes.

Examples

Display Vertical Coverage Diagram

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed 20 meters
above the ground. Set the free-space range to 100 km. Use default plotting parameters.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);
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Display Vertical Coverage Diagram Specifying Maximum Range and Height

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed 20 meters
above the ground. Set the free-space range to 100 km. Set the maximum plotting range to 300 km
and the maximum plotting height to 250 km.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
rmax = 300;
hmax = 250;
blakechart(vcp,vcpangles,rmax,hmax)
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Display Vertical Coverage Diagram of Sinc Pattern Antenna

Plot the range-height-angle curve of a radar having a sinc-function antenna pattern.

Specify antenna pattern

Specify the antenna pattern as a sinc function.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(90/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

Specify radar and environment parameters

Set the transmitting frequency to 100 MHz, the free-space range to 100 km, the antenna tilt angle to
0∘, and place the antenna 20 meters above the ground. Assume a surface roughness of one meter.

freq = 100e6;
ant_height = 10;
rng_fs = 100;
tilt_ang = 0;
surf_roughness = 1;
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Create radar range-height-angle data

Obtain the vertical coverage pattern values and angles for the radar antenna.

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,'TiltAngle',tilt_ang,...
    'SurfaceHeightStandardDeviation',surf_roughness/(2*sqrt(2)));

Plot radar range-height-angle data

Set the maximum plotting range to 300 km and the maximum plotting height to 250,000 m. Choose
the range units as kilometers, 'km', and the height units as meters, 'm'. Set the range and height
axes scale powers to 1/2.

rmax = 300;
hmax = 250e3;
blakechart(vcp, vcpangles, rmax, hmax, 'RangeUnit','km',...
    'ScalePower',1/2,'HeightUnit','m');

Input Arguments
vcp — Vertical coverage pattern
real-valued column vector | real-valued matrix
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Vertical coverage pattern, specified as a real-valued column vector or matrix. The vertical coverage
pattern is the actual maximum range of the radar. Each column of vcp corresponds to an individual
vertical coverage pattern. Each row of vcp corresponds to one of the angles specified in vcpangles.
Values are expressed in kilometers unless you change the unit of measure using the RangeUnit
name-value argument.
Example: [282.3831; 291.0502; 299.4252]
Data Types: double

vcpangles — Vertical coverage pattern angles
real-valued column vector

Vertical coverage pattern angles, specified as a real-valued column vector. Each element of
vcpangles specifies the elevation angle in degrees at which a vertical coverage pattern is measured.
The set of angles ranges from –90° to 90°.
Example: [2.1480; 2.2340; 2.3199]
Data Types: double

rmax — Maximum range of plot
real-valued scalar

Maximum range of plot, specified as a real-valued scalar. Range units are specified by the
'RangeUnit' name-value argument.
Example: 200
Data Types: double

hmax — Maximum height of plot
real-valued scalar

Maximum height of plot, specified as a real-valued scalar. Height units are specified by the
'HeightUnit' name-value argument.
Example: 100000
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RangeUnit','m'

RangeUnit — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm' | 'kft'

Range units denoting nautical miles, miles, kilometers, feet, meters, or kilofeet. This name-value
argument specifies the units for the vertical coverage pattern input argument, vcp, and the maximum
range input argument rmax.
Example: 'mi'
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Data Types: char

HeightUnit — Height units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm' | 'kft'

Height units, specified as one of 'nmi', 'mi', 'km', 'ft', 'm', or 'kft' denoting nautical miles,
miles, kilometers, feet, meters, or kilofeet, respectively. This name-value argument specifies the units
for the maximum height hmax.
Example: 'm'
Data Types: char

ScalePower — Scale power
0.25 (default) | real-valued scalar

Scale power, specified as a scalar in the range [0, 1]. This argument specifies the range and height
axis scale power.
Example: 0.5
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity in N-units, specified as a nonnegative real-valued scalar. The surface refractivity
is a parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-30 used by
blakechart.
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent, specified as a nonnegative real-valued scalar. The refraction exponent is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-30 used by
blakechart.
Data Types: double

AntennaHeight — Antenna height
0 (default) | real-valued scalar

Antenna height, specified as a real-valued scalar. When you provide the antenna height, the height in
the Blake chart is the height above ground level. Otherwise, the height in the Blake chart is relative
to the origin of the ray, and the function assumes that the antenna is less than 1000 ft (about 305 m)
above ground level. Use the HeightUnit argument to specify the units of AntennaHeight.
Data Types: double

FaceColor — Face color of vertical coverage pattern patch
color name | short name | hexadecimal color code | RGB triplet | 'none'

Face color of vertical coverage pattern patch, specified as a color name, a short name, a hexadecimal
color code, an RGB triplet, or 'none'. If you specify more than one color, the number of colors must
match the number of columns of vcp.
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For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'black'
Example: 'k'
Example: [0.850 0.325 0.098]
Example: '#D95319'
Data Types: double | char | string
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EdgeColor — Edge color of vertical coverage pattern patch
color name | short name | hexadecimal color code | RGB triplet | 'none'

Edge color of vertical coverage pattern patch, specified as a color name, a short name, a hexadecimal
color code, an RGB triplet, or 'none'. If you specify more than one color, the number of colors must
match the number of columns of vcp.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'black'
Example: 'k'
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Example: [0.850 0.325 0.098]
Example: '#D95319'
Data Types: double | char | string

More About
CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.

Version History
Introduced in R2021a

References
[1] Blake, Lamont V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval Research

Laboratory Report 7098, 1970.

[2] Bean, B.R., and G.D. Thayer. "Central Radio Propagation Laboratory Exponential Reference
Atmosphere." Journal of Research of the National Bureau of Standards, Section D: Radio
Propagation 63D, no. 3 (November 1959): 315. https://doi.org/10.6028/jres.063D.031.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer

Functions
el2height | height2el | height2range | height2grndrange | landroughness | radarvcd |
range2height | refractionexp | searoughness
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Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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radarvcd
Vertical coverage diagram

Syntax
[vcp,vcpangles] = radarvcd(freq,rfs,anht)
[vcp,vcpangles] = radarvcd( ___ ,Name,Value)

radarvcd( ___ )

Description
[vcp,vcpangles] = radarvcd(freq,rfs,anht) calculates the vertical coverage pattern of a
narrowband radar antenna. The “Vertical Coverage Pattern” on page 1-40 is the range of the radar
vcp as a function of elevation angle vcpangles. The vertical coverage pattern depends on three
parameters: maximum free-space detection range of the radar rfs, the radar frequency freq, and
the antenna height anht.

[vcp,vcpangles] = radarvcd( ___ ,Name,Value) allows you to specify additional input
parameters using name-value arguments. You can specify multiple name-value arguments in any
order.

radarvcd( ___ ) displays the vertical coverage diagram for a radar system. The plot is the locus of
points of maximum radar range as a function of target elevation. This plot is also known as the Blake
chart. To create this chart, radarvcd invokes the function blakechart using default parameters. To
produce a Blake chart with different parameters, first call radarvcd to obtain vcp and vcpangles.
Then, call blakechart with user-specified parameters. This syntax can use any of the previous
syntaxes.

Examples

Plot Vertical Coverage Pattern Using Default Parameters

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to 200 km. The
antenna pattern, surface roughness, antenna tilt angle, and field polarization assume their default
values as specified in the AntennaPattern, SurfaceRoughness, TiltAngle, and Polarization
properties.

Obtain an array of vertical coverage pattern values and angles.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height);

To see the vertical coverage pattern, omit the output arguments.

radarvcd(freq,rng_fs,ant_height);
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Vertical Coverage Pattern with Specified Antenna Pattern

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to 200 km. The
antenna pattern is a sinc function with 45° half-power width. The surface height standard deviation is
set to 1/2 2 m. The antenna tilt angle is set to 0°, and the field polarization is horizontal.

pat_angles = linspace(-90,90,361)';
freq = 100e6;

ntn = phased.SincAntennaElement('Beamwidth',45);
pat = ntn(freq,pat_angles');

ant_height = 10;
rng_fs = 200;
tilt_ang = 0;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,...
    'TiltAngle',tilt_ang,'SurfaceHeightStandardDeviation',1/(2*sqrt(2)));

Call radarvcd with no output arguments to display the vertical coverage pattern.

radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
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    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,...
    'TiltAngle',tilt_ang,'SurfaceHeightStandardDeviation',1/(2*sqrt(2)));

Alternatively, use the radarvcd output arguments and the blakechart function to display the
vertical coverage pattern to a maximum range of 400 km and a maximum height of 50 km. Customize
the Blake chart by changing the color.

blakechart(vcp,vcpangles,400,50, ...
    'FaceColor',[0.8500 0.3250 0.0980],'EdgeColor',[0.8500 0.3250 0.0980])
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Plot Vertical Coverage Diagram For User-Specified Antenna

Plot the range-height-angle curve (Blake chart) for a radar with a user-specified antenna pattern.

Define a sinc-function antenna pattern with a half-power beamwidth of 90 degrees. The radar
transmits at 100 MHz.

pat_angles = linspace(-90,90,361)';
freq = 100e6;

ntn = phased.SincAntennaElement('Beamwidth',90);
pat = ntn(freq,pat_angles');

Specify a free-space range of 200 km. The antenna height is 10 meters, the antenna tilt angle is zero
degrees, and the surface roughness is one meter.

rng_fs = 200;
ant_height = 10;
tilt_ang = 0;
surf_roughness = 1;

Create the radar range-height-angle plot.

radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
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    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,...
    'TiltAngle',tilt_ang,...
    'SurfaceHeightStandardDeviation',surf_roughness/(2*sqrt(2)));

Input Arguments
freq — Radar frequency
real-valued scalar less than 10 GHz

Radar frequency, specified as a real-valued scalar less than 10 GHz (1010 Hz).
Example: 100e6
Data Types: double

rfs — Free-space range
positive scalar | positive vector

Free-space range, specified as a positive scalar or vector. rfs is the calculated or assumed free-space
range for a target or for a one-way RF system at which the field strength would have a specified
value. Range units are set by the RangeUnit name-value argument.
Example: 100e3
Data Types: double
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anht — Radar antenna height
real-valued scalar

Radar antenna height, specified as a real-valued scalar. The height is referenced to the surface.
Height units are set by the HeightUnit name-value argument.
Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'HeightUnit','km'

RangeUnit — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm' | 'kft'

Radar range units denoting kilometers, nautical miles, miles, feet, meters, or kilofeet. This argument
specifies the units for the free-space range argument rfs and the output vertical coverage pattern
vcp.
Example: 'mi'
Data Types: char

HeightUnit — Antenna height units
'm' (default) | 'nmi' | 'mi' | 'km' | 'ft' | 'kft'

Antenna height units denoting meters, nautical miles, miles, kilometers, feet, or kilofeet. This
argument specifies the units for the antenna height anht and the 'SurfaceRoughness' argument.
Example: 'm'
Data Types: char

Polarization — Transmitted wave polarization
'H' (default) | 'V'

Transmitted wave polarization, specified as 'H' for horizontal polarization or 'V' for vertical
polarization.
Example: 'V'
Data Types: char

SurfaceRelativePermittivity — Complex permittivity of reflecting surface
frequency dependent model (default) | complex-valued scalar

Complex permittivity (dielectric constant) of the reflecting surface, specified as a complex-valued
scalar. The default value of this argument depends on the value of freq. radarvcd uses a seawater
model that is valid for frequencies up to 10 GHz.
Example: 70
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Data Types: double

SurfaceHeightStandardDeviation — Standard deviation of surface height
0 (default) | real-valued scalar

Standard deviation of surface height, specified as a nonnegative real-valued scalar. A value of 0
indicates a smooth surface. Use 'HeightUnit' to specify the units of height.

The surface height standard deviation relates to the crest-to-trough "surface roughness" height
through

Surface roughness = 2 × √2 × Surface height standard deviation.
Example: 2
Data Types: double

SurfaceSlope — Surface slope
nonnegative scalar

Surface slope in degrees, specified as a nonnegative scalar. This value is expected to be 1.4 times the
RMS surface slope. Given the condition that

2 × GRAZ/β0 < 1,
where GRAZ is the grazing angle of the geometry specified in degrees and β0 is the surface slope, the
effective surface height standard deviation in meters is calculated as

Effective HGTSD = HGTSD × (2 × GRAZ/β0)1/5.
This calculation better accounts for shadowing. Otherwise, the effective height standard deviation is
equal to HGTSD. This argument defaults to 0, indicating a smooth surface.
Data Types: double

VegetationType — Vegetation type
'None' (default) | 'Trees' | 'Brush' | 'Weeds' | 'Grass'

Surface vegetation type, specified as 'Trees', 'Weeds', and 'Brush' are assumed to be dense
vegetation. 'Grass' is assumed to be thin grass. Use this argument when using the function on
surfaces different from the sea.

ElevationBeamwidth — Half-power elevation beamwidth
10 (default) | scalar between 0° and 90°

Half-power elevation beamwidth in degrees, specified as a scalar between 0° and 90°. The elevation
beamwidth is used in the calculation of a sinc antenna pattern. The default antenna pattern is
symmetric with respect to the beam maximum and is of the form sin(u)/u. The parameter u is given by
u = k sin(θ), where θ is the elevation angle in radians and k is given by k = x0 / sin(π × ELBW/360),
where ELBW is the half-power elevation beamwidth and x0 ≈ 1.3915573 is a solution of sin(x) = x/√2.
Data Types: double

AntennaPattern — Antenna elevation pattern
real-valued column vector

Antenna elevation pattern, specified as a real-valued column vector. Values for 'AntennaPattern'
must be specified together with values for 'PatternAngles'. Both vectors must have the same size.
If both an antenna pattern and an elevation beamwidth are specified, radarvcd uses the antenna
pattern and ignores the elevation beamwidth value. This argument defaults to a sinc antenna pattern.
Example: cosd([–90:90])
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Data Types: double

PatternAngles — Antenna pattern elevation angles
real-valued column vector

Antenna pattern elevation angles specified as a real-valued column vector. The size of the vector
specified by PatternAngles must be the same as that specified by AntennaPattern. Angle units
are expressed in degrees and must lie between –90° and 90°. In general, the antenna pattern should
fill the whole range from –90° to 90° for the coverage to be computed properly.
Example: [-90:90]
Data Types: double

TiltAngle — Antenna tilt angle
0 (default) | real-valued scalar

Antenna tilt angle, specified as a real-valued scalar. The tilt angle is the elevation angle of the
antenna with respect to the surface. Angle units are expressed in degrees.
Example: 10
Data Types: double

EffectiveEarthRadius — Effective Earth radius
positive scalar

Effective Earth radius in meters, specified as a positive scalar. The effective Earth radius is an
approximation used for modeling refraction effects in the troposphere. The default value calculates
the effective Earth radius using a refraction gradient of -39e-9, which results in approximately 4/3
of the real Earth radius.
Data Types: double

MaxElevation — Maximum elevation angle
60 (default) | real-valued scalar

Maximum elevation angle, specified as a real-valued scalar. The maximum elevation angle is the
largest angle for which the vertical coverage pattern is calculated. Angle units are expressed in
degrees.
Example: 70
Data Types: double

MinElevation — Minimum elevation angle
0 (default) | real-valued scalar

Minimum elevation angle, specified as a real-valued scalar. The minimum elevation angle is the
smallest angle for which the vertical coverage pattern is calculated. Angle units are expressed in
degrees.
Example: 10
Data Types: double

ElevationStepSize — Elevation angle increment
positive scalar
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Elevation angle increment, specified as a positive scalar in degrees. The elevation vector goes from
the minimum value specified in MinElevation and the maximum value specified in MaxElevation
in increments of ElevationStepSize. The default value of this argument is given by

Δ = 885.6/(π × fMHz × ha,ft),
where fMHz is the frequency in MHz and ha,ft is the antenna height in feet.
Data Types: double

Output Arguments
vcp — Vertical coverage pattern
real-valued vector | real-valued matrix

Vertical coverage pattern, returned as a real-valued column vector or matrix. The vertical coverage
pattern is the actual maximum range of the radar. Each row of the vertical coverage pattern
corresponds to one of the angles returned in vcpangles The columns of vcp correspond to the
ranges specified in rfs.

vcpangles — Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles, returned as a column vector. The angles range from –90° to 90°.
Each entry of vcpangles specifies the elevation angle at which the vertical coverage pattern is
measured.

More About
Vertical Coverage Pattern

The maximum detection range of a radar antenna can differ depending on placement. Suppose you
place a radar antenna near a reflecting surface, such as the earth's land or sea surface and computed
maximum detection range. If you then move the same radar antenna to free space far from any
boundaries, it results in a different maximum detection range. This is an effect of multipath
interference that occurs when waves, reflected from the surface, constructively add to or nullify the
direct path signal from the radar to a target. Multipath interference gives rise to a series of lobes in
the vertical plane. The vertical coverage pattern is the plot of the actual maximum detection range of
the radar versus target elevation and depends upon the maximum free-space detection range and
target elevation angle. See Blake [1].

The vertical coverage pattern is generally considered to be valid for antenna heights that are within a
few hundred feet of the surface and with targets at altitudes that are not too close to the radar
horizon.

Version History
Introduced in R2021a

References
[1] Blake, Lamont V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval Research

Laboratory Report 7098, 1970.
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[2] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only when output arguments are specified.

See Also
Apps
Radar Designer

Functions
blakechart | el2height | height2el | height2range | height2grndrange | landroughness |
range2height | refractionexp | searoughness

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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billingsleyicm
Billingsley’s intrinsic clutter motion (ICM) model

Syntax
P = billingsleyicm(fd,fc,wspeed)
P = billingsleyicm(fd,fc,wspeed,c)

Description
P = billingsleyicm(fd,fc,wspeed) calculates the clutter Doppler spectrum shape, P, due to
intrinsic clutter motion (ICM) at Doppler frequencies specified in fd. ICM arises when wind blows on
vegetation or other clutter sources. This function uses Billingsley’s model in the calculation. fc is the
operating frequency of the system. wspeed is the wind speed.

P = billingsleyicm(fd,fc,wspeed,c) specifies the propagation speed c in meters per second.

Examples

Compute Billingsley Doppler Spectrum

Calculate and plot the Doppler spectrum shape predicted by the Billingsley ICM model. Assume the
PRF is 2 kHz, the operating frequency is 1 GHz, and the wind speed is 5 m/s.

v = -3:0.1:3;
fc = 1e9;
wspeed = 5;
c = physconst('LightSpeed');
fd = 2*v/(c/fc);
p = billingsleyicm(fd,fc,wspeed);
plot(fd,pow2db(p))
xlabel('Doppler frequency (Hz)')
ylabel('P (dB)')
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Input Arguments
fd — Doppler frequencies
scalar | vector

Doppler frequencies in hertz, specified as a scalar or a vector.
Data Types: double

fc — Operating frequency of the system
scalar

Operating frequency of the system in hertz, specified as a scalar.
Data Types: double

wspeed — Wind speed
scalar

Wind speed in meters per second, specified as a scalar.
Data Types: double

c — Propagation speed
physconst("LightSpeed") (default) | positive scalar

Propagation speed in meters per second, specified as a positive scalar.
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Example: 343 meters per second approximates the speed of sound at sea level and at a temperature
of 20 °C under normal atmospheric conditions.
Data Types: double

Output Arguments
P — Shape of the clutter Doppler spectrum
scalar | vector

Shape of the clutter Doppler spectrum due to intrinsic clutter motion, returned as a scalar or vector.
P is the same size as fd.

Version History
Introduced in R2021a

References
[1] Billingsley, J. Low Angle Radar Clutter. Norwich, NY: William Andrew Publishing, 2002.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | effearthradius | horizonrange
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depressionang
Depression angle of surface target

Syntax
depAng = depressionang(H,R)
depAng = depressionang(H,R,MODEL)
depAng = depressionang(H,R,MODEL,Re)
depAng = depressionang( ___ ,TargetHeight=TGTHT)

Description
depAng = depressionang(H,R) returns the depression angle from the horizontal at an altitude of
R meters to surface targets. The sensor is H meters above the surface. R is the range from the sensor
to the surface targets. The computation assumes a curved earth model with an effective earth radius
of approximately 4/3 times the actual earth radius.

depAng = depressionang(H,R,MODEL) specifies the earth model used to compute the depression
angle. MODEL is either "Flat" or "Curved".

depAng = depressionang(H,R,MODEL,Re) specifies the effective earth radius. Effective earth
radius applies to a curved earth model. When MODEL is "Flat", the function ignores Re.

depAng = depressionang( ___ ,TargetHeight=TGTHT) specifies the target height, TGTHT
above the surface as either a scalar or a vector. If any combination of H, R, and TGTHT are vectors,
then the dimensions must be equal. r must be greater than or equal to the absolute value of the
difference of ht and TGTHT.

Examples

Compute Depression Angle

Calculate the depression angle for a ground clutter patch that is 1.0 km away from a sensor. The
sensor is located on a platform 300 m above the ground.

depang = depressionang(300,1000)

depang = 17.4608

Input Arguments
H — Height of the sensor above the surface
scalar | vector

Height of the sensor above the surface in meters, specified as a scalar or a vector. If both H and R are
nonscalar, they must have the same dimensions.
Data Types: double
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R — Distance from the sensor to the surface target
scalar | vector

Distance from the sensor to the surface target in meters, specified as a scalar or a vector. If both H
and R are nonscalar, they must have the same dimensions. R must be between H and the horizon
range determined by TGTHT.
Data Types: double

MODEL — Earth model
"Curved" (default) | "Flat"

Earth model, specified as one of "Curved" or "Flat".
Data Types: char | string

Re — Effective earth radius
effearthradius (default) | positive scalar

Effective earth radius in meters, specified as a positive scalar. You can use effearthradius to
compute the effective radius. The function provides a default value approximately 4/3 times the
actual earth radius
Example: 6.4e6
Data Types: double

TGTHT — Target height above surface
0 (default) | scalar | vector

Target height above surface in meters, specified as a scalar or vector. If any combination of H, R, and
TGTHT are vectors, then their sizes must be equal. R must be greater than or equal to the absolute
value of the difference of H and TGTHT. A surface target has a TGTHT of zero.
Data Types: double

Output Arguments
depAng — Depression angle
scalar | vector

Depression angle in degrees from the horizontal at the sensor altitude toward surface targets R
meters from the sensor, returned as a scalar or a vector. If depAng is a vector, it has the same
dimensions as the nonscalar inputs to depressionang.

More About
Depression Angle

The depression angle is the angle between a horizontal line containing the sensor and the line from
the sensor to a surface target.
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For the curved earth model with an effective earth radius of Re, the depression angle is:

sin−1 H2 + 2HRe + R2

2R(H + Re)

For the flat earth model, the depression angle is:

sin−1 H
R

Version History
Introduced in R2021a

References
[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[2] Ward, J. "Space-Time Adaptive Processing for Airborne Radar Data Systems." Technical Report
1015, MIT Lincoln Laboratory, December 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
grazingang | horizonrange | effearthradius
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effearthradius
Effective earth radius

Syntax
Re = effearthradius
Re = effearthradius(refgrad)

Re = effearthradius(R,ha,ht)
Re = effearthradius(R,ha,ht,'SurfaceRefractivity',ns)
Re = effearthradius(R,ha,ht, ___ ,'BreakPointAltitude',altbp)
Re = effearthradius(R,ha,ht, ___ ,'BreakPointRefractivity',npb)

[Re,k] = effearthradius( ___ )

Description
Re = effearthradius returns the effective radius Re of a spherical earth computed from the
gradient of the index of refraction of the atmosphere. The radius is in meters. This syntax uses the
default value of -39e-9 for the gradient, making the effective radius approximately 4/3 of the actual
earth radius. For more information about the computation, see “Effective Earth Radius from
Refractivity Gradient” on page 1-53.

Re = effearthradius(refgrad) computes the effective radius from the specified gradient of the
refractivity, refgrad, of the atmosphere.

Re = effearthradius(R,ha,ht) returns the effective Earth radius, Re, using the average radius
of curvature method (see[1]). R is the line-of-sight range to the target. ha is the radar altitude above
mean sea level (MSL). ht is the target altitude above MSL. See “Effective Earth Radius from Average
Radius of Curvature” on page 1-53.

Re = effearthradius(R,ha,ht,'SurfaceRefractivity',ns) also specifies the scalar surface
refractivity, ns for the average radius of curvature method. See “Effective Earth Radius from Average
Radius of Curvature” on page 1-53.

Re = effearthradius(R,ha,ht, ___ ,'BreakPointAltitude',altbp) also specifies the
altitude of the convergence point, altbp, for the average radius of curvature method.

Re = effearthradius(R,ha,ht, ___ ,'BreakPointRefractivity',npb) also specifies the
refractivity at the convergence point, npb, for the average radius of curvature method.

[Re,k] = effearthradius( ___ ) also outputs the effective radius factor, k. Use this option with
any of the syntaxes described above. See “Effective Earth Radius” on page 1-52.

Examples

Default Value of Effective Earth Radius

Return the default effective earth radius due to atmospheric refraction.
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re = effearthradius

re = 8.4774e+06

Compute the ratio of the effective earth radius to the actual earth radius.

r = physconst('EarthRadius');
disp(re/r)

    1.3306

Compute Effective Earth Radius from Refractivity Gradient

Compute the effective earth radius from a specified refractivity gradient, -40e-9.

rgrad = -40e-9;
re = effearthradius(rgrad)

re = 8.5498e+06

Compute Effective Earth Radius from Path Length

Calculate the effective Earth radii for a radar positioned at sea level aimed at two targets. The first
target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000 meters
altitude at a range of 200 km.

rng = [100e3,200e3];
ha = [0];
ht = [8.0e3, 9.0e3];
re = effearthradius(rng,ha,ht)

re = 1×2
106 ×

    7.4342    7.3525

Compute Effective Earth Radius from Surface Refractivity

Calculate the effective Earth radii for a radar positioned at sea level and aimed at two targets. The
first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. Specify the surface refractivity as 100.0 N-units.

rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',100)

re = 1×2
106 ×
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    6.3582    6.3582

Compute Effective Earth Radius Using Breakpoint Height

Calculate the effective Earth radii for a radar positioned at sea level aimed at two targets. The first
target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000 meters
altitude at a range of 200 km. The breakpoint altitude is 10000.0 meters and the surface refractivity
is 350 N-units.

rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',350.0, ...
    'BreakPointAltitude',10000.0)

re = 1×2
106 ×

    7.5877    7.4917

Compute Effective Earth Radius Using Breakpoint Refractivity and Height

Calculate the effective Earth radii for a radar positioned at sea level and aimed at two targets. The
first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. The breakpoint altitude is 10000.0 meters, the breakpoint
refractivity is 300 N-units, and the surface refractivity is 375 N-units.

rng = [100e3,200e3];
ha = 0;
ht = [8.0e3, 9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',375, ...
    'BreakPointAltitude',10e3,'BreakPointRefractivity',300)

re = 1×2
106 ×

    6.6962    6.6930

Compute Effective Earth Radius Factor

Calculate the effective Earth radius factors for a radar positioned at sea level aimed at two targets.
The first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. The break point altitude is one kilometer, the breakpoint
refractivity is 300.0 N-units, and the surface refractivity is 350.0 N-units.
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rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
[re,k] = effearthradius(rng,ha,ht,'SurfaceRefractivity',350.0, ...
    'BreakPointAltitude',1000.0,'BreakPointRefractivity',300.0)

re = 1×2
106 ×

    7.7113    7.5724

k = 1×2

    1.2104    1.1886

Input Arguments
refgrad — Refractivity gradient
-39e-9 (default) | scalar

Refractivity gradient, specified as a scalar. Units are in N-units/meter.
Data Types: double

R — Line-of-sight range to target
positive scalar | 1-by-M vector of positive values

Line-of-sight range to the target from the radar, specified as a positive scalar or a 1-by-M vector of
positive values. M must be the same for R, ha, and ht. However, if one of R, ha, and ht is a scalar and
another is a 1-by-M vector, the scalar is expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ha — Radar altitude above mean sea level
scalar | 1-by-M vector

Radar altitude above mean sea level, specified as a scalar or a 1-by-M vector. M must be the same for
R, ha, and ht. However, if one of R, ha, and ht is a scalar and another is a 1-by-M vector, the scalar is
expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ht — Target altitude above mean sea level
scalar | M-length vector

Target altitude above mean sea level, specified as a scalar or an M-length vector. M must be the same
R, ha, and ht. However, if one of R, ha, and ht is a scalar and another is a 1-by-M vector, the scalar is
expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ns — Scalar surface refractivity
313 (default) | positive scalar

Scalar surface refractivity, specified as a positive scalar. Units are N-units.
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Dependencies

To enable this argument, use the syntax specifying 'SurfaceRefractivity'.
Data Types: double

altbp — Convergence point altitude
12192 or 9144 (default) | scalar

Convergence point altitude, specified as a scalar. The convergence point altitude defaults to 12192
meters when any of the input altitudes specified in ha or ht are greater than 9144 meters.
Otherwise, it defaults to 9144 meters. Setting the 'BreakPointAltitude' and
'BreakPointRefractivity' values can be used to tune the output to measured refraction values.
For more information, see “Effective Earth Radius from Average Radius of Curvature” on page 1-53.
Units are in meters.
Dependencies

To enable this argument, use the syntax specifying 'BreakPointAltitude'.
Data Types: double

npb — Convergence point refractivity
66.65 or 102.9 (default) | scalar

Convergence point refractivity, specified as a scalar. The refractivity defaults to 66.65 N-units when
any of the input altitudes specified in ha or ht are greater than 9144 meters. Otherwise, the default
is 102.9. Setting the 'BreakPointAltitude' and 'BreakPointRefractivity' values can be
used to tune the output to measured refraction values. For more information, see “Effective Earth
Radius from Average Radius of Curvature” on page 1-53. Units are N-units.
Dependencies

To enable this argument, use the syntax specifying 'BreakPointRefractivity'.
Data Types: double

Output Arguments
Re — Effective earth radius
4/3 actual earth radius (default) | positive scalar

Effective earth radius, returned as a positive scalar. Units are in meters.

k — Effective earth radius factor
4/3 (default) | positive scalar

Effective earth radius factor, returned as a positive scalar. The effective earth radius factor is the
ratio of the effective earth radius to the physical earth radius. Units are dimensionless.
Data Types: double

More About
Effective Earth Radius

The effective earth radius method is an approximation used for modelling refraction effects in the
troposphere. Changing the radius of the earth can account for refraction effects. The effective radius
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method ignores other types of propagation phenomena such as ducting. A related quantity, the
effective earth radius factor, is the ratio of the effective earth radius to the actual earth radius.

k =
Re
r

where r is the actual earth radius and Re is the effective earth radius. Commonly, the effective earth
radius factor, k, is chosen as 4/3. However, at long ranges and with shallow angles, k can deviate
greatly from the 4/3. (With no atmospheric refraction, k = 1. An infinite value for k represents a flat
Earth). The effearthradius function provides two methods for calculating the effective earth
radius: the refractivity gradient method and the average radius of curvature method.

Effective Earth Radius from Refractivity Gradient

An estimate of the effective earth radius factor, k, can be derived from the refractivity gradient using

k = 1
1 + r ⋅ refgrad

where r is the actual earth radius in meters. refgrad is the gradient of the index of refraction
specified by the refgrad argument. The index of refraction for a given altitude is the ratio of the
free-space propagation speed of electromagnetic waves to the propagation speed in air at that
altitude. The gradient is the rate of change of the index of refraction with altitude. The value of 4/3
corresponds to an index of refraction gradient of −39 × 10−9 m−1.

Effective Earth Radius from Average Radius of Curvature

Another way of estimating the effective earth radius factor is by using the average radius of
curvature method described in [1]. The first step in the method is to compute the average radius of
curvature over the signal propagation path

ρavg = 1
ha− ht∫ht

ha
ρdh =

Hb

10−6Nscosψg

e
ha− ht

Hb − 1
ha− ht

Hb

where the integral spans the range from the radar altitude (ha) to the target altitude (ht).

The constants in the equation where

• ht is the altitude of the target, specified by the ht argument.
• ha is the altitude of the radar, specified by the ha argument.
• hb is the altitude of the convergence point or breakpoint, specified by the altbp argument.
• Nb is the refractivity measure (in N-units) at the convergence point or breakpoint specified by the

npb argument.
• Ns is the refractivity measure (in N-units) at the surface.

Altitudes are with respect to mean sea level. The constant Hb is computed from

Hb =
hb− ht

ln
Nt
Nb

Then, the effective earth radius factor is computed from the average radius of curvature using
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k = 1
1−

Re
ρavg

Refractivity Measure and N-Units

The refractivity measure, N, is related to the index of refraction, n by:

n = 1 + 10−6N

10-6N represents the deviation of the index of refraction from the index of refraction of free space. N
is expressed in N-units.

Version History
Introduced in R2021a

References
[1] Doerry, Armin. W. "Earth Curvature and Atmospheric Refraction Effects on Radar Signal

Propagation", Sandia National Laboratories, SAND2012-10690, January 2013.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 2nd Ed. Artech House, 2001.

[3] Mahafza, Bassem R. Radar Signal Analysis and Processing Using MATLAB, CRC Press, 2009.

[4] Skolnik, Merrill I. Introduction to Radar Systems, Third edition, McGraw-Hill, 2001.

[5] Ward, James. "Space-Time Adaptive Processing for Airborne Radar", Lincoln Lab Technical Report,
1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | grazingang

Topics
“Radar Vertical Coverage over Terrain”
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earthSurfacePermittivity
Permittivity and conductivity of earth surface materials

Syntax
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc)

Description
The earthSurfacePermittivity function computes electrical characteristics (relative permittivity,
conductivity, and complex relative permittivity) of earth surface materials based on the methods and
equations presented in ITU-R P.527 [1]. The earthSurfacePermittivity function provides various
syntaxes to account for characteristics germane to the specified surface material.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp) calculates the electrical characteristics for pure water at the specified frequency and
temperature. For pure-water, the temperature setting must be greater than 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
calculates the electrical characteristics for dry-ice at the specified frequency and temperature. For
dry-ice, the temperature must be less than or equal to 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity) calculates the electrical characteristics for sea water at the specified frequency,
temperature, and salinity. For sea-water, the temperature must be greater than –2 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac) calculates the electrical characteristics for wet ice at the specified frequency, and liquid
water volume fraction. For wet-ice, the temperature is 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc) calculates the electrical characteristics for
soil at the specified frequency, temperature, sand percentage, clay percentage, specific gravity, and
volumetric water content.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity) sets the soil bulk density in addition to input arguments from the previous syntax.
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[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc) calculates the electrical characteristics for vegetation at the specified frequency,
temperature, and gravimetric water content. For vegetation, the temperature must be greater than or
equal to –20 ℃.

Examples

Compare Permittivity and Conductivity of Salt-free Sea Water to Pure Water

Compare the relative permittivity and conductivity for salt-free (zero-salinity) sea water to pure
water.

Specify a carrier frequency of 9 GHz, temperature of 30℃, and salinity of zero.

fc = 9e9; % Carrier frequency in Hz.
temp = 30;
salinity = 0;

Compute the relative permittivity and conductivity.

[epsilon_pure_water,sigma_pure_water] = earthSurfacePermittivity('pure-water',fc,temp);
[epsilon_sea_water,sigma_sea_water] = earthSurfacePermittivity('sea-water',fc,temp,salinity);

Confirm that salt-free sea water and pure water have equal relative permittivity and conductivity.

isequal(epsilon_pure_water,epsilon_sea_water)

ans = logical
   1

isequal(sigma_pure_water,sigma_sea_water)

ans = logical
   1

Compare Permittivity and Conductivity of Wet Ice to Dry Ice

Compare the relative permittivity and conductivity for wet ice with no liquid water to dry ice at 0℃.
Confirm the results differ by a negligible amount.

Specify a carrier frequency of 12 GHz.

fc = 12e9; % Carrier frequency in Hz.

Calculate the relative permittivity and conductivity for wet ice with zero liquid water by volume.

liqfrac = 0;
[epsilon_wet_ice_0,sigma_wet_ice_0] = earthSurfacePermittivity('wet-ice',fc,liqfrac); % Set liquid water volume fraction to 0.

Calculate the relative permittivity and conductivity for dry ice at 0 ℃.
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temp = 0;
[epsilon_dry_ice_0,sigma_dry_ice_0] = earthSurfacePermittivity('dry-ice',fc,temp); % Set temperature to 0.

Compare the relative permittivity and conductivity for wet ice with no liquid to dry ice at 0℃.
Confirm that wet ice with no liquid and dry ice at 0℃ have essentially equal relative permittivity and
conductivity.

epsilon_wet_ice_0-epsilon_dry_ice_0

ans = 8.8818e-16

sigma_wet_ice_0-sigma_dry_ice_0

ans = -9.2179e-16

Plot permittivity and conductivity versus frequency for dry ice and for wet ice. For dry ice, vary the
temperature. For wet ice, vary the liquid water volume fraction. Calculate the permittivity and
conductivity values by using arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs.

freq = repmat([0.1,10,20,40,60]*1e9,6,1);
temp = repmat((-100:20:0)',1,5);
liqfrac = repmat((0:0.2:1)',1,5);
[epsilon_dry_ice, sigma_dry_ice] = arrayfun(@(x,y)earthSurfacePermittivity('dry-ice',x,y),freq,temp);
[epsilon_wet_ice, sigma_wet_ice] = arrayfun(@(x,y)earthSurfacePermittivity('wet-ice',x,y),freq,liqfrac);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp,freq,epsilon_dry_ice,'FaceColor','interp')
title('Permittivity of Dry Ice')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp,freq,sigma_dry_ice,'FaceColor','interp')
title('Conductivity of Dry Ice')
nexttile
surf(liqfrac,freq,epsilon_wet_ice,'FaceColor','interp')
title('Permittivity of Wet Ice')
xlabel('Liquid Fraction')
ylabel('Frequency (Hz)')
nexttile
surf(liqfrac,freq,sigma_wet_ice,'FaceColor','interp')
title('Conductivity of Wet Ice')
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Calculate Permittivity and Conductivity of Various Soil Mixtures

Calculate relative permittivity and conductivity for various soil mixtures as defined by textual
classifications in ITU-R P.527, Table 1.

Initialize computation variables for constant values and arrayed values.

fc = 28e9; % Frequency in Hz
temp = 23; % Temperature in °C
vwc = 0.5; % Volumetric water content
pSand = [51.52; 41.96; 30.63; 5.02]; % Sand percentage
pClay = [13.42; 8.53; 13.48; 47.38]; % Clay percentage
sg = [2.66; 2.70; 2.59; 2.56]; % Specific gravity
bd = [1.6006; 1.5781; 1.5750; 1.4758]; % Bulk density (g/cm^3)

Calculate the relative permittivity and conductivity for these textual classifications: sandy loam, loam,
silty loam, and silty clay. Use arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs. Tabulate the results.

[Permittivity,Conductivity] = arrayfun(@(w,x,y,z)earthSurfacePermittivity( ...
    'soil',fc,temp,w,x,y,vwc,z),pSand,pClay,sg,bd);

pSilt = 100 - (pSand + pClay); % Silt percentage
soilType = ["Sandy Loam";"Loam";"Silty Loam";"Silty Clay"];
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varNames1 = ["Soil Textual Classification";"Sand";"Clay";"Silt";"Specific Gravity";"Bulk Density"];
varNames2 = ["Soil Textual Classification";"Permittivity";"Conductivity"];

ITU-R P.527, Table 1 specifies the sand percentage, clay percentage, specific gravity, and bulk density
for soil mixtures with these soil textual classifications.

table(soilType,pSand,pClay,pSilt,sg,bd,'VariableNames',varNames1)

ans=4×6 table
    Soil Textual Classification    Sand     Clay     Silt     Specific Gravity    Bulk Density
    ___________________________    _____    _____    _____    ________________    ____________

           "Sandy Loam"            51.52    13.42    35.06          2.66             1.6006   
           "Loam"                  41.96     8.53    49.51           2.7             1.5781   
           "Silty Loam"            30.63    13.48    55.89          2.59              1.575   
           "Silty Clay"             5.02    47.38     47.6          2.56             1.4758   

The relative permittivity and conductivity for these soil textual classifications are included in this
table.

table(soilType,Permittivity,Conductivity,'VariableNames',varNames2)

ans=4×3 table
    Soil Textual Classification    Permittivity    Conductivity
    ___________________________    ____________    ____________

           "Sandy Loam"               15.281            18.2   
           "Loam"                     14.563          16.998   
           "Silty Loam"               13.965          16.011   
           "Silty Clay"               12.861          14.647   

Calculate Permittivity and Conductivity of Vegetation

Calculate relative permittivity and conductivity versus frequency for vegetation, varying gravimetric
water content and temperature.

Calculate relative permittivity and conductivity for vegetation at specified settings.

fc = 10e9; % Frequency in Hz
temp  = 23; % Temperature in °C
gwc = 0.68; % Gravimetric water content
[epsilon_veg,sigma_veg] = ...
    earthSurfacePermittivity('vegetation',fc,temp,gwc)

epsilon_veg = 20.5757

sigma_veg = 4.9320

Calculate values necessary to plot permittivity and conductivity by using arrayfun to apply the
earthSurfacePermittivity function to the elements of the arrayed inputs.

For a range of temperatures, calculate values to plot permittivity and conductivity versus frequency
for vegetation at a 0.68 gravimetric water content.
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fc = repmat([0.1,10,20,40,60]*1e9,6,1);
gwc1 = 0.68;
temp1 = repmat((-20:20:80)',1,5);
[epsilon_veg_gwc,sigma_veg_gwc] = ...
    arrayfun(@(x,y)earthSurfacePermittivity('vegetation',x,y,gwc1),fc,temp1);

For a range of gravimetric water contents, calculate values to plot permittivity and conductivity
versus frequency for vegetation at 10°C.

temp2 = 10;
gwc2 = repmat((0.2:0.1:0.7)',1,5);
[epsilon_veg_tmp, sigma_veg_tmp] = ...
    arrayfun(@(x,z)earthSurfacePermittivity('vegetation',x,temp2,z),fc,gwc2);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp1,fc,epsilon_veg_gwc,'FaceColor','interp')
title('Permittivity of Vegetation at 0.68 gwc')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp1,fc,sigma_veg_gwc,'FaceColor','interp')
title('Conductivity of Vegetation at 0.68 gwc')
nexttile
surf(gwc2,fc,epsilon_veg_tmp,'FaceColor','interp')
title('Permittivity of Vegetation at 10°C')
xlabel('Gravimetric Water Content')
ylabel('Frequency (Hz)')
nexttile
surf(gwc2,fc,sigma_veg_tmp,'FaceColor','interp')
title('Conductivity of Vegetation at 10°C')
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Input Arguments
fc — Carrier frequency
scalar in the range (0, 1e12]

Carrier frequency in Hz, specified as a scalar in the range (0, 1e12].
Data Types: double

temp — Temperature
numeric scalar

Temperature in °C, specified as a numeric scalar. Valid surfaces and associated temperature limits are
indicated in this table.

Surface Valid Temperature (℃)
pure-water greater than 0
dry-ice less than or equal to 0
sea-water greater than or equal to –2
soil any numeric
vegetation ≥ –20
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Note When the surface is wet-ice, the temperature is 0 ℃.

Data Types: double

salinity — Salinity of sea water
nonnegative scalar

Salinity of the sea water in g/Kg, specified as a nonnegative scalar.
Data Types: double

liqfrac — Liquid water volume fraction of wet ice
numeric scalar in the range [0, 1]

Liquid water volume fraction of the wet ice, specified as a numeric scalar in the range [0, 1].
Data Types: double

sandpercent — Sand percentage of soil
numeric scalar in the range [0, 100]

Sand percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

claypercent — Clay percentage of soil
numeric scalar in the range [0, 100]

Clay percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

specificgravity — Specific gravity of soil
nonnegative scalar

Specific gravity of the soil, specified as a nonnegative scalar. The specific gravity is the mass density
of the soil sample divided by the mass density of the amount of water in the soil sample.
Data Types: double

vwc — Volumetric water content of soil
numeric scalar in the range [0, 1]

Volumetric water content of the soil, specified as a numeric scalar in the range [0, 1]. For more
information, see “Soil Water Content” on page 1-64.
Data Types: double

bulkdensity — Bulk density of soil
nonnegative scalar

Bulk density, in g/cm3, of the soil, specified as a nonnegative scalar. For more information, see “Soil
Water Content” on page 1-64.
Data Types: double
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gwc — Gravimetric water content of vegetation
numeric scalar in the range [0, 0.7]

Gravimetric water content of the vegetation, specified as a numeric scalar in the range [0, 0.7]. For
more information, see “Soil Water Content” on page 1-64.
Data Types: double

Output Arguments
epsilon — Relative permittivity
nonnegative scalar

Relative permittivity of the earth surface, returned as a nonnegative scalar.

sigma — Conductivity
nonnegative scalar

Conductivity of the earth surface in Siemens per meter (S/m), returned as a nonnegative scalar.

complexepsilon — Complex relative permittivity
complex scalar

Complex relative permittivity of the earth surface, returned as a complex scalar calculated as
complexepsilon = epsilon – 1i sigma / (2πfcε0).

The computation of complexepsilon is based on Equations (59) and (9b) in ITU-R P.527 [1]. f is the
frequency in GHz. c is the velocity of light in free space. ε0 = 8.854187817e-12 Farads/m, where ε0 is
the electric constant for the permittivity of free space.

More About
ITU Terrain Materials

ITU-R P.527 [1] presents methods and equations to calculate complex relative permittivity at carrier
frequencies up to 1,000 GHz for these common earth surface materials.

• Water
• Sea Water
• Dry or Wet Ice
• Dry or Wet Soil (combination of sand, clay, and silt)
• Vegetation (above and below freezing)

As described in ITU-R P.527, specific textural classification applies to these mixtures of sand, clay, and
silt in soil with associated specific gravities and bulk densities.

Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

% Sand 51.52 41.96 30.63 5.02
% Clay 13.42 8.53 13.48 47.38
% Silt 35.06 49.51 55.89 47.60
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Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

Specific gravity
(ρs)

2.66 2.70 2.59 2.56

Bulk Density (ρb) in
g/cm3

1.6006 1.5781 1.5750 1.4758

Soil Water Content

Soil water content is expressed on a gravimetric or volumetric basis. Gravimetric water content, gwc,
is the mass of water per mass of dry soil. Volumetric water content, vwc, is the volume of liquid water
per volume of soil. The bulk density, bulkdensity, is the ratio of the dry soil weight to the volume of
the soil sample. The relationship between gwc and vwc is vwc = gwc ⨉ bulkdensity. When bulk
density is not specified, the value of bulkdensity is computed by using ITU-R P.527, Equation 36:

bulkdensity = 1.07256 + 0.078886 ln(pSand) + 0.038753 ln(pClay) + 0.032732 ln(pSilt),
where

• pSand = sandpercent
• pClay = claypercent
• pSilt = 100 – (sandpercent + claypercent)

Version History
Introduced in R2020a

References
[1] International Telecommunications Union Radiocommunication Sector. Electrical characteristics of

the surface of the Earth. Recommendation P.527-5. ITU-R, approved August 14, 2019. https://
www.itu.int/rec/R-REC-P.527-5-201908-I/en.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions

Objects
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grazingang
Grazing angle of surface target

Syntax
grazAng = grazingang(H,R)
grazAng = grazingang(H,R,MODEL)
grazAng = grazingang(H,R,MODEL,Re)
grazAng = grazAng = grazingang( ___ ,TargetHeight=TGTHT)

Description
grazAng = grazingang(H,R) returns the grazing angle for a sensor H meters above the surface,
to surface targets R meters away. The computation assumes a curved earth model with an effective
earth radius of approximately 4/3 times the actual earth radius.

grazAng = grazingang(H,R,MODEL) also specifies the earth model used to compute the grazing
angle. MODEL is either "Flat" or "Curved".

grazAng = grazingang(H,R,MODEL,Re) also specifies the effective earth radius. Effective earth
radius applies to a curved earth model. When MODEL is "Flat", the function ignores Re.

grazAng = grazAng = grazingang( ___ ,TargetHeight=TGTHT) also specifies the target
height, TGTHT above the surface as either a scalar or a vector. If any combination of ht, R, and TGTHT
are vectors, then the dimensions must be equal. R must be greater than or equal to the absolute value
of the difference of HT and TGTHT.

Examples

Compute Grazing Angle

Determine the grazing angle (in degrees) of a path to a ground target located 1.0 km from a sensor.
The sensor is mounted on a platform that is 300 m above the ground.

grazAng = grazingang(300,1.0e3)

grazAng = 17.4544

Input Arguments
H — Height of the sensor above the surface
scalar | vector

Height of the sensor above the surface in meters, specified as a scalar or a vector. If both H and R are
nonscalar, they must have the same dimensions.
Data Types: double
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R — Distance from the sensor to the surface target
scalar | vector

Distance from the sensor to the surface target in meters, specified as a scalar or a vector. If both H
and R are nonscalar, they must have the same dimensions. R must be between H and the horizon
range determined by TGTHT.
Data Types: double

MODEL — Earth model
"Curved" (default) | "Flat"

Earth model, specified as one of "Curved" or "Flat".
Data Types: char | string

Re — Effective earth radius
effearthradius (default) | positive scalar

Effective earth radius in meters, specified as a positive scalar. You can use effearthradius to
compute the effective radius. The function provides a default value approximately 4/3 times the
actual earth radius
Example: 6.4e6
Data Types: double

TGTHT — Target height above surface
0 (default) | scalar | vector

Target height above surface in meters, specified as a scalar or vector. If any combination of H, R, and
TGTHT are vectors, then their sizes must be equal. R must be greater than or equal to the absolute
value of the difference of H and TGTHT. A surface target has a TGTHT of zero.
Data Types: double

Output Arguments
grazAng — Grazing angle
scalar | vector

Grazing angle in degrees returned as a scalar or vector. If grazAng is a vector, it has the same
dimensions as the nonscalar inputs to grazingang.

More About
Grazing Angle

The grazing angle is the angle between a line from the sensor to a surface target, and a tangent to
the earth at the site of that target.
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For the curved earth model with an effective earth radius of Re, the grazing angle is:

sin−1 H2 + 2HRe− R2

2RRe

For the flat earth model, the grazing angle is:

sin−1 H
R

Version History
Introduced in R2021a

References
[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[2] Ward, J. "Space-Time Adaptive Processing for Airborne Radar Data Systems." Technical Report
1015, MIT Lincoln Laboratory, December 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
horizonrange | depressionang | effearthradius
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height2grndrange
Convert target height to ground range

Syntax
gr = height2grndrange(tgtht,anht,el)
gr = height2grndrange(tgtht,anht,el,Name=Value)

Description
gr = height2grndrange(tgtht,anht,el) returns the ground range to the target, gr, as a
function of the target height tgtht, the sensor height anht, and the local elevation angle el
assuming a “Curved Earth Model” on page 1-71 with a 4/3 effective Earth radius.

gr = height2grndrange(tgtht,anht,el,Name=Value) specifies additional inputs using name-
value arguments. For example, you can specify a flat Earth model, a curved Earth model with a given
radius, or a “CRPL Exponential Reference Atmosphere Model” on page 1-72 with custom values.

Examples

Ground Range Along Propagated Path

Compute the range along the propagated path for a target height of 1 km, an antenna height of 10
meters, and an elevation angle of 2 degrees at the radar. Assume a curved Earth model with a 4/3
effective Earth radius.

r = height2grndrange(1e3,10,2)

r = 2.7106e+04

Ground Range Using CRPL Atmosphere

Compute the range along the propagated path using the CRPL exponential reference atmosphere.
Assume a target height of 1 km, an antenna height of 10 meters, and an elevation angle of 2 degrees
at the radar.

gr = height2grndrange(1e3,10,2,Method="CRPL")

gr = 2.7143e+04

Input Arguments
tgtht — Target height
nonnegative real-valued scalar | nonnegative real-valued vector
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Target height in meters, specified as a nonnegative real-valued scalar or vector. If tgtht is a vector,
it must have the same size as the other vector input arguments of height2grndrange. Heights are
referenced to the ground.
Data Types: double

anht — Sensor height
nonnegative real-valued scalar | nonnegative real-valued vector

Sensor height in meters, specified as a nonnegative real-valued scalar or vector. If anht is a vector, it
must have the same size as the other vector input arguments of height2grndrange. Heights are
referenced to the ground.
Data Types: double

el — Local elevation angle
real-valued scalar | real-valued vector

Local elevation angle in degrees, specified as a real-valued scalar or vector. The local elevation angle
is the initial elevation angle of the ray leaving the sensor. If el is a vector, it must have the same size
as the other vector input arguments of height2grndrange.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Method="CRPL",SurfaceRefractivity=300,RefractionExponent=0.15

Method — Earth model
"Curved" (default) | "Flat" | "CRPL"

Earth model used for the computation, specified as "Curved", "Flat", or "CPRL".

• "Curved" — Assumes a “Curved Earth Model” on page 1-71 with a 4/3 effective Earth radius,
which is an approximation used for modeling refraction effects in the troposphere. To specify
another value for the effective Earth radius, use the EffectiveEarthRadius name-value
argument.

• "Flat" — Assumes a “Flat Earth Model” on page 1-70. In this case, the effective Earth radius is
infinite.

• "CRPL" — Assumes a curved Earth model with the atmosphere defined by the “CRPL Exponential
Reference Atmosphere Model” on page 1-72 with a refractivity of 313 N-units and a refraction
exponent of 0.143859 km–1. To specify other values for the refractivity and the refraction
exponent, use the SurfaceRefractivity and RefractionExponent name value arguments.
This method requires el to be positive. For more information, see “CRPL Model Geometry” on
page 1-73.

Data Types: char | string

EffectiveEarthRadius — Effective Earth radius
4/3 of Earth's radius (default) | positive scalar

Effective Earth radius in meters, specified as a positive scalar. If this argument is not specified,
height2grndrange calculates the effective Earth radius using a refractivity gradient of –39 × 10–9
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N-units/meter, which results in approximately 4/3 of the real Earth radius. This argument applies only
if Method is specified as "Curved".
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity in N-units, specified as a nonnegative real-valued scalar. The surface refractivity
is a parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-72 used by
height2grndrange. This argument applies only if Method is specified as "CRPL".
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent, specified as a nonnegative real-valued scalar. The refraction exponent is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-72 used by
height2grndrange. This argument applies only if Method is specified as "CRPL".
Data Types: double

Output Arguments
gr — Ground range to target
real-valued scalar | real-valued row vector

Ground range to target in meters, specified as a real-valued scalar or row vector. If gr is a vector, it
has the same size as the vector input arguments of height2grndrange.

More About
Flat Earth Model

The flat Earth model assumes that the Earth has infinite radius and that the index of refraction of air
is uniform throughout the atmosphere. The flat Earth model is applicable over short distances and is
used in applications like communications, automotive radar, and synthetic aperture radar (SAR).

Given the antenna height ha and the initial elevation angle θ0, the model relates the target height hT
and the slant range RT by

hT = ha + RTsinθ0 RT = hT − ha cscθ0,

so knowing one of those magnitudes enables you to compute the other. The actual range R is equal to
the slant range. The true elevation angle θT is equal to the initial elevation angle.

To compute the ground range G, use

G = hT − ha cotθ0 .
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Curved Earth Model

The fact that the index of refraction of air depends on height can be treated approximately by using
an effective Earth's radius larger than the actual value.

Given the effective Earth's radius R0, the antenna height ha, and the initial elevation angle θ0, the
model relates the target height hT and the slant range RT by

R0 + hT
2 = R0 + ha

2 + RT
2 + 2RT R0 + ha sinθ0,

so knowing one of those magnitudes enables you to compute the other. In particular,

hT = R0 + ha
2 + RT

2 + 2RT R0 + ha sinθ0− R0 .

The actual range R is equal to the slant range. The true elevation angle θT is equal to the initial
elevation angle.

To compute the ground range G, use

G = R0ϕ = R0arcsin
RTcosθ0
R0 + hT

.
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A standard propagation model uses an effective Earth's radius that is 4/3 times the actual value. This
model has two major limitations:

1 The model implies a value for the index of refraction near the Earth's surface that is valid only for
certain areas and at certain times of the year. To mitigate this limitation, use an effective Earth's
radius based on the near-surface refractivity value.

2 The model implies a value for the gradient of the index of refraction that is unrealistically low at
heights of around 8 km. To partially mitigate this limitation, use an effective Earth's radius based
on the platform altitudes.

For more information, see effearthradius.

CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.
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CRPL Model Geometry

When the refractivity of air is incorporated into the curved Earth model, the ray paths do not follow a
straight line but curve downward. (This statement assumes standard atmospheric propagation and
nonnegative elevation angles.) The true elevation angle  is different from the initial . The actual
range , which is the distance along the curved path , is different from the slant range .

Given the Earth's radius , the antenna height , the initial elevation angle , and the height-
dependent index of refraction  with value  at , the modified model relates the target
height  and the actual range  by

When Method is specified as "CRPL", the integral is solved using  from “CRPL Exponential
Reference Atmosphere Model” on page 1-72.

To compute the ground range , use
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer

Functions
blakechart | el2height | height2el | height2range | radarvcd | range2height |
refractionexp

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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height2range
Convert target height to propagated range

Syntax
r = height2range(tgtht,anht,el)
r = height2range(tgtht,anht,el,Name=Value)
[r,trueSR,trueEL] = height2range( ___ ,Method="CRPL")

Description
r = height2range(tgtht,anht,el) returns the propagated range to the target, r, as a function
of the target height tgtht, the sensor height anht, and the local elevation angle el assuming a
“Curved Earth Model” on page 1-78 with a 4/3 effective Earth radius.

r = height2range(tgtht,anht,el,Name=Value) specifies additional inputs using name-value
arguments. For example, you can specify a flat Earth model, a curved Earth model with a given
radius, or a “CRPL Exponential Reference Atmosphere Model” on page 1-79 with custom values.

[r,trueSR,trueEL] = height2range( ___ ,Method="CRPL") also returns the true slant range
and the true elevation angle when you specify the Earth model as "CRPL".

Examples

Range Along Propagated Path

Compute the range along the propagated path for a target height of 1 km, an antenna height of 10
meters, and an elevation angle of 2 degrees at the radar. Assume a curved Earth model with a 4/3
effective Earth radius.

r = height2range(1e3,10,2)

r = 2.7125e+04

Propagated Range Using CRPL Atmosphere

Compute the range along the propagated path using the CRPL exponential reference atmosphere.
Assume a target height of 1 km, an antenna height of 10 meters, and an elevation angle of 2 degrees
at the radar. Additionally, compute the true slant range and the true elevation angle to the target.

[R,SRtrue,elTrue] = height2range(1e3,10,2,Method="CRPL")

R = 2.7171e+04

SRtrue = 2.7163e+04

elTrue = 1.9666
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Input Arguments
tgtht — Target height
nonnegative real-valued scalar | nonnegative real-valued vector

Target height in meters, specified as a nonnegative real-valued scalar or vector. If tgtht is a vector,
it must have the same size as the other vector input arguments of height2range. Heights are
referenced to the ground.
Data Types: double

anht — Sensor height
nonnegative real-valued scalar | nonnegative real-valued vector

Sensor height in meters, specified as a nonnegative real-valued scalar or vector. If anht is a vector, it
must have the same size as the other vector input arguments of height2range. Heights are
referenced to the ground.
Data Types: double

el — Local elevation angle
real-valued scalar | real-valued vector

Local elevation angle in degrees, specified as a real-valued scalar or vector. The local elevation angle
is the initial elevation angle of the ray leaving the sensor. If el is a vector, it must have the same size
as the other vector input arguments of height2range.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Method="CRPL",SurfaceRefractivity=300,RefractionExponent=0.15

Method — Earth model
"Curved" (default) | "Flat" | "CRPL"

Earth model used for the computation, specified as "Curved", "Flat", or "CPRL".

• "Curved" — Assumes a “Curved Earth Model” on page 1-78 with a 4/3 effective Earth radius,
which is an approximation used for modeling refraction effects in the troposphere. To specify
another value for the effective Earth radius, use the EffectiveEarthRadius name-value
argument.

• "Flat" — Assumes a “Flat Earth Model” on page 1-78. In this case, the effective Earth radius is
infinite.

• "CRPL" — Assumes a curved Earth model with the atmosphere defined by the “CRPL Exponential
Reference Atmosphere Model” on page 1-79 with a refractivity of 313 N-units and a refraction
exponent of 0.143859 km–1. To specify other values for the refractivity and the refraction
exponent, use the SurfaceRefractivity and RefractionExponent name value arguments.
This method requires el to be positive. For more information, see “CRPL Model Geometry” on
page 1-80.

Data Types: char | string
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EffectiveEarthRadius — Effective Earth radius
4/3 of Earth's radius (default) | positive scalar

Effective Earth radius in meters, specified as a positive scalar. If this argument is not specified,
height2range calculates the effective Earth radius using a refractivity gradient of –39 × 10–9 N-
units/meter, which results in approximately 4/3 of the real Earth radius. This argument applies only if
Method is specified as "Curved".
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity in N-units, specified as a nonnegative real-valued scalar. The surface refractivity
is a parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-79 used by
height2range. This argument applies only if Method is specified as "CRPL".
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent, specified as a nonnegative real-valued scalar. The refraction exponent is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-79 used by
height2range. This argument applies only if Method is specified as "CRPL".
Data Types: double

Output Arguments
r — Propagated range
real-valued scalar | real-valued row vector

Propagated range between the target and the sensor in meters, returned as a real-valued scalar or
row vector. If r is a vector, it has the same size as the vector input arguments of height2range.

trueSR — True slant range
real-valued scalar | real-valued row vector

True slant range in meters, returned as a real-valued scalar or row vector. If trueSR is a vector, it
has the same size as the vector input arguments of height2range. This argument is available only if
Method is specified as "CRPL".

trueEL — True elevation angle
real-valued scalar | real-valued row vector

True elevation angle in degrees, returned as a real-valued scalar or row vector. If trueEL is a vector,
it has the same size as the vector input arguments of height2range. This argument is available only
if Method is specified as "CRPL".
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More About
Flat Earth Model

The flat Earth model assumes that the Earth has infinite radius and that the index of refraction of air
is uniform throughout the atmosphere. The flat Earth model is applicable over short distances and is
used in applications like communications, automotive radar, and synthetic aperture radar (SAR).

Given the antenna height ha and the initial elevation angle θ0, the model relates the target height hT
and the slant range RT by

hT = ha + RTsinθ0 RT = hT − ha cscθ0,

so knowing one of those magnitudes enables you to compute the other. The actual range R is equal to
the slant range. The true elevation angle θT is equal to the initial elevation angle.

To compute the ground range G, use

G = hT − ha cotθ0 .

Curved Earth Model

The fact that the index of refraction of air depends on height can be treated approximately by using
an effective Earth's radius larger than the actual value.

Given the effective Earth's radius R0, the antenna height ha, and the initial elevation angle θ0, the
model relates the target height hT and the slant range RT by

R0 + hT
2 = R0 + ha

2 + RT
2 + 2RT R0 + ha sinθ0,

so knowing one of those magnitudes enables you to compute the other. In particular,

hT = R0 + ha
2 + RT

2 + 2RT R0 + ha sinθ0− R0 .

The actual range R is equal to the slant range. The true elevation angle θT is equal to the initial
elevation angle.

To compute the ground range G, use
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G = R0ϕ = R0arcsin
RTcosθ0
R0 + hT

.

A standard propagation model uses an effective Earth's radius that is 4/3 times the actual value. This
model has two major limitations:

1 The model implies a value for the index of refraction near the Earth's surface that is valid only for
certain areas and at certain times of the year. To mitigate this limitation, use an effective Earth's
radius based on the near-surface refractivity value.

2 The model implies a value for the gradient of the index of refraction that is unrealistically low at
heights of around 8 km. To partially mitigate this limitation, use an effective Earth's radius based
on the platform altitudes.

For more information, see effearthradius.

CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .
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The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.

CRPL Model Geometry

When the refractivity of air is incorporated into the curved Earth model, the ray paths do not follow a
straight line but curve downward. (This statement assumes standard atmospheric propagation and
nonnegative elevation angles.) The true elevation angle  is different from the initial . The actual
range , which is the distance along the curved path , is different from the slant range .

Given the Earth's radius , the antenna height , the initial elevation angle , and the height-
dependent index of refraction  with value  at , the modified model relates the target
height  and the actual range  by

When Method is specified as "CRPL", the integral is solved using  from “CRPL Exponential
Reference Atmosphere Model” on page 1-79.

To compute the ground range , use
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer

Functions
blakechart | el2height | height2el | height2grndrange | radarvcd | range2height |
refractionexp

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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horizonrange
Horizon range

Syntax
Rh = horizonrange(H)
Rh = horizonrange(H,Re)
Rh = horizonrange( ___ ,SurfaceHeight=surfht)

Description
Rh = horizonrange(H) returns the horizon range, Rh, of a radar system H meters above the
surface. The computation uses an effective earth radius of approximately 4/3 times the actual earth
radius.

Rh = horizonrange(H,Re) specifies the effective earth radius, Re.

Rh = horizonrange( ___ ,SurfaceHeight=surfht) also specifies the surface height, surfht.

Examples

Compute Range to Horizon

Find the range to the horizon from an antenna that is 30 m high.

R = horizonrange(30)

Input Arguments
H — Height of the radar system above the surface
scalar | vector

Height of the radar system above the surface in meters, specified as a scalar or a vector.
Data Types: double

Re — Effective earth radius
effearthradius (default) | positive scalar

Effective earth radius in meters, specified as a positive scalar. You can use effearthradius to
compute the effective radius. The function provides a default value approximately 4/3 times the
actual earth radius
Example: 6.4e6
Data Types: double

surfht — Height of earth surface at the horizon
0 (default) | scalar | vector
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Height of earth surface at the horizon in meters, specified as a scalar or vector. This input can also be
interpreted as the height of significant ground clutter at the horizon. If H and surfht are vectors,
their lengths must be equal.
Data Types: double

Output Arguments
Rh — Horizon range
scalar | vector

Horizon range in meters of radar system at altitude H, returned as a scalar or a vector.

More About
Horizon Range

The horizon range of a radar system is the distance from the radar system to the earth along a
tangent. Beyond the horizon range, the radar system detects no return from the surface through a
direct path.

The value of the horizon range is:

2ReH + H2

where Re is the effective earth radius and H is the altitude of the radar system.

Version History
Introduced in R2021a

References
[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | effearthradius | grazingang
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llarangeangle
Propagation range between two geolocations

Syntax
rs = llarangeangle(lla1,lla2)
rs = llarangeangle( ___ ,K)
rs = llarangeangle(lla1,lla2,laxes1)
rs = llarangeangle(lla1,lla2,laxes1,laxes2)
[rs,aod,aoa] = llarangeangle( ___ )

Description
rs = llarangeangle(lla1,lla2) computes the propagation range rs from one geolocation
lla1 to another geolocation lla2. The propagation range is computed using an effective earth
radius factor of 4/3. If the destination is located beyond the range of the horizon of the starting
location, then rs is Inf.

rs = llarangeangle( ___ ,K) also specifies the effective earth radius factor K.

rs = llarangeangle(lla1,lla2,laxes1) also specifies the local orientation axes laxes1 of the
departure geolocation.

rs = llarangeangle(lla1,lla2,laxes1,laxes2) also specifies the local orientation axes
laxes2 arrival point geolocation.

[rs,aod,aoa] = llarangeangle( ___ ) also returns the departure angle aod at the starting
location and the path angle of arrival aoa at the destination.

Examples

Compute Propagation Range Using Default Earth Radius

Find the propagation range between two points on the earth using the default effective earth radius
of 4/3.

Specify the geolocation of the first point.

lat1 = 42.861119;
lon1 = 72.108272;
alt1 = 936.95;

Specify the geolocation of the second point.

lat2 = 42.384144;
lon2 = 71.173108;
alt2 = 55.7784;

Call the llarangeangle function.
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lla1 = [lat1 lon1 alt1];
lla2 = [lat2 lon2 alt2];
[d,aod,aoa] = llarangeangle(lla1,lla2)

d = 9.3108e+04

aod = 2×1

 -124.4107
    0.8569

aoa = 2×1

   54.9561
   -0.2276

Compute the propagation range.

Compute Range and Angles from Geolocation

Compute the propagated range and departure angles from a transmitter at Norfolk, Virginia (37N,
76W), with an altitude of 20 km, to a receiver at Hickman, Virginia (37N, 80W), with an altitude of
300 m. Assume the effective earth radius factor is 1.16.

lla1 = [37 -76 20e3];
lla2 = [37 -80 300];
[d,aod,aoa] = llarangeangle(lla1,lla2,1.16)

d = 3.5619e+05

aod = 2×1

  -88.7961
    4.5464

aoa = 2×1

   88.7961
   -1.7927

Propagation Ranges Between Source Point and Two Destination Points

Compute the propagation range from a source point to two closely-spaced arrival points. Use an
effective earth radius factor of 1.36

Specify the source geolocation.

lat1 = 42.861119;
lon1 = 72.108272;
alt1 = 936.95;
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Specify the first arrival geolocation.

lat2 = 42.384144;
lon2 = 71.173108;
alt2 = 55.7784;

Specify the second arrival geolocation.

lat3 = 42.384500;
lon3 = 71.173000;
alt3 = 20;

Compute the range in kilometers between the positions.

lla1 = [lat1 lon1 alt1];
lla2 = [lat2 lon2 alt2; lat3 lon3 alt3];
rs = llarangeangle(lla1,lla2,1.36)/1000.0

rs = 1×2

   93.1082   93.0927

Set Orientation Axes

Compute the propagation range between two points. Set the local orientation axes at the departure
and arrival points.

Specify the geolocation and local orientation axes of the departure point.

lat1 = 42.861119;
lon1 = 72.108272;
alt1 = 936.95;
laxes1 = rotz(30);

Specify the geolocation and local orientation axes of the arrival point.

lat2 = 42.384144;
lon2 = 71.173108;
alt2 = 55.7784;
laxes2 = rotx(45);

Compute the propagation range in kilometers.

rs = llarangeangle([lat1 lon1 alt1], ...
    [lat2 lon2 alt2],4/3,laxes1,laxes2)/1000.0

rs = 93.1082

Set Orientation Axes at Departure Point

Compute the propagation range between two points. Set the local orientation axes at the departure
point.
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Specify the geolocation of the departure point.

lat1 = 42.861119;
lon1 = 72.108272;
alt1 = 936.95;

Specify the geolocation of the arrival point.

lat2 = 42.384144;
lon2 = 71.173108;
alt2 = 55.7784;

Choose a local coordinate axes matrix at the departure point.

laxes1 = rotz(30);

Compute the propagation range in kilometers.

rs = llarangeangle([lat1 lon1 alt1],[lat2 lon2 alt2],4/3,laxes1)/1000.0

rs = 93.1082

Input Arguments
lla1 — First geolocation
M-by-3 real-valued matrix

First geolocation, specified as an M-by-3 real-valued matrix. Each row defines a different geolocation
in the form [latitude longitude altitude]. Latitude values lie in the range [-90 90] with
zero at the Equator. Longitude values lie in the range [-180 180] with zero at Greenwich. Altitude
values are measured from mean sea level (MSL). Latitude and longitude units are in degrees. Altitude
units are in meters.

If both lla1 and lla2 have multiple rows, then lla1 and lla2 must have identical sizes. Each row
in lla1 corresponds to a row in lla2.
Example: [45,0,100]
Data Types: single | double

lla2 — Second geolocation
M-by-3 real-valued matrix

Second geolocation, specified as an M-by-3 real-valued matrix. Each row defines a different
geolocation in the form [latitude longitude altitude]. Latitude values lie in the range [-90
90] with zero at the Equator. Longitude values lie in the range [-180 180] with zero at Greenwich.
Altitude values are measured from mean sea level (MSL). Latitude and longitude units are in degrees.
Altitude units are in meters.

If both lla1 and lla2 have multiple rows, then lla1 and lla2 must have identical sizes. Each row
in lla1 corresponds to a row in lla2.
Example: [46,0,100]
Data Types: single | double
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K — Effective earth radius factor
4/3 (default) | positive scalar

Effective earth radius factor, specified as a positive scalar. Units are dimensionless.
Data Types: single | double

laxes1 — Local orientation axes of departure
NED axes (default) | 3-by-3 real-valued matrix | 3-by-3-by-M real-valued array

Local orientation axes of departure, specified as a real-valued 3-by-3 matrix or a 3-by-3-by-M real-
valued array. If laxes1 is a matrix, then all locations specified in lla1 have the same orientation.
Each column in laxes1 specifies the x, y, and z coordinate axes in the form of [x;y;z] in ECEF
coordinates. If laxes1 is a 3-by-3-by-M array, then each page corresponds to a location specified in
lla1. This argument has no impact on the value of rs. Units are dimensionless.
Data Types: double

laxes2 — Local orientation axes of arrival
NED axes (default) | real-valued 3-by-3 matrix | real-valued 3-by-3-by-M array

Local orientation axes of arrival, specified as a 3-by-3 real-valued matrix or a 3-by-3-by-M real-valued
array. If laxes2 is a matrix, then all locations specified in lla2 have the same orientation. Each
column in laxes2 specifies the x, y, and z coordinate axes in the form of [x;y;z] in earth-centered
earth fixed (ECEF) coordinates. If laxes2 is a 3-by-3-by-M array, then each page corresponds to a
location specified in lla2. This argument has no impact on the value of rs. Units are dimensionless.
Data Types: double

Output Arguments
rs — Propagation range
scalar | real-valued length-M vector

Propagation range, returned as a scalar or real-valued length-M vector. M is the number of
geolocations specified in the lla1 and lla2 arguments.
Data Types: double

aod — angle of departure
2-by-M real-valued matrix

Angle of departure of signal from geolocation lla1 to geolocation lla2. aod is a 2-by-M matrix
whose columns represent the departure directions in the form of [azimuth; elevation].
Data Types: double

aoa — angle of arrival
2-by-M real-valued matrix

Angle of arrival of signal at geolocation lla2 from geolocation lla1. apa is a 2-by-M matrix whose
columns represent the arrival directions in the form of [azimuth; elevation].
Data Types: double
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Version History
Introduced in R2022b

References
[1] G. Robertshaw, "Effective earth radius for refraction of radio waves at altitudes above 1 km," in

IEEE Transactions on Antennas and Propagation, vol. 34, no. 9, pp. 1099-1105, September
1986, doi: 10.1109/TAP.1986.1143948.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
height2range | horizonrange | height2grndrange
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surfacegamma
Gamma value for different terrains

Syntax
G = surfacegamma(TerrainType)
G = surfacegamma(TerrainType,FREQ)

surfacegamma

Description
G = surfacegamma(TerrainType) returns the γ value for the specified terrain. The γ value is for
an operating frequency of 10 GHz.

G = surfacegamma(TerrainType,FREQ) specifies the operating frequency of the system.

surfacegamma displays several terrain types and their corresponding γ values. These γ values are
for an operating frequency of 10 GHz.

Examples

Simulate Constant Gamma Clutter

Determine the γ value for a wooded area, and then simulate the clutter return from that area. Assume
the radar system uses a single cosine pattern antenna element and has an operating frequency of 300
MHz.

fc = 300e6;
g = surfacegamma('woods',fc);
clutter = constantGammaClutter('Gamma',g, ...
    'Sensor',phased.CosineAntennaElement, ...
    'OperatingFrequency',fc);
x = clutter();
r = (0:numel(x)-1)/(2*clutter.SampleRate) * ...
    clutter.PropagationSpeed;
plot(r,abs(x))
xlabel('Range (m)')
ylabel('Clutter Magnitude (V)')
title('Clutter Return vs. Range')
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Input Arguments
TerrainType — Terrain type
"Sea State 3" | "Sea State 5" | "Woods" | "Metropolitan" | "Rugged Mountain" |
"Farmland""Wooded Hill""Flatland"

Terrain type, specified as one of these:

• "Sea State 3"
• "Sea State 5"
• "Woods"
• "Metropolitan"
• "Rugged Mountain"
• "Farmland"
• "Wooded Hill"
• "Flatland"

Data Types: char | string

FREQ — Operating frequency of radar system
10e9 (default) | scalar | vector

Operating frequency of radar system in hertz, specified as a scalar or a vector.
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Data Types: double

Output Arguments
G — Gamma value
scalar

Gamma value, γ, in decibels, for constant-γ clutter model, returned as a scalar.

More About
Gamma

A frequently used model for clutter simulation is the constant gamma model. This model uses a
parameter, γ, to describe clutter characteristics of different types of terrain. Values of γ are derived
from measurements.

Algorithms
The γ values for the terrain types "Sea State 3", "Sea State 5", "Woods", "Metropolitan",
and "Rugged Mountain" are from [2]. The γ values for the terrain types "Farmland", "Wooded
Hill", and "Flatland" are from [3].

Measurements provide values of γ for a system operating at 10 GHz. The γ value for a system
operating at frequency f is:

γ = γ0 + 5log f
f0

where γ0 is the value at frequency f0 = 10 GHz.

Version History
Introduced in R2021a

References
[1] Barton, David. "Land Clutter Models for Radar Design and Analysis," Proceedings of the IEEE. Vol.

73, Number 2, February, 1985, pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles, 2nd Ed.
Mendham, NJ: SciTech Publishing, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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Does not support variable-size inputs.

See Also
grazingang | horizonrange | constantGammaClutter
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surfclutterrcs
Surface clutter radar cross section (RCS)

Syntax
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau)
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c)

Description
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau) returns the radar cross section (RCS) of a
clutter patch that is of range R meters away from the radar system. az and el are the radar system
azimuth and elevation beamwidths, respectively, corresponding to the clutter patch. graz is the
grazing angle of the clutter patch relative to the radar. tau is the pulse width of the transmitted
signal. The calculation automatically determines whether the surface clutter area is beam limited or
pulse limited, based on the values of the input arguments.

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c) specifies the propagation speed in meters
per second.

Examples

Compute Surface Clutter RCS

Calculate the RCS of a clutter patch and estimate the clutter-to-noise ratio (CNR) at the receiver.
Assume that the patch has a normalized radar cross section (NRCS) of 1 m²/m² and is 1.0 km away
from the radar system. The azimuth and elevation beamwidths are 1° and 3°, respectively. The
grazing angle is 10°. The pulse width is 10μs. The radar operates at a wavelength of 1 cm with a peak
power of 5 kW.

nrcs = 1;
rng = 1.0e3;
az = 1;
el = 3;
graz = 10;
tau = 10e-6;
lambda = 0.01;
ppow = 5000;
rcs = surfclutterrcs(nrcs,rng,az,el,graz,tau)

rcs = 5.2627e+03

cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs)

cnr = 75.2006
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Input Arguments
NRCS — Normalized radar cross section of clutter patch
scalar

Normalized radar cross section of clutter patch in units of square meters/square meters, specified as
a scalar.
Data Types: double

R — Range of clutter patch from radar system
scalar

Range of clutter patch from radar system in meters, specified as a scalar.
Data Types: double

az — Azimuth beamwidth
nonnegative scalar

Azimuth beamwidth of radar system corresponding to clutter patch in degrees, specified as a
nonnegative scalar.
Data Types: double

el — Elevation beamwidth
nonnegative scalar

Elevation beamwidth of radar system corresponding to clutter patch in degrees, specified as a
nonnegative scalar.
Data Types: double

graz — Grazing angle
nonnegative scalar

Grazing angle of clutter patch relative to radar system in degrees, specified as a nonnegative scalar.
Data Types: double

tau — Pulse width of transmitted signal
nonnegative scalar

Pulse width of transmitted signal in seconds, specified as a nonnegative scalar.
Data Types: double

c — Propagation speed
physconst("LightSpeed") (default) | positive scalar

Propagation speed in meters per second, specified as a positive scalar.
Example: 343 meters per second approximates the speed of sound at sea level and at a temperature
of 20 °C under normal atmospheric conditions.
Data Types: double
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Output Arguments
RCS — Radar cross section of clutter patch
scalar

Radar cross section of clutter patch, returned as a scalar.

Tips
• You can calculate the clutter-to-noise ratio using the output of this function as the RCS input

argument value in radareqsnr.

Algorithms
See [1].

Version History
Introduced in R2021a

References
[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, pp. 57–

63.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
grazingang | surfacegamma | radareqsnr | uv2azel | phitheta2azel
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range2height
Convert propagated range to target height

Syntax
tgtht = range2height(r,anht,el)
tgtht = range2height(r,anht,el,Name=Value)

Description
tgtht = range2height(r,anht,el) returns the target height tgtht as a function of the
propagated range r, the sensor height anht, and the local elevation angle el assuming a “Curved
Earth Model” on page 1-102 with a 4/3 effective Earth radius.

tgtht = range2height(r,anht,el,Name=Value) specifies additional inputs using name-value
arguments. For example, you can specify a flat Earth model, a curved Earth model with a given
radius, or a “CRPL Exponential Reference Atmosphere Model” on page 1-103 with custom values.

Examples

Target Height from Propagated Range

Determine the target height in meters given a range of 300 km, a sensor height of 10 meters, and an
elevation angle of 0.5 degrees. Assume a curved Earth with an effective radius equal to 4/3 times the
Earth's actual radius.

R = 300e3;
anht = 10;
el = 0.5;

range2height(R,anht,el)

ans = 7.9325e+03

Target Height Using Different Earth Models

Compute target heights in meters using different Earth models and compare the values you obtain.
Assume a range of 200 km and an antenna height of 100 meters. Use a range of elevation angles from
0 to 5 degrees.

R = 200e3;
anht = 100;
el = (0:0.1:5)';

Compute the target height for the given parameters assuming a flat Earth.

tgthtFlat = range2height(R,anht,el,Method="Flat");
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Compute the target height for the given parameters assuming free-space propagation with a curved
Earth.

r0 = physconst("EarthRadius");
tgthtFS = range2height(R,anht,el,Method="Curved", ...
    EffectiveEarthRadius=r0);

Compute the target height for the given parameters assuming a 4/3 effective Earth radius.

tgthtEffRad = range2height(R,anht,el);

Compute the target height for the given parametes assuming the CRPL atmospheric model.

tgthtCRPL = range2height(R,anht,el,Method="CRPL");

Plot the results.

plot(el,[tgthtFlat(:) tgthtFS(:) tgthtEffRad(:)], ...
    el,tgthtCRPL,'--',LineWidth=1.5)
grid on

xlabel("Elevation Angle (degrees)")
ylabel("Target Height (m)")
legend(["Flat" "Free Space" "4/3 Earth" "CRPL"],Location="best")
title("Target Height Estimation")
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Input Arguments
r — Propagated range
real-valued scalar | real-valued vector

Propagated range between the target and the sensor in meters, specified as a real-valued scalar or
vector. If r is a vector, it must have the same size as the other vector input arguments of
range2height.
Data Types: double

anht — Sensor height
nonnegative real-valued scalar | nonnegative real-valued vector

Sensor height in meters, specified as a nonnegative real-valued scalar or vector. If anht is a vector, it
must have the same size as the other vector input arguments of range2height. Heights are
referenced to the ground.
Data Types: double

el — Local elevation angle
real-valued scalar | real-valued vector

Local elevation angle in degrees, specified as a real-valued scalar or vector. The local elevation angle
is the initial elevation angle of the ray leaving the sensor. If el is a vector, it must have the same size
as the other vector input arguments of range2height.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
Method="CRPL",SurfaceRefractivity=300,RefractionExponent=0.15,MaxNumIteration
s=8,Tolerance=1e-7

Method — Earth model
"Curved" (default) | "Flat" | "CRPL"

Earth model used for the computation, specified as "Curved", "Flat", or "CPRL".

• "Curved" — Assumes a “Curved Earth Model” on page 1-102 with a 4/3 effective Earth radius,
which is an approximation used for modeling refraction effects in the troposphere. To specify
another value for the effective Earth radius, use the EffectiveEarthRadius name-value
argument.

• "Flat" — Assumes a “Flat Earth Model” on page 1-102. In this case, the effective Earth radius is
infinite.

• "CRPL" — Assumes a curved Earth model with the atmosphere defined by the “CRPL Exponential
Reference Atmosphere Model” on page 1-103 with a refractivity of 313 N-units and a refraction
exponent of 0.143859 km–1. To specify other values for the refractivity and the refraction
exponent, use the SurfaceRefractivity and RefractionExponent name value arguments.
This method requires el to be positive. For more information, see “CRPL Model Geometry” on
page 1-104.
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Data Types: char | string

EffectiveEarthRadius — Effective Earth radius
4/3 of Earth's radius (default) | positive scalar

Effective Earth radius in meters, specified as a positive scalar. If this argument is not specified,
range2height calculates the effective Earth radius using a refractivity gradient of –39 × 10–9 N-
units/meter, which results in approximately 4/3 of the real Earth radius. This argument applies only if
Method is specified as "Curved".
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity in N-units, specified as a nonnegative real-valued scalar. The surface refractivity
is a parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-103 used by
range2height. This argument applies only if Method is specified as "CRPL".
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent, specified as a nonnegative real-valued scalar. The refraction exponent is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-103 used by
range2height. This argument applies only if Method is specified as "CRPL".
Data Types: double

MaxNumIterations — Maximum number of iterations for the CRPL method
10 (default) | nonnegative scalar integer

Maximum number of iterations for the CRPL method, specified as a nonnegative scalar integer. This
input acts as a safeguard to preempt long iterative calculations. This argument applies only if Method
is specified as "CRPL".

If MaxNumIterations is set to 0, range2height performs a faster but less accurate noniterative
CRPL calculation. The noniterative calculation has a maximum height error of 0.056388 m (0.185 ft)
at a target height of 30,480 m (100,000 ft) and an elevation angle of 0. The height error for the
noniterative method decreases with decreasing target height and increasing elevation angle.
Data Types: double

Tolerance — Numerical tolerance for the CRPL method
1e-6 (default) | positive real scalar

Numerical tolerance for the CRPL method, specified as a positive real scalar. The iterative process
terminates when the numerical tolerance is achieved. This argument applies only if Method is
specified as "CRPL" and MaxNumIterations is greater than 0.
Data Types: double

Output Arguments
tgtht — Target height
nonnegative real-valued scalar | nonnegative real-valued row vector
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Target height in meters, returned as a nonnegative real-valued scalar or row vector. If tgtht is a
vector, it has the same size as the vector input arguments of range2height. The height is
referenced to the ground.

More About
Flat Earth Model

The flat Earth model assumes that the Earth has infinite radius and that the index of refraction of air
is uniform throughout the atmosphere. The flat Earth model is applicable over short distances and is
used in applications like communications, automotive radar, and synthetic aperture radar (SAR).

Given the antenna height ha and the initial elevation angle θ0, the model relates the target height hT
and the slant range RT by

hT = ha + RTsinθ0 RT = hT − ha cscθ0,

so knowing one of those magnitudes enables you to compute the other. The actual range R is equal to
the slant range. The true elevation angle θT is equal to the initial elevation angle.

To compute the ground range G, use

G = hT − ha cotθ0 .

Curved Earth Model

The fact that the index of refraction of air depends on height can be treated approximately by using
an effective Earth's radius larger than the actual value.

Given the effective Earth's radius R0, the antenna height ha, and the initial elevation angle θ0, the
model relates the target height hT and the slant range RT by

R0 + hT
2 = R0 + ha

2 + RT
2 + 2RT R0 + ha sinθ0,

so knowing one of those magnitudes enables you to compute the other. In particular,

hT = R0 + ha
2 + RT

2 + 2RT R0 + ha sinθ0− R0 .
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The actual range R is equal to the slant range. The true elevation angle θT is equal to the initial
elevation angle.

To compute the ground range G, use

G = R0ϕ = R0arcsin
RTcosθ0
R0 + hT

.

A standard propagation model uses an effective Earth's radius that is 4/3 times the actual value. This
model has two major limitations:

1 The model implies a value for the index of refraction near the Earth's surface that is valid only for
certain areas and at certain times of the year. To mitigate this limitation, use an effective Earth's
radius based on the near-surface refractivity value.

2 The model implies a value for the gradient of the index of refraction that is unrealistically low at
heights of around 8 km. To partially mitigate this limitation, use an effective Earth's radius based
on the platform altitudes.

For more information, see effearthradius.

CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,
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where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.

CRPL Model Geometry

When the refractivity of air is incorporated into the curved Earth model, the ray paths do not follow a
straight line but curve downward. (This statement assumes standard atmospheric propagation and
nonnegative elevation angles.) The true elevation angle  is different from the initial . The actual
range , which is the distance along the curved path , is different from the slant range .

Given the Earth's radius , the antenna height , the initial elevation angle , and the height-
dependent index of refraction  with value  at , the modified model relates the target
height  and the actual range  by

When Method is specified as "CRPL", the integral is solved using  from “CRPL Exponential
Reference Atmosphere Model” on page 1-103.

To compute the ground range , use
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Version History
Introduced in R2021b

References
[1] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

[2] Bean, B.R., and G.D. Thayer. "Central Radio Propagation Laboratory Exponential Reference
Atmosphere." Journal of Research of the National Bureau of Standards, Section D: Radio
Propagation 63D, no. 3 (November 1959): 315. https://doi.org/10.6028/jres.063D.031.

[3] Blake, Lamont V. "Ray Height Computation for a Continuous Nonlinear Atmospheric Refractive-
Index Profile." Radio Science 3, no. 1 (January 1968): 85–92. https://doi.org/10.1002/
rds19683185.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Apps
Radar Designer

Functions
blakechart | el2height | height2el | height2range | height2grndrange | radarvcd |
refractionexp

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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rcscylinder
Radar cross section of cylinder

Syntax
rcspat = rcscylinder(r1,r2,height,c,fc)
rcspat = rcscylinder(r1,r2,height,c,fc,az,el)
[rcspat,azout,elout] = rcscylinder( ___ )

Description
rcspat = rcscylinder(r1,r2,height,c,fc) returns the radar cross section pattern of an
elliptical cylinder having a semi-major axis, r1, a semi-minor axis, r2, and a height, height. The
radar cross section is a function of signal frequency, fc, and signal propagation speed,c. The bottom
of the cylinder lies on the xy-plane. The height of the cylinder points along the positive z-axis.

rcspat = rcscylinder(r1,r2,height,c,fc,az,el) also specifies the azimuth angles, az, and
elevation angles, el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcscylinder( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Elliptical Cylinder

Display the radar cross section (RCS) pattern as a function of azimuth and elevation for an elliptical
cylinder whose semi-major axis is 12.5 cm and whose semi-minor axis is 9 cm. The cylinder height is
1 m. The operating frequency is 4.5 GHz.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcscylinder(rada,radb,hgt,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
colorbar
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Elliptic Cylinder RCS (dBsm)')
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Radar Cross Section of Elliptical Cylinder as Function of Elevation

Plot the radar cross section (RCS) pattern of an elliptical cylinder as a function of elevation at a
constant azimuth angle of 5∘. The cylinder has a semi-major axis of 12.5 cm and a semi-minor axis of
9 cm. The cylinder height is 1 m. The operating frequency is 4.5 GHz.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute the RCS for all elevation angles at a fixed azimuth angle of 5∘.

el = -90:90;
az = 5;
[rcspat,azresp,elresp] = rcscylinder(rada,radb,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dBsm)')
title('Elliptic Cylinder RCS as Function of Elevation')
grid on
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Radar Cross Section of Elliptical Cylinder as Function of Frequency

Plot the radar cross section (RCS) of an elliptical cylinder as a function of frequency for a fixed
direction. The cylinder has as semi-major axis of 12.5 cm and a semi-minor axis of 9 cm. The cylinder
height is 1 m.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute radar cross sections as a function of frequency for a fixed azimuth and elevation.

az = 5.0;
el = 20.0;
fc = (100:100:4000)*1e6;
[rcspat,azpat,elpat] = rcscylinder(rada,radb,hgt,c,fc,az,el);
disp([azpat,elpat])

     5    20

plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
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ylabel('RCS (dBsm)')
title('Cylinder RCS as Function of Frequency')
grid on

Input Arguments
r1 — Length of semi-major axis of cylinder
positive scalar

Length of semi-major axis of cylinder, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

r2 — Length of semi-minor axis of cylinder
positive scalar

Length of semi-minor axis of cylinder, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

height — Height of cylinder
positive scalar
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Height of cylinder, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Tip To construct a circular cylinder, set r2 equal to r1.
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Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector

Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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Version History
Introduced in R2021a

References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rcsdisc | rcssphere | rcstruncone | phased.BackscatterRadarTarget |
phased.RadarTarget
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rcsdisc
Radar cross section of flat circular plate

Syntax
rcspat = rcsdisc(r,c,fc)
rcspat = rcsdisc(r,c,fc,az,el)
[rcspat,azout,elout] = rcsdisc( ___ )

Description
rcspat = rcsdisc(r,c,fc) returns the radar cross section pattern of a flat circular plate of
radius r. The radar cross section is a function of signal frequency, fc, and signal propagation speed,
c. The plate is assumed to lie on the xy-plane. The center of the plate is located at the origin of the
local coordinate system.

rcspat = rcsdisc(r,c,fc,az,el) also specifies the azimuth angles, az, and elevation angles,
el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcsdisc( ___ ) also returns the azimuth angles, azout, and elevation
angles, elout, at which the radar cross sections are computed. You can use these output arguments
with any of the previous syntaxes.

Examples

Radar Cross Section of Circular Plate

Display the radar cross section (RCS) pattern of a circular plate as a function of azimuth and
elevation. The plate radius is 22.5 cm. The operating frequency is 4.5 GHz.

Specify the plate geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
platerad = 0.225;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcsdisc(platerad,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
colorbar
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Circular Plate RCS (dBsm)')
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Radar Cross Section of Circular Plate as Function of Elevation

Plot the radar cross section (RCS) pattern of a circular plate as a function of elevation angle for a
fixed azimuth angle of 5∘. The plate radius is 22.5 cm. The operating frequency is 4.5 GHz.

Define the plate radius and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
platerad = 0.225;

Compute the RCS as a function of elevation.

az = 5;
el = -90:90;
[rcspat,azresp,elresp] = rcsdisc(platerad,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dBsm)')
title('Circular Plate RCS as Function of Elevation')
grid on
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Radar Cross Section of Circular Plate as Function of Frequency

Plot the radar cross section (RCS) pattern of a circular plate as a function of frequency for a single
azimuth and elevation. The plate radius 22.5 cm.

Define the plate radius and signal parameters.

c = physconst('Lightspeed');
platerad = 0.225;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:10:4000)*1e6;
[rcspat,azpat,elpat] = rcsdisc(platerad,c,fc,az,el);
disp([azpat,elpat])

     5    20

plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dBsm)')
title('Circular Plate RCS as Function of Frequency')
grid on
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Input Arguments
r — Radius of circular plate
positive scalar

Radius of circular plate, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
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Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector
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Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.

Version History
Introduced in R2021a

 rcsdisc

1-119



References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rcscylinder | rcssphere | rcstruncone | phased.BackscatterRadarTarget |
phased.RadarTarget
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rcssphere
Radar cross section of sphere

Syntax
rcspat = rcssphere(r,c,fc)
rcspat = rcssphere(r,c,fc,az,el)
[rcspat,azout,elout] = rcssphere( ___ )

Description
rcspat = rcssphere(r,c,fc) returns the radar cross section pattern of a sphere of radius r as a
function of signal frequency, fc, and signal propagation speed, c. The center of the sphere is
assumed to be located at the origin of the local coordinate system.

rcspat = rcssphere(r,c,fc,az,el) also specifies the azimuth angles, az, and elevation angles,
el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcssphere( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Sphere

Display the radar cross section (RCS) pattern of a sphere as a function of azimuth and elevation. The
sphere radius is 20.0 cm. The operating frequency is 4.5 GHz.

Define the sphere radius and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rad = 0.20;

Compute the RCS over all angles. The image shows that the RCS is constant over all directions.

[rcspat,azresp,elresp] = rcssphere(rad,c,fc);
image(azresp,elresp,pow2db(rcspat))
colorbar
ylabel('Elevation angle (deg)')
xlabel('Azimuth Angle (deg)')
title('Sphere RCS (dBsm)')
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Radar Cross Section of Sphere as Function of Elevation

Plot the radar cross section (RCS) pattern of a sphere as a function of elevation angle for a fixed
azimuth angle of 5 degrees. The sphere radius is 20.0 cm. The operating frequency is 4.5 GHz.

Specify the sphere radius and signal parameters.

c = physconst('LightSpeed');
rad = 0.20;
fc = 4.5e9;

Compute the RCS over a constant azimuth slice. The plot shows that the RCS is constant.

az = 5.0;
el = -90:90;
[rcspat,azresp,elresp] = rcssphere(rad,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dBsm)')
title('Sphere RCS as Function of Elevation')
grid on
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Radar Cross Section of Sphere as Function of Frequency

Plot the radar cross section (RCS) pattern of a sphere as a function of frequency for a single azimuth
and elevation. The radius of the sphere is 20 cm

Define the sphere radius and signal parameters.

c = physconst('Lightspeed');
rad = 0.20;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:10:4000)*1e6;
[rcspat,azpat,elpat] = rcssphere(rad,c,fc,az,el);
disp([azpat,elpat])

     5    20

plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dBsm)')
title('Sphere RCS as Function of Frequency')
grid on
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Input Arguments
r — Radius of sphere
positive scalar

Radius of sphere, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector
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Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector

Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
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Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.

Version History
Introduced in R2021a

References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rcscylinder | rcsdisc | rcstruncone | phased.BackscatterRadarTarget |
phased.RadarTarget
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rcstruncone
Radar cross section of truncated cone

Syntax
rcspat = rcstruncone(r1,r2,height,c,fc)
rcspat = rcstruncone(r1,r2,height,c,fc,az,el)
[rcspat,azout,elout] = rcstruncone( ___ )

Description
rcspat = rcstruncone(r1,r2,height,c,fc) returns the radar cross section pattern of a
truncated cone. r1 is the radius of the small end of the cone, r2 is the radius of the large end, and
height is the cone height. The radar cross section is a function of signal frequency, fc, and signal
propagation speed, c. You can create a non-truncated cone by setting r1 to zero. The cone points
downward towards the xy-plane. The origin is located at the apex of a the non-truncated cone
constructed by extending the truncated cone to an apex.

rcspat = rcstruncone(r1,r2,height,c,fc,az,el) also specifies the azimuth angles, az, and
elevation angles, el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcstruncone( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Truncated Cone

Display the radar cross section (RCS) pattern of a truncated cone as a function of azimuth angle and
elevation. The truncated cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The cone
height is 1 m. The operating frequency is 4.5 GHz.

Define the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcstruncone(radbot,radtop,hgt,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Truncated Cone RCS (dBsm)')
colorbar
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Radar Cross Section of Truncated Cone as Function of Elevation

Plot the radar cross section (RCS) pattern of a truncated cone as a function of elevation for a fixed
azimuth angle of 5 degrees. The cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The
truncated cone height is 1 m. The operating frequency is 4.5.

Define the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS at an azimuth angle of 5 degrees.

az = 5.0;
el = -90:90;
[rcspat,azresp,elresp] = rcstruncone(radbot,radtop,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dBsm)')
title('Truncated Cone RCS as Function of Elevation')
grid on
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Radar Cross Section of Truncated Cone as Function of Frequency

Plot the radar cross section (RCS) pattern of a truncated cone as a function of frequency for a single
direction. The cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The truncated cone
height is 1 m.

Specify the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:100:4000)*1e6;
[rcspat,azpat,elpat] = rcstruncone(radbot,radtop,hgt,c,fc,az,el);
disp([azpat,elpat])

     5    20

plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
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ylabel('RCS (dBsm)')
title('Truncated Cone RCS as Function of Frequency')
grid on

Radar Cross Section of Full Cone as Function of Elevation

Plot the radar cross section (RCS) pattern of a full cone as a function of elevation for a fixed azimuth
angle. To define a full cone set the bottom radius to zero. Set the top radius to 20.0 cm and the cone
height to 50 cm. Assume the operating frequency is 4.5 GHz and the azimuth angle is 5 degrees.

Define the cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radsmall = 0.0;
radlarge = 0.20;
hgt = 0.5;

Compute the RCS for a fixed azimuth angle of 5 degrees.

az = 5.0;
el = -89:0.1:89;
[rcspat,azresp,elresp] = rcstruncone(radsmall,radlarge,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
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ylabel('RCS (dBsm)')
title('Full Cone RCS as Function of Elevation')
grid on

Input Arguments
r1 — Radius of small end of truncated cone
nonnegative scalar

Radius of small end of truncated cone, specified as a nonnegative scalar. Units are in meters.
Example: 5.5
Data Types: double

r2 — Radius of large end of truncated cone
positive scalar

Radius of large end of truncated cone, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

height — Height of truncated cone
positive scalar
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Height of truncated cone, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array
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Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector

Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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Version History
Introduced in R2021a

References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rcscylinder | rcsdisc | rcssphere | phased.BackscatterRadarTarget |
phased.RadarTarget
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refractionexp
CRPL exponential reference atmosphere refraction exponent

Syntax
rexp = refractionexp(Ns)

Description
rexp = refractionexp(Ns) computes the refraction exponent or decay constant of the “CRPL
Exponential Reference Atmosphere Model” on page 1-138.

Examples

Refraction Exponent as Function of Surface Refractivity

Compute the refraction exponents for surface refractivities equal to 200 N-units, 313 N-units, and
450 N-units.

srfrf = [200 313 450];

rexp = refractionexp(srfrf)

rexp = 1×3

    0.1184    0.1439    0.2233

Radar Vertical Coverage Pattern

Compute and plot the radar vertical coverage pattern for a sinc antenna pattern. Specify a frequency
of 100 MHz, an antenna height of 10 meters, and a range of 100 km. Assume the surface is smooth,
the antenna is not tilted, and the transmitted polarization is horizontal.

frq = 100e6;
anht = 10;
rng = 100;

To specify the effective Earth radius, assume a high-latitude atmosphere model and a winter-like
seasonal profile. Use the refractiveidx function to compute the refractivity gradient in N-units per
meter using the Earth's surface and an altitude of 1 km.

alt1km = 1e3;
[nidx,N] = refractiveidx([0 alt1km], ...
    LatitudeModel="High",Season="Winter");
RGrad = (nidx(2) - nidx(1))/alt1km;

Re = effearthradius(RGrad);

1 Functions

1-136



Compute the vertical coverage pattern using the effective Earth radius and the radar parameters.

[vcpKm,vcpangles] = radarvcd(frq,rng,anht, ...
    EffectiveEarthRadius=Re);

Use the refractivity at the surface in N-units to compute the refraction exponent.

Ns = N(1);
rexp = refractionexp(Ns)

rexp = 0.1440

Plot the vertical coverage pattern in the form of a Blake chart.

blakechart(vcpKm,vcpangles, ...
    SurfaceRefractivity=Ns,RefractionExponent=rexp)

Input Arguments
Ns — M-length refractivity at the surface
real scalar

M-length refractivity at the surface in N-units, specified as a real scalar.
Example: 313
Data Types: double
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Output Arguments
rexp — Refraction exponent
nonnegative real scalar

Refraction exponent or decay constant in km–1, returned as nonnegative real scalar.

More About
CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.

Version History
Introduced in R2021b

References
[1] Bean, B.R., and G.D. Thayer. "Central Radio Propagation Laboratory Exponential Reference

Atmosphere." Journal of Research of the National Bureau of Standards, Section D: Radio
Propagation 63D, no. 3 (November 1959): 315. https://doi.org/10.6028/jres.063D.031.

[2] Dutton, E. J., and G. D. Thayer. Techniques for Computing Refraction of Radio Waves in the
Troposphere. National Bureau of Standards Technical Note 97. United States National Bureau
of Standards, 1961, revised 1964.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer
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Functions
blakechart | el2height | height2el | height2range | height2grndrange | radarvcd |
range2height

Topics
“Modeling Target Position Errors Due to Refraction”

 refractionexp

1-139



probgrid
Nonuniformly spaced probabilities

Syntax
p = probgrid(p1,p2)
p = probgrid(p1,p2,n)

Description
p = probgrid(p1,p2) returns a nonuniformly spaced array of 100 probabilities between p1 and
p2 that correspond to the values of the normal cumulative distribution function (CDF) evaluated over
a set of points uniformly spaced in the domain of the normal distribution.

p = probgrid(p1,p2,n) returns an array of n probabilities.

Examples

Normal CDF Samples

Evaluate the standard normal cumulative distribution function (CDF) on a 10-point grid between 0.2
and 0.95. Determine the points that correspond to the probabilities by evaluating the inverse normal
CDF, also known as the probit function.

pmin = 0.2;
pmax = 0.95;
N = 10;

pd = probgrid(pmin,pmax,N);

xd = sqrt(2)*erfinv(2*pd-1);

Plot the standard normal CDF and overlay the points generated by probgrid.

x = -3:0.01:3;
sncdf = (1+erf(x/sqrt(2)))/2;

plot(x,sncdf)

hold on
plot(xd,pd,'o')
hold off

legend({'Standard Normal CDF','Probability Vector'}, ...
  'Location','Northwest')
xticks(xd)
xtickangle(40)
yticks(round(100*pd)/100)
ylabel('Probability')
grid on
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Input Arguments
p1, p2 — Interval endpoints
scalars from the interval [0, 1]

Interval endpoints, specified as scalars from the interval [0, 1]. p1 and p2 must obey p1 < p2.
Data Types: double

n — Number of samples in probability grid
100 (default) | positive integer scalar

Number of samples in probability grid, specified as a positive integer scalar.
Data Types: double

Output Arguments
p — Array of probabilities
row vector

Array of probabilities, returned as a row vector.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
detectability | rocinterp
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rocinterp
ROC curve interpolation

Syntax
ipd = rocinterp(snr,pd,snrq,'snr-pd')
isnr = rocinterp(pd,snr,pdq,'pd-snr')

ipd = rocinterp(pfa,pd,pfaq,'pfa-pd')
ipfa = rocinterp(pd,pfa,pdq,'pd-pfa')

Description
ipd = rocinterp(snr,pd,snrq,'snr-pd') returns the probability of detection (Pd) computed
by interpolating a Pd vs. signal-to-noise ratio (SNR) receiver operating characteristic (ROC) curve. If
pd is a matrix, the function interpolates each column independently. In this and the next syntax,
rocinterp performs linear interpolation after transforming the Pd-axis of the ROC curve using the
normal probability scale.

isnr = rocinterp(pd,snr,pdq,'pd-snr') returns the SNR computed by interpolating a Pd vs.
SNR ROC curve. If snr is a matrix, the function interpolates each column independently.

ipd = rocinterp(pfa,pd,pfaq,'pfa-pd') returns the Pd computed by interpolating a Pd vs.
probability of false alarm (Pfa) ROC curve. If pd is a matrix, the function interpolates each column
independently. In this and the next syntax, rocinterp performs linear interpolation after
transforming both axes of the ROC curve using a logarithmic scale.

ipfa = rocinterp(pd,pfa,pdq,'pd-pfa') returns the Pfa computed by interpolating a Pd vs. Pfa
ROC curve. If pfa is a matrix, the function interpolates each column independently.

Examples

Interpolate Probability of Detection vs. SNR ROC Curve

Compute the probability of detection (Pd) for a Swerling 1 case target given a set of signal-to-noise
ratio (SNR) and probability of false alarm values. Express the SNR values in decibels.

SNR = [13.5 14.5];
pfa = [1e-9 1e-6 1e-3];

Compute the Pd vs. SNR ROC curves and interpolate them at the SNR values of interest.

[pd,snr] = rocpfa(pfa,'SignalType','Swerling1');

ipd = rocinterp(snr,pd,SNR,'snr-pd');

Plot the ROC curves and overlay the interpolated values.

rocpfa(pfa,'SignalType','Swerling1')
hold on
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q = plot(SNR,ipd,'*');
hold off
legend(q,append("P_{fa} = ",string(pfa),", int."),'Location','northwest')

Input Arguments
snr — Signal-to-noise ratio
vector | matrix

Signal-to-noise ratio in decibels (dB), specified as a vector or matrix. If snr is a vector, its values must
be unique. If snr is a matrix, then each of its columns must contain unique values.
Data Types: double

snrq — Signal-to-noise ratio query points
vector

Signal-to-noise ratio query points, specified as a vector. All values of snrq must be expressed in dB.
Data Types: double

pd — Probability of detection
vector | matrix
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Probability of detection, specified as a vector or matrix. All values of pd must be between 0 and 1. If
pd is a vector, its values must be unique. If pd is a matrix, then each of its columns must contain
unique values.
Data Types: double

pdq — Probability of detection query points
vector

Probability of detection query points, specified as a vector. All values of pdq must be between 0 and
1.
Data Types: double

pfa — Probability of false alarm
vector | matrix

Probability of false alarm, specified as a vector or matrix. All values of pfa must be between 0 and 1.
If pfa is a vector, its values must be unique. If pfa is a matrix, then each of its columns must contain
unique values.
Data Types: double

pfaq — Probability of false alarm query points
vector

Probability of false alarm query points, specified as a vector. All values of pfaq must be between 0
and 1.
Data Types: double

Output Arguments
ipd — Interpolated probability of detection
vector | matrix

Interpolated probability of detection, returned as a vector or matrix.

isnr — Interpolated signal-to-noise ratio
vector | matrix

Interpolated signal-to-noise ratio, returned as a vector or matrix.

ipfa — Interpolated probability of false alarm
vector | matrix

Interpolated probability of false alarm, returned as a vector or matrix.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
detectability | rocpfa | rocsnr
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gaspl
RF signal attenuation due to atmospheric gases

Syntax
L = gaspl(range,freq,T,P,den)

Description
L = gaspl(range,freq,T,P,den) returns the attenuation, L, of signals propagating through the
atmosphere.

• range represents the signal path length.
• freq represents the signal carrier frequency.
• T represents the ambient temperature.
• P represents the atmospheric pressure.
• den represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU) atmospheric gas
attenuation model [1] to calculate path loss for signals primarily due to oxygen and water vapor. The
model computes attenuation as a function of ambient temperature, pressure, water vapor density, and
signal frequency.

The function requires that the signal path is contained entirely in a homogeneous environment –
temperature T, atmospheric pressure P, and water vapor density den do not vary along the signal
path. You can account for the variation of atmospheric parameters with height using the tropopl
and atmositu functions in the Radar Toolbox.

The attenuation model applies only for frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1 to 1000 GHz for an atmospheric pressure of 101.300 kPa
and a temperature of 15∘C. Plot the spectrum for a water vapor density of 7.5 g/m3 and then plot the
spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.
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T = 15;
P = 101300.0;
W = 7.5;
L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.

semilogy(freq/1e9,L)
hold on
semilogy(freq/1e9,L0)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB)')
hold off

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to 1000 GHz.
Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor density of 7.5 g/m3. The air
temperature is 20∘C. Specific attenuation is defined as dB loss per kilometer. Then, plot the actual
attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.
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T = 20.0;
Patm = 101.325e3;
rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.

km = 1000.0;
c = physconst('LightSpeed');
freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);
semilogy(freqs/1e9,loss)
grid on
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1 to 100 km. The
frequency corresponds to an X-band radar. Then, plot the free space loss and the total (atmospheric +
free space) loss.

ranges = [1:100]*1000;
freq_xband = 10e9;
loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);
lambda = c/freq_xband;
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loss_fsp = fspl(ranges,lambda);
semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)
legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')
xlabel('Range (km)')
ylabel('Loss (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M nonnegative
real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued scalar or
vector. You can specify multiple path lengths simultaneously. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. You can specify multiple frequencies simultaneously.
Frequencies must lie in the range 1–1000 GHz. Units are in hertz.
Example: [1.4e9,2.0e9]
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T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.

Note The atmositu, gaspl, and tropopl functions use different units for pressure and
temperature.

Pressure and Temperature Units

Function Pressure Units Temperature Units
atmositu hectoPascals (hPa) kelvin (K)
tropopl hectoPascals (hPa) kelvin (K)
gaspl Pascals (Pa) Celsius (C)

One hPa equals 100 Pa and K = C + 273.15. Use caution when combining the use of these three
functions.

Example: -10.0

P — Dry air pressure
positive real-valued scalar

Dry air pressure, specified as a positive real-valued scalar. Units are in Pa. One standard atmosphere
at sea level is 101325 Pa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar. Units are
g/m3. The maximum water vapor density of air at 30° C is approximately 30.0 g/m3. The maximum
water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.
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Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.
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Version History
Introduced in R2020b

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.676-10: Attenuation by atmospheric gases 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fspl | fogpl | tropopl | phased.LOSChannel | phased.WidebandLOSChannel
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el2height
Convert target elevation angle to height

Syntax
tgtht = el2height(el,anht,R)
tgtht = el2height( ___ ,model)
tgtht = el2height( ___ ,re)

Description
tgtht = el2height(el,anht,R) returns the target height in meters. This function assumes that
heights are referenced to the ground.

tgtht = el2height( ___ ,model) specifies the Earth model used to compute the target height.
Specify model as 'Curved' or 'Flat'.

tgtht = el2height( ___ ,re) specifies the effective Earth radius in meters as a positive scalar
re.

Examples

Determine Target Height

Determine the target height in meters given an elevation angle of 0.5 degrees, a sensor height of 10
m, and a range of 300 km. Convert the range to meters.

el = 0.5;
anht = 10;
R = 300e3;

tgtht = el2height(el,anht,R)

tgtht = 7.9325e+03

Input Arguments
el — Elevation angle
scalar | M-length vector

Elevation angle to target, specified as a scalar or M-length vector. Units are in degrees.
Data Types: double

anht — Sensor height
scalar | M-length vector

Sensor height, specified as a scalar or M-length vector. Units are in meters.
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Data Types: double

R — Range
scalar | M-length vector

Range between target and sensor, specified as a scalar or M-length vector. Units are in meters.
Data Types: double

model — Earth model
'Curved' (default) | 'Flat'

Earth model used to compute target height, specified as 'Curved' or 'Flat'. By default, the
el2height function assumes a curved Earth model.

re — Effective Earth radius
positive scalar

Effective Earth radius, specified as a positive scalar. By default, re is 4/3 of the Earth radius. Units
are in meters. The function ignores this input when model is set to 'Flat'.
Data Types: double

Output Arguments
tgtht — Target height
scalar | M-length vector

Target height, returned as a scalar or M-length vector. Units are in meters.

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. Artech House Radar Series. Norwood, Mass:

Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
height2el | horizonrange | depressionang | grazingang | effearthradius
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height2el
Convert target height to elevation angle

Syntax
el = height2el(tgtht,anht,R)
el = height2el( ___ ,model)
el = height2el( ___ ,re)

Description
el = height2el(tgtht,anht,R) returns the target elevation angle in degrees. This function
assumes that heights are referenced to the ground.

el = height2el( ___ ,model) specifies the Earth model used to compute the target elevation.
Specify model as 'Curved' or 'Flat'.

el = height2el( ___ ,re) specifies the effective Earth radius in meters as a positive scalar re.

Examples

Determine Elevation Angle of Target

Determine the elevation angle of a target given a target height of 8 km, sensor height of 10 m, and
range of 300 km. Convert the target height and range to meters.

tgtht = 8e3;
anht = 10;
R = 300e3;

el = height2el(tgtht,anht,R)

el = 0.5129

Input Arguments
tgtht — Target height
scalar | M-length vector

Target height, specified as a scalar or M-length vector. Units are in meters.
Data Types: double

anht — Sensor height
scalar | M-length vector

Sensor height, specified as a scalar or M-length vector. Units are in meters.
Data Types: double
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R — Range
scalar | M-length vector

Range between target and sensor, specified as a scalar or M-length vector. Units are in meters.
Data Types: double

model — Earth model
'Curved' (default) | 'Flat'

Earth model used to compute target elevation angle, specified as 'Curved' or 'Flat'. By default,
the height2el function assumes a curved Earth model.

re — Effective Earth radius
positive scalar

Effective Earth radius, specified as a positive scalar. By default, re is 4/3 of the Earth radius. Units
are in meters. The function ignores this input when model is set to 'Flat'.
Data Types: double

Output Arguments
el — Target elevation angle
scalar | M-length vector

Target elevation angle, returned as a scalar or M-length vector. Units are in degrees.

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. Artech House Radar Series. Norwood, Mass:

Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
depressionang | effearthradius | el2height | grazingang | horizonrange
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clutterSurfaceRangeDopplerRCS
Surface RCS as a function of range and Doppler

Syntax
rcs = clutterSurfaceRangeDopplerRCS(nrcs,rbins,freq,dopres,alt,speed,dive)
rcs = clutterSurfaceRangeDopplerRCS( ___ ,PropagationSpeed=c)
rcs = clutterSurfaceRangeDopplerRCS( ___ ,NumDopplerBins=ndop)
rcs = clutterSurfaceRangeDopplerRCS( ___ ,NumIntegrationPoints=nri)
[rcs,dopbins] = clutterSurfaceRangeDopplerRCS( ___ )

Description
rcs = clutterSurfaceRangeDopplerRCS(nrcs,rbins,freq,dopres,alt,speed,dive)
returns the radar cross-section rcs of a surface illuminated by monostatic radar, where

• nrcs – normalized radar cross-section
• rbins – range bin centers
• freq – radar frequency
• alt – radar altitude
• dopres – Doppler resolution
• speed – radar speed
• dive – radar dive angle

are the input arguments.

rcs = clutterSurfaceRangeDopplerRCS( ___ ,PropagationSpeed=c) also specifies the
signal propagation speed c.

rcs = clutterSurfaceRangeDopplerRCS( ___ ,NumDopplerBins=ndop) also specifies the
number of Doppler bins, ndop. Using this parameter enables Doppler wrapping and makes the clutter
output DC-centered.

rcs = clutterSurfaceRangeDopplerRCS( ___ ,NumIntegrationPoints=nri) also specifies
the number of points per range bin nri used for numerical integration of the reflectivity.

[rcs,dopbins] = clutterSurfaceRangeDopplerRCS( ___ ) also returns the Doppler-shift bin
values dopbins. Units are in Hz.

Examples

Radar Clutter Cross-Section of Flat Land

Calculate clutter RCS in a set of range-Doppler cells. The range swath begins at 3000 m and extends
to 5000 m with a 50 m range bin width. The radar center frequency is 30 GHz and with a Doppler
resolution of 100 Hz. The radar travels at an altitude of 1000 m and with a speed of 100 m/s with a10∘
dive angle.
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rngbins= 3000:50:5000;
freq = 30e9;
doplrres = 100;
rdralt = 1000;
rdrspeed = 100;
dive = 10;

Use a constant-gamma flatland reflectivity model to get the normalized radar cross-section at each
range bin. Then compute the grazing angle using the grazingang function. Compute the normalized
surface reflectivity.

gamma = surfacegamma('Flatland');
refl = surfaceReflectivityLand( ...
    'Model','ConstantGamma','Gamma',gamma);
graze = grazingang(rdralt,rngbins,'Model','Flat');
nrcs = refl(graze,freq);

Calculate and display the radar cross-section of the clutter.

[rcs,dop] = clutterSurfaceRangeDopplerRCS( ...
    nrcs,rngbins,freq,doplrres,rdralt, ...
    rdrspeed,dive);
rcs(rcs < 10^-2) = 10^-2;
imagesc(dop/1000.0,rngbins,10*log10(rcs))
title('Radar Cross Section (dBsm)')
xlabel('Doppler (kHz)')
ylabel('Range (m)')
axis('xy')
colorbar
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Input Arguments
nrcs — Normalized radar cross section
length-N nonnegative vector

Normalized radar cross section of the surface, specified as a length-N nonnegative vector. Each entry
in nrcs corresponds to a range specified in rbins. Units are dimensionless but often expressed as
m²/m².
Data Types: double

rbins — Range bin center values
length-N nonnegative vector (default)

Range bin centers, specified as a real-valued length-N vector. Elements of rbins must appear in
increasing order and must have at least two elements. The total range swath starts below the first
element of rbins and extends beyond the last element of rbins by half the range bin width. The
starting and ending ranges are extrapolated from the first and last bins. Range bins need not be
uniformly spaced. No range wrapping due to ambiguous range is performed. Units are in meters.
Example: [20 25 30 35]
Data Types: double

freq — Radar frequency
positive scalar
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Radar frequency, specified as a positive scalar. Units are in Hz.
Data Types: double

dopres — Doppler resolution
positive scalar

Doppler resolution, specified as a positive scalar. By default, no wrapping is performed in Doppler
space. Doppler bins will cover the full Doppler spectrum of clutter at the specified resolution. Units
are in Hz.
Example: 50
Data Types: double

alt — Radar altitude
scalar

Radar altitude, specified as a non-negative scalar. Units are in meters.
Data Types: double

speed — Radar speed
positive scalar

Radar speed, specified as a non-negative scalar. Units are in meters/sec.
Example: 50
Data Types: double

dive — Radar dive angle
scalar

Radar dive angle, specified as a scalar between –90° and 90°. The dive angle is the angle that the
radar velocity vector makes with the horizontal plane. A positive dive angle indicates that the velocity
vector is pointing down. Units are in degrees.
Data Types: double

ndop — Number of Doppler bins
nonnegative integer

Number of dc-centered Doppler bins, specified as a positive integer. Specifying this parameter
enables Doppler wrapping. Use this argument with the NumDopplerBins name-value pair.
Example: NumDopplerBins=128
Data Types: double

c — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Use this argument with the
PropagationSpeed name-value pair. The default propagation speed is the value obtained from
physconst('LightSpeed'). Units are in meters/second.
Example: PropagationSpeed=3e8
Data Types: double
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nri — Number of integration points per range bin
40 (default) | positive integer

Number of integration points per range bin, specified as a positive integer. Use this argument with
the NumIntegrationPoints name-value pair.
Example: NumIntegrationPoints=100
Data Types: double

Output Arguments
rcs — Radar cross section
complex-valued N-by-M matrix

Radar cross section, returned as an complex-valued N-by-M matrix where RCS(i,j) gives the RCS of
surface clutter in the range-Doppler cell at the ith range and jth Doppler bin. Units are in m².

dopbins — Doppler bins
length-M vector

Doppler bins, returned as length-M vector. By default, the Doppler bins extend over the entire
Doppler spectrum of clutter at the resolution specified by dopres.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterSurfaceRCS | surfacegamma | grazingang | surfaceReflectivitySea |
surfaceReflectivityLand

Topics
“Predict Surface Clutter Power in Range-Doppler Space”
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clutterSurfaceRCS
Surface clutter radar cross section

Syntax
rcs = clutterSurfaceRCS(nrcs,range,azimuth,elevation,graz,tau)
rcs = clutterSurfaceRCS( ___ ,C)
rcs = clutterSurfaceRCS( ___ ,'BeamLoss',Lp)

Description
rcs = clutterSurfaceRCS(nrcs,range,azimuth,elevation,graz,tau) returns the radar
cross section, rcs, of the surface clutter patch as an M-length row vector in meters squared.

rcs = clutterSurfaceRCS( ___ ,C) returns the surface clutter radar cross-section with the
propagation speed C.

rcs = clutterSurfaceRCS( ___ ,'BeamLoss',Lp) returns the surface clutter radar cross
section using the beamshape loss.

Examples

Calculate Radar Cross Section

Calculate the radar cross section of a clutter patch and estimate the clutter-to-noise ratio at the
receiver. Assume that the patch is 1000 meters away from the radar system and the azimuth and
elevation beamwidths are 1 degree and 3 degrees, respectively. Also assume that the grazing angle is
20 degrees, the pulse width is 10 microseconds, and the radar is operated at a wavelength of 1 cm
with a peak power of 5 kw.

rng    = 1000;  
bwAz   = 1;     
bwEl   = 3;     
graz   = 20;    
tau    = 10e-6; 
lambda = 0.01; 
ppow   = 5000; 

Calculate the NRCS.

nrcs = landreflectivity('Mountains',graz)

nrcs = 0.1082

Calculate clutter RCS using the calculated NRCS.

rcs = clutterSurfaceRCS(nrcs,rng,bwAz,bwEl,graz,tau)

rcs = 288.9855

Calculate clutter-to-noise ratio using the calculated RCS.
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cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs)

cnr = 62.5974

Input Arguments
nrcs — Normalized radar cross section
nonnegative scalar | M-length vector of nonnegative values

The normalized radar cross section (NRCS) of a clutter patch is specified as either a nonnegative
scalar or an M-length vector of nonnegative values in meters squared. The NRCS is also known as the
reflectivity or σ0.
Example: nrcs = 1

range — Clutter patch range
nonnegative scalar | M-length vector of nonnegative values

The clutter patch range, specified as either a nonnegative scalar or an M-length vector of
nonnegative values in meters.
Example: range = 1000;

azimuth — Azimuth beamwidth
positive scalar | [azimuth_Tx,azimuth_Rx]

The azimuth beamwidth of the radar, specified as a positive scalar or a 1-by-2 vector in degrees. Use
with the elevation argument.

• When the transmit and receive beamwidths are the same, specify azimuth as a positive scalar .
• When the transmit and receive azimuth beamwidths are not the same, specify azimuth as a 1-

by-2 positive vector [azimuth_Tx,azimuth_Rx], where the first element is the transmit azimuth
beamwidth in degrees and the second element is the receive azimuth beamwidth in degrees.

The function uses these two beamwidths to create an effective azimuth beamwidth. See “Effective
Beamwidth” on page 1-165.

Example: bwAz = 1

elevation — Elevation beamwidth
positive scalar | [elevation_Tx,elevation_Rx]

The elevation beamwidth of the radar, specified as a positive scalar or a 1-by-2 vector in degrees. Use
with the azimuth argument.

• When the transmit and receive beamwidths are the same, specify elevation as a positive scalar .
• When the transmit and receive elevation beamwidths are not the same, specify elevation as a 1-

by-2 positive vector [elevation_Tx,elevation_Rx], where the first element is the transmit
azimuth beamwidth in degrees and the second element is the receive azimuth beamwidth in
degrees.

The function uses these two beamwidths to create an effective elevation beamwidth. See
“Effective Beamwidth” on page 1-165.

Example: bwEl = 3
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graz — Grazing angle
nonnegative scalar | N-length vector of grazing values

Grazing angle, specified as a nonnegative scalar or an N-length row vector of nonnegative values.
This argument specifies the grazing angles of the clutter patch relative to the radar. Units are in
degrees. See grazingang.

tau — Pulse width
nonnegative scalar

Pulse width of the transmitted signal, specified as a nonnegative scalar in seconds.
Example: tau = 10e-6

C — Propagation speed
speed of light (default) | positive scalar

The propagation speed specified as a positive scalar in meters per second.

Lp — Beamshape loss
0 dB (default) | nonnegative scalar

The beamshape loss, specified as a nonnegative scalar in decibels. The beamshape loss accounts for
the reduced two-way antenna gain of off-axis scatterers.

Use this property when the elevation beamwidth (elevation) for the transmitter and receiver are
not the same.
Example: loss = 0

Output Arguments
rcs — Radar cross section
M-length vector

The radar cross section of a surface cluster patch, returned as an M-length vector in meters squared.

Algorithms
Effective Beamwidth

The effective beamwidth is used for the effective azimuth θazimutheff and effective elevation θelevationeff
calculation when the transmitter and receiver beamwidths are not equal.

θazimuthef f =
2θatθar

θat2 + θar2

θelvationef f =
2θetθer

θet2 + θer2

• at is the azimuth transmitter elevation beamwidth in degrees.
• ar is the azimuth receiver elevation beamwidth in degrees.
• et is the elevation transmitter elevation beamwidth in degrees.
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• er is the elevation receiver elevation beamwidth in degrees.

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea. Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles. Mendham,
NJ: SciTech Publishing, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
landreflectivity | seareflectivity | radareqsnr | surfacegamma | grazingang
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landreflectivity
Reflectivity of land surface

Syntax
nrcs = landreflectivity(landtype,ang)
nrcs = landreflectivity(landtype,ang,freq)
nrcs = landreflectivity( ___ ,Model = model)
nrcs = landreflectivity( ___ ,Polarization = pol)
nrca = landreflectivity( ___ ,SurfaceHeightStandardDeviation = hgtsd)
[nrcs,hgtsd,beta0,vegtype] = landreflectivity( ___ )

Description
nrcs = landreflectivity(landtype,ang) returns the surface radar reflectivity nrcs for the
land type landtype at the grazing angle ang. Radar reflectivity is also called the normalized radar
cross section (NRCS). This syntax assumes that the radar operates at 10 GHz and also assumes that
the land model is the Barton reflectivity model. For a table of land models and land types, see “Land
Reflectivity Models and Land Types” on page 4-240.

nrcs = landreflectivity(landtype,ang,freq) also specifies the transmitted frequency of
the radar.

nrcs = landreflectivity( ___ ,Model = model) also specifies the reflectivity model.

nrcs = landreflectivity( ___ ,Polarization = pol) also specifies the polarization pol of
the transmitted wave. To use this syntax, set the model argument to 'UlabyDobson'.

nrca = landreflectivity( ___ ,SurfaceHeightStandardDeviation = hgtsd) specifies the
scalar standard deviation of the surface height hgtsd. To use this syntax, set the model argument to
'GIT'.

[nrcs,hgtsd,beta0,vegtype] = landreflectivity( ___ ) returns

• hgtsd — the standard deviation of the surface height.
• beta0 — the slope of the land type.
• vegtype — the vegetation type.

To enable this syntax, set the model argument to 'Barton'.

Examples

NRCS of Urban Patch

Calculate NRCS, surface height standard deviation, land slope, and vegetation type. Specify an urban
land type and a grazing angle of 20 degrees.

graz = 20;
[nrcs,hgtsd,beta0,vegtype] = landreflectivity("Urban",graz)
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nrcs = 0.1082

hgtsd = 10

beta0 = 5.7296

vegtype = 
'None'

Input Arguments
landtype — Surface land type
char | string

Surface land type, specified as a character array or string. The land type depends on the value of the
model. For the acceptable land types for different models, see the table “Land Models and Land
Types” on page 1-170.

ang — Grazing or depression angle
nonnegative scalar | M-length vector of nonnegative values

Grazing or depression angle of a surface relative to the radar, specified as a scalar or an M-length
row vector of nonnegative values. When the land model is set to 'Billingsley', the angle is
interpreted as a depression angle between –90 and 90 degrees. For all other models, the angle is
interpreted as a grazing angle ranging from 0 to 90 degrees. Units are in degrees.

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
Example: freq = 7*10e9

model — Land reflectivity model
'Barton' (default) | string | char

Land reflectivity model, specified as a string or char. See the “Land Models and Land Types” on page
1-170 table for all acceptable land reflectivity models.

pol — Polarization of reflectivity model
'H' (default) | 'V' | 'HV'

Polarization of reflectivity model, specified as 'H' for horizontal polarization, 'V' for vertical
polarization, or 'HV' which indicates horizontal transmit with vertical receive.
Dependencies

To enable this argument, set the model argument to 'UlabyDobson'.
Data Types: char | string

hgtsd — Surface height standard deviation
0 (default) | scalar

Standard deviation of the surface height, specified as a scalar. Units are in meters.
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Dependencies

To enable this argument, set the model argument to 'GIT'.

Output Arguments
nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

hgtsd — Standard deviation of surface height
scalar

Standard deviation of the surface height, returned as a scalar. Units are in meters.

Dependencies

To enable this argument, set the model argument to 'Barton'.

beta0 — Slope of the land type
scalar

Slope of the land type β0, returned as a scalar. Note that β0 is 1.4 times the RMS surface slope. Units
are in degrees.

Dependencies

To enable this argument, set the model argument to 'Barton'.

vegtype — Vegetation type
character array | string

Vegetation type, returned a character array or string. The vegetation type depends on the land type.

Land Type Vegetation Type
Rugged Mountains Trees (dense)
Mountains Trees (dense)
Woods Trees (dense)
Wooded Hills Trees (dense)
Rolling Hills Brush (dense)
Farm Grass (thin)
Desert Grass (thin)
Flatland Grass (thin)
Metropolitan None
Urban None
Smooth None
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Dependencies

To enable this argument, set the model argument to 'Barton'.

Limitations
This function assumes a Gaussian clutter model and that the reflectivity of land clutter is mostly
independent of wavelength. The Gaussian model may fail to simulate the effects of some natural and
most man-made structures, which are generally modeled separately as discrete clutter.

More About
Land Models and Land Types

Model Land Type Range of Validity
'Barton' – Constant-gamma
mathematical model generally
applicable over medium grazing
angles. 'Barton' is the default
model. See [1][2], and [3].

'RuggedMountains'
'Mountains'
'Metropolitan'
'Urban'
'WoodedHills'
'RollingHills'
'Woods'
'Farm'
'Desert'
'Flatland' (default for
model)
'Smooth'

• Grazing angle 20 – 60
degrees

• Frequency 1 – 10 GHz

'APL' – This model also known
as the ADSAM model. Low-
fidelity constant-gamma
mathematical model that
includes specular scattering.
See [4].

'Urban'
'HighRelief'
'LowRelief' (default for
model)

• Grazing angle 0 – 90 degrees
• Frequency 1 – 100 GHz
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Model Land Type Range of Validity
'Billingesley' – High-
validity empirical model
generally applicable for low
depression angles less than 2
degrees. See [5].

'LowReliefRural' (default
for model)
'LowReliefForest'
'Farm'
'Desert'
'Marsh'
'Grassland'
'HighReliefRural'
'HighReliefForest'
'Mountains'
'Urban'
'LowReliefUrban'

• Depression angle -0.75 – 2
degrees

• Frequency – VHF (0.030 –
0.3), UHF (0.3 – 1), L (1 -- 2),
S (2 - 4), X (8 - 12) GHz

'GIT' – Georgia Institute of
Technology semi-empirical
model takes into account terrain
roughness. Generally applicable
for medium grazing angles. See
[6].

'Soil' (default for Model)
'Grass'
'TallGrass'
'Trees'
'Urban'

• Grazing angle 20 – 65
degrees

• Frequency 3 – 15 GHz

'Morchin' – Mathematical
model generally applicable for
high grazing angles for
frequencies from UHF to C-
band. See [7].

'Desert'
'Farm' (default for Model)
'Woods'
'Mountains'

• Grazing angle 70 – 90
degrees

• Frequencies UHF (0.3 – 1) L
(1 – 2) S (2 – 4) C (4 – 8)

'Nathanson' – Applicable up
to Ka band for low grazing angle
surface radars and medium
grazing angle airborne radars
for low mountains, farmland,
and wooded areas. See [3].

'Desert'
'Farm' (default for Model)
'Woods'
'Jungle'
'RollingHills'
'Urban'

• Grazing angle 0 – 60 degrees
• Frequency L (1 – 2). S ( 2 –

4), C (4 – 8), X (8 --12), Ku
(12 --18), Ka (32 -- 36) GHz

'UlabyDobson' – High-validity
semi-empirical model for low to
medium grazing angles covering
L-band to Ku, taking into
account polarization. See [8].

'Soil' (default for
Model)
'Grass'
'Shrubs'
'ShortVegetation'

• Grazing angle 0 – 60 degrees
• Frequency L (1 – 2), S ( 2 –

4), C (4 – 8), X (8 --12), Ku
(12 --18) GHz

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
landroughness | searoughness | seareflectivity | clutterSurfaceRCS | grazingang |
depressionang | surfaceReflectivityLand
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landroughness
Surface height standard deviation for land

Syntax
hgtsd = landroughness(landtype)
[hgtsd,beta0,vegtype] = landroughness(landtype)

Description
hgtsd = landroughness(landtype) returns the standard deviation of the surface height for the
specified land type.

[hgtsd,beta0,vegtype] = landroughness(landtype) in addition to hgtsd returns:

• beta0 — the slope of the land type.
• vegtype — the vegetation type.

Examples

Land Roughness of Urban Patch

Obtain the standard deviation of the surface height for an urban land.

hgtsd = landroughness('Urban')

hgtsd = 10

Input Arguments
landtype — Surface land type
"Rugged Mountains" | "Mountains" | "Metropolitan" | "Urban" | "Wooded Hills" |
"Rolling Hills" | "Woods" | "Farm" | "Desert" | "Flatland" | "Smooth"

Surface land type, specified as "Rugged Mountains", "Mountains", "Metropolitan", "Urban",
"Wooded Hills", "Rolling Hills", "Woods", "Farm", "Desert", "Flatland". or "Smooth".

Output Arguments
hgtsd — Standard deviation of the surface height
scalar

Standard deviation of the surface height, returned as a scalar in meters.

beta0 — Slope of the land type
scalar

Slope of the land type β0, returned as a scalar in degrees.

 landroughness

1-173



vegtype — Vegetation type
character array

The vegetation type is a character array determined by the landtype input.

Land Type Vegetation Type
Rugged Mountains Trees (dense)
Mountains Trees (dense)
Woods Trees (dense)
Wooded Hills Trees (dense)
Rolling Hills Brush (dense)
Farm Grass (thin)
Desert Grass (thin)
Flatland Grass (thin)
Metropolitan None
Urban None
Smooth None

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. 1st edition. Norwood, MA: Artech House,

2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
searoughness | landreflectivity | seareflectivity | clutterSurfaceRCS |
radarpropfactor | radarvcd | blakechart

Topics
“Modeling Target Position Errors Due to Refraction”
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seareflectivity
Normalized sea surface reflectivity

Syntax
nrcs = seareflectivity(scale,graz,freq)
nrcs = seareflectivity( ___ ,Polarization = pol)
nrcs = seareflectivity( ___ ,ScaleType = scaletype)
nrcs = seareflectivity( ___ ,Model = model)
nrcs = seareflectivity( ___ ,LookAngle = lookang)
[nrcs,hgtsd,beta0,windvelocity] = seareflectivity( ___ )

Description
nrcs = seareflectivity(scale,graz,freq) returns the normalized sea surface reflectivity
nrcs for the sea state scale at the grazing angle graz with the transmitted frequency freq. In this
syntax, sea surface reflectivity is calculated using the NRL Sea Clutter Model by Gregers-Hansen and
Mittal. The reflectivity is also called the normalized radar cross section (NRCS) and denoted σ0.

nrcs = seareflectivity( ___ ,Polarization = pol) also specifies the polarization pol of
the transmitted wave. Polarization can be horizontal or vertical.

nrcs = seareflectivity( ___ ,ScaleType = scaletype) also specifies the scale type
scaletype which is either sea state 'SeaState' or wind scale 'WindScale'.

nrcs = seareflectivity( ___ ,Model = model) also specifies the reflectivity model.

nrcs = seareflectivity( ___ ,LookAngle = lookang) also specifies the look angle lookang.

[nrcs,hgtsd,beta0,windvelocity] = seareflectivity( ___ ) returns additional outputs:

• hgtsd — Standard deviation of the surface height for the specified sea state number.
• beta0 — Slope of the sea type. beta0 is 1.4 times the root mean square (RMS) surface slope. The

surface σ0 value for sea clutter reflectivity is computed based on the NRL Sea Clutter Model by
Gregers-Hansen and Mittal.

• windvelocity — Wind velocity.

Examples

NRCS of Sea Clutter Patch

Calculate the NRCS of a sea clutter patch. Assume that the patch is the sea with sea state number
equal to 2 and the radar system operates at a frequency of 30 GHz. Also assume the grazing angle is
10 degrees.

scale = 2;    
graz = 10;  
freq = 30e9;
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Calculate the normalized NRCS for the sea clutter patch.

nrcs = seareflectivity(scale,graz,freq)

nrcs = 2.1555e-04

You can use the normalized RCS to calculate the total clutter patch RCS.

Polarized Sea Reflectivity

Calculate and plot the horizontal and vertical reflectivities from the GIT model. The radar operates at
an L-band frequency of 1.5 GHz at grazing angles from 0.1 to 10 degrees. Assume sea state 3.

seastate = 3;
graz = 0.1:0.2:10;
freq = 1.5e9;
model = 'GIT';

Compute the horizontal and vertical polarized reflectivities.

reflh = seareflectivity(seastate,graz,freq, ...
    Model = model,Polarization = 'H');
reflv = seareflectivity(seastate,graz,freq, ...
    Model = model,Polarization = 'V');

Plot the reflectivities as a function of grazing angle.

plot(graz,pow2db(reflh))
hold on
grid on
plot(graz,pow2db(reflv))
legend('H','V','Location','Best')
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB)')
title('GIT: NRCS at 1.5 GHz')
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Input Arguments
scale — Sea state or wind scale
nonnegative integer

If you set scaletype to 'SeaState', scale is interpreted as the sea state, specified as a
nonnegative scalar between [0,8]. If you set scaletype to 'WindScale', scale is interpreted as
the Beaufort wind scale, specified as a positive scalar between [1,9].

Dependency

The interpretation of the scale argument depends on the value of scaletype name-value pair.

graz — Grazing angle
nonnegative scalar | N-length vector of grazing values

Grazing angle, specified as a nonnegative scalar or an N-length row vector of nonnegative values.
This argument specifies the grazing angles of the clutter patch relative to the radar. Units are in
degrees. See grazingang.

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
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Example: freq = 7*10e9

pol — Polarization of transmitted wave
'H' (default) | 'V'

Polarization of transmitted wave, specified as 'H' for horizontal polarization or 'V' for vertical
polarization.
Example: 'V'

scaletype — Scale type
'SeaState' (default) | 'WindScale'

Scale type, specified as either:

• 'SeaState' — The function uses the Sea State model. When you specify this option, the scale
input scale must be a nonnegative scalar between [0,8].

• 'WindScale' — The function uses the Beaufort Wind Scale model. When you specify this option,
the scale input scale must be a positive scalars between [1,9].

Example: 'WindScale'

model — Sea reflectivity model
'NRL' (default) | 'APL' | 'GIT' | 'Hybrid' | 'Masuko' | 'Nathanson' | 'RRE' | 'Sittrop' |
'TSC'

Sea reflectivity model, specified as 'NRL', 'APL', 'GIT', 'Hybrid', 'Masuko', 'Nathanson',
'RRE', 'Sittrop', or 'TSC'. The table “Sea Reflectivity Models” on page 1-180 summarizes the sea
surface models available in the radar simulation and their domains of application.

lookang — Radar look angle
0 (default) | nonnegative scalar | 'Upwind' | 'Downwind' | 'Crosswind'

Radar look angle, specified as a nonnegative scalar between 0° and 180° or as:

• 'Upwind' – 0°
• 'Downwind' – 180°
• 'Crosswind' – 90°

Radar look angle is zero when looking upwind.

Dependencies

To enable this argument, set the model name to 'APL', 'GIT', 'Hybrid', 'Masuko', 'Sittrop',
or 'TSC'.
Data Types: double

Output Arguments
nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
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of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

hgtsd — Standard deviation of surface height
scalar

Standard deviation of the surface height, returned as a scalar. The model for height deviation, surface
slope, and wind velocity is based on a model by Barton. Units are in meters.

beta0 — Slope of the sea type
scalar

Slope of the sea type β0, returned as a scalar. The model for height deviation, surface slope, and wind
velocity is based on a model by Barton. Units are in degrees.

windvelocity — Wind velocity
scalar

Wind velocity, returned as a scalar. The model for the height deviation, surface slope, and wind
velocity is based on a model by Barton. Units are in meters per second.
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More About
Sea Reflectivity Models

Model Type Grazing Angles Frequency Range Sea State
'NRL' – Sea
Clutter Model due
to Gregers-Hansen
and Mittal.
(Default model)

• Naval Research
Laboratory
empirical model
for sea
reflectivity.

• The model does
not include
variation with
azimuth or
wind direction.

• The model
matches
experimental
results with an
absolute
deviation of
about 2.2 to 2.3
dB for grazing
angles from
0.1° to 10°. A
deviation of 2.6
dB can be seen
for grazing
angles above
10° and below
60°.

See [1] and [2].

Empirical model 0.1° – 60° 0.5 – 35 GHz 0 – 6
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Model Type Grazing Angles Frequency Range Sea State
'APL' –

• John Hopkins
Applied Physics
Laboratory
ADSAM model.

• Derived wind
velocity from
sea state
produces less
conservative
reflectivity
values than GIT
model at lower
sea states.

• Takes into
account wave
height and
wave speed.

• Differs from the
GIT model by
deriving wind
velocity from
sea state.

See [3].

Semi-empirical 0.1 – 10 1 – 100 1 – 6
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Model Type Grazing Angles Frequency Range Sea State
'GIT' –

• Georgia
Institute of
Technology

• Semi-empirical
model based on
multipath, wind
speed, and
wind direction
factor.

• Takes into
account wave
height and
wave speed.

• Derived wind
velocity from
sea state
produces less
conservative
reflectivity
values than GIT
at lower sea
states.

[5] and [1].

Semi-empirical 0.1 – 10 1 – 100 1 – 6

'Hybrid' –

• Hybrid model
that mixes work
by Barton,
Nathanson's
tables, and GIT
semi-empirical
models.

• May be biased
high in the low
grazing angle
regime.

See [5].

Semi-empirical 0.1 – 30 0.5 – 35 0 – 5
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Model Type Grazing Angles Frequency Range Sea State
'Masuko' --

• Empirical
model
applicable for
medium
grazing angles
for X and Ka
bands.

See [6].

Empirical 30 – 60 X (8 – 12) Ka (26.5
– 40)

1 – 6

'Nathanson' –

• Empirical
tables compiled
from
experimental
data that are
averages of all
wind directions
covering UHF
to Ka.

See [7].

Empirical 0.1 – 60 UHF (0.3 – 1), L (1
– 2), S(2 – 4), C(4 –
8), X(8 – 12), Ku(12
– 18), Ka(32 – 36)

0 – 6

'RRE' –

• Royal Radar
Establishment
model

• Averages over
all wind
directions.

• Used
extensively in
the UK for
airborne radar
performance
assessment.

See [4]

Mathematical < 10 9 – 10 1 – 6

'Sittrop' –

• Empirical
model for lower
grazing angles
and higher sea
states for X-
band.

See [4].

Empirical 0.2 – 10 X (8 – 12) 0 – 7
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Model Type Grazing Angles Frequency Range Sea State
'TSC' –

• Technology
Service
Corporation
Empirical
model.

• Based on fit to
Nathanson
tables.

• Similar to the
GIT model but
with values not
falling off as
rapidly in range

• Recommended
for conservative
performance
prediction or
when
conditions are
unknown.

See [5].

Empirical 0.1 – 90 0.5 – 35 0 – 5

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
searoughness | landroughness | landreflectivity | clutterSurfaceRCS |
surfaceReflectivitySea
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searoughness
Surface height standard deviation for sea

Syntax
hgtsd = searoughness(scale)
hgtsd = searoughness(scale,'ScaleType',scaletype)
[hgtsd,beta0,windvelocity] = searoughness( ___ )

Description
hgtsd = searoughness(scale) returns the standard deviation of the surface height, hgtsd, for
the specified sea state number as a scalar in meters.

hgtsd = searoughness(scale,'ScaleType',scaletype) specifies the scale type.

[hgtsd,beta0,windvelocity] = searoughness( ___ ) returns additional outputs:

• beta0 — Slope of the sea type in degrees. beta0 is 1.4 times the root mean square (RMS) surface
slope. The surface σ0 value for sea clutter reflectivity is computed based on the NRL Sea Clutter
Model by Gregers-Hansen and Mittal

• windvelocity — Wind velocity in meters per second

Examples

Sea Roughness of Sea State

Obtain the surface height standard deviation in meters assuming a sea state of 2.

hgtsd = searoughness(2)

hgtsd = 0.1000

Input Arguments
scale — Sea state or wind scale
nonnegative integer

If you set scaletype to 'SeaState', scale is interpreted as the sea state, specified as a
nonnegative scalar between [0,8]. If you set scaletype to 'WindScale', scale is interpreted as
the Beaufort wind scale, specified as a positive scalar between [1,9].

Dependency

The interpretation of the scale argument depends on the value of scaletype name-value pair.

scaletype — Scale type
'SeaState' (default) | 'WindScale'
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Scale type, specified as either:

• 'SeaState' — The function uses the Sea State model. When you specify this option, the scale
input scale must be a nonnegative scalar between [0,8].

• 'WindScale' — The function uses the Beaufort Wind Scale model. When you specify this option,
the scale input scale must be a positive scalars between [1,9].

Example: 'WindScale'

Output Arguments
hgtsd — Standard deviation of surface height
scalar

Standard deviation of the surface height, returned as a scalar. The model for height deviation, surface
slope, and wind velocity is based on a model by Barton. Units are in meters.

beta0 — Slope of the sea type
scalar

Slope of the sea type β0, in degrees, returned as a scalar.

windvelocity — Wind velocity
scalar

Wind velocity, returned as a scalar. The model for the height deviation, surface slope, and wind
velocity is based on a model by Barton. Units are in meters per second.

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
landroughness | seareflectivity | landreflectivity | clutterSurfaceRCS |
radarpropfactor | radarvcd | blakechart
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atmositu
Use ITU reference atmospheres

Syntax
[T,P,wvden] = atmositu(h)
[T,P,wvden] = atmositu( ___ ,Name,Value)
atmositu( ___ )

Description
[T,P,wvden] = atmositu(h) calculates the International Telecommunication Union (ITU)
standard atmospheric model known as the Mean Annual Global Reference Atmosphere (MAGRA) and
returns the atmospheric temperature T, pressure P, and water-vapor density wvden. MAGRA
approximates the U.S. Standard Atmosphere 1976 with insignificant relative error.

[T,P,wvden] = atmositu( ___ ,Name,Value) returns the atmospheric temperature, pressure,
and water-vapor density with additional options specified by one or more name-value pairs. For
example, 'LatitudeModel','High' specifies a reference model for latitudes greater than 45°.

atmositu( ___ ) with no output arguments plots:

• Atmospheric temperature T versus altitude in linear scale
• Atmospheric pressure P versus altitude in logarithmic x-scale
• Atmospheric water-vapor density wvden versus altitude in logarithmic x-scale

Examples

Find Temperature, Pressure, and Water Vapor Density

Compute the atmospheric temperature, pressure, and water vapor density at a height of 5 km at high
latitudes in summer. Use default parameters.

h = 5e3;
[T,P,wvden] = atmositu(h)

T = 255.6755

P = 540.4828

wvden = 0.6156

Compute and Visualize Atmospheric Profiles

Compute the atmospheric temperature, pressure, and water-vapor density for a mid-latitude area
during winter. Specify an altitude range between 2 km and 88 km.
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h = (2:88).*1e3;

[T,P,wvden] = atmositu(h,'LatitudeModel','Mid','Season','Winter');

Display the first 6 values of temperature, pressure, and water vapor density.

disp([T(1:6)',P(1:6)',wvden(1:6)'])

  264.7771  789.5947    1.7601
  260.2759  689.4528    1.1320
  255.4229  598.9723    0.6829
  250.2181  518.1532    0.3875
  244.6615  446.9955    0.2074
  238.7531  385.4992    0.1049

Plot the atmospheric temperature, pressure, and water-vapor density profiles for the same model.

atmositu(h,'Latitude','Mid','Season','Winter')

Input Arguments
h — Geometric heights
M-length row vector

Geometric heights corresponding to the altitude above mean sea level (MSL), specified as a row
vector. The atmositu function returns NaN's for any input value outside of the interval [0,100000].
Units are in meters.
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Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: atmositu(h,'LatitudeModel','Mid','Season','Winter') specifies the mid-
latitude model during winter.

VaporDensity — Standard ground-level water-vapor density
7.5 (default) | scalar

Standard ground-level water-vapor density in g/m3, specified as a scalar. VaporDensity applies only
when LatitudeModel is set to the default 'Standard' model.
Data Types: double

ScaleHeight — Scale height
2000 (default) | scalar

Scale height in meters, specified as a scalar. ScaleHeightapplies only when LatitudeModel is set
to the default 'Standard' model. For a dry atmosphere, set ScaleHeight to 6000.
Data Types: double

LatitudeModel — Reference latitude model
'Standard' (default) | 'Low' | 'Mid' | 'High'

Reference latitude model, specified as:

• 'Standard' — This is the Mean Annual Global Reference Atmosphere (MAGRA) model that
reflects the mean annual temperature and pressure averaged across the world.

• 'Low' — Use this model for latitudes lower than 22°, with little seasonal variation.
• 'Mid' — Use this model for latitudes between 22° and 45° that have seasonal profiles for summer

and winter. You can specify a seasonal profile using the Season name-value pair.
• 'High' — Use this model for latitudes greater than 45° that have seasonal profiles for summer

and winter. You can specify a seasonal profile using the Season name-value pair.

Season — Seasonal profile
'Summer' (default) | 'Winter'

Seasonal profile, specified as 'Summer' or 'Winter'. This argument is valid only when
LatitudeModel is set to 'Mid' or 'High'.

Output Arguments
T — Temperature
M-length row vector

Atmospheric temperature in Kelvin, returned as an M-length row vector.
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Note The atmositu, gaspl, and tropopl functions use different units for pressure and
temperature.

Pressure and Temperature Units

Function Pressure Units Temperature Units
atmositu hectoPascals (hPa) kelvin (K)
tropopl hectoPascals (hPa) kelvin (K)
gaspl Pascals (Pa) Celsius (C)

One hPa equals 100 Pa and K = C + 273.15. Use caution when combining the use of these three
functions.

P — Atmospheric pressure
M-length row vector

Atmospheric pressure in hectoPascals, returned as an M-length row vector.

wvden — Water-vapor density
M-length row vector

Atmospheric water-vapor density in g/m3, returned as an M-length row vector.

Version History
Introduced in R2021a

References
[1] International Telecommunication Union (ITU). "Reference Standard Atmospheres".

Recommendation ITU-R P.835-6, P Series, Radiowave Propagation, December 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
refractiveidx | tropopl | lenspl

Topics
“Modeling Target Position Errors Due to Refraction”
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lenspl
Calculate loss due to tropospheric lens effect

Syntax
L = lenspl(R,H,EL)
L = lenspl( ___ ,Name,Value)

Description
L = lenspl(R,H,EL) calculates the one-way loss due to the tropospheric lens effect using the
International Telecommunication Union (ITU) standard atmospheric model known as the mean annual
global reference atmosphere (MAGRA), which approximates the U.S. Standard Atmosphere 1976 with
insignificant relative error. The variation in refraction versus altitude makes the atmosphere act like a
lens with loss independent of frequency. Rays leaving an antenna are refracted in the troposphere
and the energy radiated within some angular extent is distributed over a slightly greater angular
sector, thereby reducing the energy density relative to propagation in a vacuum.

L = lenspl( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in the previous syntax.

Examples

Plot Two-Way Lens Loss Curve

Calculate the two-way lens loss curve for a radar platform at sea level at an elevation angle of 0.03
deg over a slant range of 0.1 to 5.0 km.

h = 0; % m
el = 0.03; % deg 
R = (100:5000).*1e3; % m
L = 2*lenspl(R,h,el); % Factor of 2 for two-way propagation 

Plot the lens loss against the slant range.

plot(R.*1e-3,L);
xlabel('Range (km)');
ylabel('Loss (dB)');
title('Two-Way Lens Loss');
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Input Arguments
R — Slant range
positive scalar | N-length vector

Slant range, specified as a scalar or an N-length vector. Units are in meters.
Example: 0.5
Data Types: single | double

H — Altitude of radar platform
scalar in the range [0 100]

Mean sea level (MSL) altitude of the radar platform, specified as a scalar from 0 to 100 km. Values
outside the specified range result in NaN output. Units are in meters.
Example: 200e3
Data Types: single | double

EL — Elevation angle
scalar

Elevation angle of the propagation path, specified as a scalar. Units are in degrees.
Example: 10
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Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

WaterVaporDensity — Standard ground-level water vapor density
7.5 (default) | positive scalar

Standard ground-level water vapor density, specified as a positive scalar. Applicable only for the
default standard model (MAGRA). Units are in grams per meter cubed.
Data Types: single | double

ScaleHeight — Altitude above mean sea level
2e3 (default) | positive scalar

Altitude above mean sea level (MSL), specified as a scalar. Applicable only for the default standard
model (MAGRA). For dry atmosphere conditions, set to 6e3 m. Units are in meters.
Data Types: single | double

LatitudeModel — Reference latitude model
'Standard' (default) | 'Low' | 'Mid' | 'High'

Reference latitude model, specified as one of these.

Model Description
'Standard'(default) This model is the mean annual global reference

atmosphere (MAGRA) that reflects the mean
annual temperature and pressure averaged
across the world.

'Low' This model is for low latitudes less than 22
degrees, where there is little seasonal variation.

'Mid' This model is for mid latitudes between 22 and
45 degrees with seasonal profiles for 'Summer'
and 'Winter', which can be specified using the
'Season' name-value argument.

'High' This model is for high latitudes greater than 45
degrees with seasonal profiles for 'Summer' and
'Winter', which can be specified using the
'Season' name-value argument.

Season — Season
'Summer' (default) | 'Winter'

Season for the 'Mid' and 'High' latitude models, specified as 'Summer' or 'Winter'. Other
models ignore this input. Defaults to 'Summer'.
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AtmosphereMeasurements — Custom atmospheric measurements
N-by-4 matrix

Custom atmospheric measurements for the calculation of the refractive index, specified as an N-by-4
matrix, where N corresponds to the number of altitude measurements. N must be greater than or
equal to 2. The first column is the atmospheric temperature in kelvins, the second column is the
atmospheric pressure in hPa, the third column is the water vapor density in g/m3, and the fourth
column is the MSL altitude of the measurements in meters. When you use a custom model, all other
name-value arguments are ignored and the output refractive index is applicable for the input height.

Note The model used by lenspl assumes geometrical optics conditions, as a result anomalous
propagation like ducting and subrefraction cannot be present in provided measurements. If
atmospheric measurements evidencing ducting and subrefraction are provided, this function throws
an error.

Data Types: single | double

Output Arguments
L — Lens loss
scalar | M-length vector

The one-way lens loss, returned as a scalar or M-length vector. Units are in decibels.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
atmositu | refractiveidx | tropopl | gaspl | effearthradius

External Websites
https://www.itu.int/rec/R-REC-P.835-6-201712-I/en
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mergeDetections
Merge detections into clustered detections

Syntax
clusteredDetections = mergeDetections(detections,clusterIndex)
clusteredDetections = mergeDetections( ___ ,MergingFcn=mergeFcn)

Description
clusteredDetections = mergeDetections(detections,clusterIndex) merges detections
sharing the same cluster labels. By default, the function merges detections in the same cluster using
a Gaussian mixture merging algorithm. The function assumes that all detections in the same cluster
share the same Time, SensorIndex, ObjectClassID, MeasurementParameters, and
ObjectAttributes properties or fields.

clusteredDetections = mergeDetections( ___ ,MergingFcn=mergeFcn) specifies the
function used to merge the detections in addition to the input arguments from the previous syntax.

Examples

Merge Detections to Generate Clustered Detections

Generate two clusters of detections with two false alarms.

rng(2021) % For repeatable results
x1 = [5; 5; 0] + randn(3,4); % Four detections in cluster one
x2 = [5; -5; 0] + randn(3,4); % Four detections in cluster two
xFalse = 30*randn(3,2); % Two false alarms
x = [x1 x2 xFalse];

Format these detections into a cell array of objectDetection objects.

detections = repmat({objectDetection(0,[0; 0; 0])},10,1);
for i = 1:10
    detections{i}.Measurement = x(:,i);
end

Define the cluster indices according to the previously defined scenario. You can typically obtain the
cluster indices by applying a clustering algorithm on the detections.

clusterIndex = [1; 1; 1; 1; 2; 2; 2; 2; 3; 4];

Use the mergeDetections function to merge the detections.

clusteredDetections = mergeDetections(detections,clusterIndex);

Visualize the results in a theater plot.

% Create a theaterPlot object.
tp = theaterPlot;
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% Create two detection plotters, one for unclustered detections and one for
% clustered detections.
detPlotterUn = detectionPlotter(tp,DisplayName="Unclustered Detections", ...
    MarkerFaceColor="b",MarkerEdgeColor="b");
detPlotterC = detectionPlotter(tp,DisplayName="Clustered Detections", ...
    MarkerFaceColor="r",MarkerEdgeColor="r");

% Concatenate measurements and covariances for unclustered detections
detArray = [detections{:}];
xUn = horzcat(detArray.Measurement)';
PUn = cat(3,detArray.MeasurementNoise);

% Concatenate measurements and covariance for clustered detections
clusteredDetArray = [clusteredDetections{:}];
xC = horzcat(clusteredDetArray.Measurement)';
PC = cat(3,clusteredDetArray.MeasurementNoise);

% Plot all unclustered and clustered detections
plotDetection(detPlotterUn,xUn,PUn);
plotDetection(detPlotterC,xC,PC);
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Input Arguments
detections — Object detections
N-element array of objectDetection objects | N-element cell array of objectDetection objects |
N-element array of structures

Object detections, specified as an N-element array of objectDetection objects, N-element cell
array of objectDetection objects, or an N-element array of structures whose field names are the
same as the property names of the objectDetection object. N is the number of detections. You can
create detections directly, or you can obtain detections from the outputs of sensor objects such
as fusionRadarSensor, irSensor, and sonarSensor.

clusterIndex — Cluster indices
N-element vector of positive integers

Cluster indices, specified as an N-element vector of positive integers, where N is the number of
detections specified in the detections input. Each element is the cluster index of the corresponding
detection in the detections input. For example, if clusterIndex(i)=k, then the ith detection
from the detections input belongs to cluster k.

mergeFcn — Function to merge detections
function handle

Function to merge detections, specified as a function handle. You must use one of these syntaxes to
define the function:

• Syntax with detection input and output:

  detectionOut = mergeFcn(detectionsIn) 

where:

• detectionsIn is specified as a cell array of objectDetection objects (in the same cluster).
• detectionOut is returned as an objectDetection object.

• Syntax with state mean and covariance input and output:

   [mergedMean,mergedCovariance] = mergeFcn(means,covariances)
   

where:

• means is specified as an M-by-Q matrix, representing measurements in the cluster. M is the
size of each measurement and Q is the number of measurements in the cluster.

• covariances is specified an M-by-M-by-Q matrix, representing the uncertainty covariance
matrices corresponding to means. M is the size of each measurement and Q is the number of
measurements in the cluster.

• mergedMean is returned a P-by-1 vector, representing the merged measurement. Note that the
size of the merged measurement (P) can be different from the size of the input measurement
(M). This enables you to merge detections into parameterized forms, such as rectangular or
cuboid detections.

• mergedCovariance is returned as a P-by-P matrix, representing the uncertainty covariance in
the merged measurement. P is the size of the merged mean.
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Tip You can use built-in functions, such as fusecovint, fusecovunion, and fusexcov, as the
merging function.

Example: @mergeFcn

Output Arguments
clusteredDetections — Clustered detections
M-element cell array of objectDetection objects

Clustered detections, returned as an M-element cell array of objectDetection objects, where M is
the number of unique cluster indices specified in the clusterIndex input.

Version History
Introduced in R2021b

Specify measurement means and covariances inputs

When you specify the MergingFcn name-value argument, you can now also specify measurement
means and covariances as inputs to the merging function. Previously, you could use only
objectDetection objects or its equivalent structures as inputs.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The function supports non-dynamic memory allocation code generation. For details, see “Generate
Code with Strict Single-Precision and Non-Dynamic Memory Allocation” (Sensor Fusion and
Tracking Toolbox).

• The function supports strict single-precision code generation. For details, see “Generate Code
with Strict Single-Precision and Non-Dynamic Memory Allocation” (Sensor Fusion and Tracking
Toolbox).

See Also
clusterDBSCAN
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radarpropfactor
One-way radar propagation factor

Syntax
F = radarpropfactor(R,freq,ANHT)
F = radarpropfactor( ___ ,TGTHT)
F = radarpropfactor( ___ ,Name,Value)
radarpropfactor( ___ )

Description
F = radarpropfactor(R,freq,ANHT) calculates the one-way propagation factor assuming a
surface target and a sea state of 0. The calculation estimates the complex relative permittivity
(dielectric constant) of the reflecting surface using a sea water model described in [1] that is valid
from 100 MHz to 10 GHz. The target height is assumed to be the height of significant clutter sources
above the average surface height. Specifically, the target height is calculated as 3 times the standard
deviation of the surface height. Assuming the paths are the same, the two-way propagation factor is
2F. Atmospheric refraction is taken into account through the use of an EffectiveEarthRadius that
can be specified. Scattering and ducting are assumed to be negligible.

F = radarpropfactor( ___ ,TGTHT) calculates the target propagation factor assuming a target
height of TGTHT.

F = radarpropfactor( ___ ,Name,Value) allows you to specify additional input parameters as
Name-Value arguments. You can specify additional name-value pair arguments in any order. This
syntax can use any of the input arguments in the previous syntax.

radarpropfactor( ___ ) plots the one-way propagation factor in dB versus range in km. Default
range units are km.

Examples

Plot Propagation Factor for 3 GHz S-band Radar

Plot the propagation factor for a 3 GHz S-band radar assuming an antenna height of 10 m and a
target height of 1 km. Assume that the surface has a height standard deviation of 1 m, and the
surface slope is 0.05 degrees.

R     = (30:0.5:180)*1e3; % Range (m)
freq  = 3e9;              % Frequency (Hz)
anht  = 10;               % Radar height (m)
tgtht = 1e3;              % Target height (m)
hgtsd = 1;                % Height standard deviation (m)
beta0 = 0.05;             % Surface slope (deg)

radarpropfactor(R,freq,anht,tgtht,...
    'SurfaceHeightStandardDeviation',hgtsd,...
    'SurfaceSlope',beta0)
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ans = 301×1

   -0.3696
   -0.3566
   -0.3439
   -0.3316
   -0.3197
   -0.3082
   -0.2970
   -0.2862
   -0.2756
   -0.2654
      ⋮

Input Arguments
R — Free space range
scalar | M-length vector

Free space range, specified as a scalar or an M-length vector. Units are in meters.
Example: 0.5
Data Types: single | double
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freq — Radar frequency
positive real scalar | vector

Radar frequency in hertz, specified as a positive real scalar or a vector.
Data Types: double

ANHT — Antenna height
positive scalar

Antenna height as referenced from the surface, specified as a positive scalar. Units are in meters.
Data Types: double

TGTHT — Target height
positive scalar

Target height as referenced from the surface, specified as a positive scalar. Units are in meters.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SurfaceHeightStandardDeviation',hgtsd,'SurfaceSlope',beta0

Polarization — Polarization of transmitted wave
'H' (default) | 'V'

Polarization of the transmitted wave, specified as 'H' or 'V'. 'H' indicates horizontal polarization
and 'V' indicates vertical polarization.

SurfaceRelativePermittivity — Complex relative permittivity
complex scalar

Complex relative permittivity (dielectric constant) of the reflecting surface, specified as a complex
scalar. The default value of dielectric constant depends on the value of the freq argument. The
function uses a sea water model in [1] that is valid up to 10 GHz.
Data Types: single | double
Complex Number Support: Yes

SurfaceHeightStandardDeviation — Standard deviation of surface height
0.01 (default) | positive scalar

Standard deviation of the surface height in meters, specified as positive scalar. The default value of
0.01 m indicates a sea state of 0. Units are in meters.
Data Types: single | double

SurfaceSlope — Surface slope
nonnegative scalar
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Surface slope, specified as a nonnegative scalar. This value is expected to be 1.4 times the RMS
surface slope. Given the condition that

2 × GRAZ/β0 < 1,
where GRAZ is the grazing angle of the geometry specified in degrees and β0 is the surface slope, the
effective surface height standard deviation in meters is calculated as

Effective HGTSD = HGTSD × (2 × GRAZ/β0)1/5.
This calculation better accounts for shadowing. Otherwise, the effective height standard deviation is
equal to HGTSD. This argument defaults to the surface slope value output by the searoughness
function for a sea state of 0. Units are in degrees.
Data Types: double

VegetationType — Vegetation type
'None' (default) | 'Trees' | 'Brush' | 'Weeds' | 'Grass'

Surface vegetation type, specified as 'Trees', 'Weeds', and 'Brush' are assumed to be dense
vegetation. 'Grass' is assumed to be thin grass. Use this argument when using the function on
surfaces different from the sea.

ElevationBeamwidth — Half-power elevation beamwidth
10 (default) | scalar between 0° and 90°

Half-power elevation beamwidth in degrees, specified as a scalar between 0° and 90°. The elevation
beamwidth is used in the calculation of a sinc antenna pattern. The default antenna pattern is
symmetric with respect to the beam maximum and is of the form sin(u)/u. The parameter u is given by
u = k sin(θ), where θ is the elevation angle in radians and k is given by k = x0 / sin(π × ELBW/360),
where ELBW is the half-power elevation beamwidth and x0 ≈ 1.3915573 is a solution of sin(x) = x/√2.
Data Types: double

AntennaPattern — Antenna elevation pattern
real-valued column vector

Antenna elevation pattern, specified as a real-valued column vector. Values for 'AntennaPattern'
must be specified together with values for 'PatternAngles'. Both vectors must have the same size.
If both an antenna pattern and an elevation beamwidth are specified, radarpropfactor uses the
antenna pattern and ignores the elevation beamwidth value. This argument defaults to a sinc antenna
pattern.
Example: cosd([–90:90])
Data Types: double

PatternAngles — Antenna pattern elevation angles
real-valued column vector

Antenna pattern elevation angles specified as a real-valued column vector. The size of the vector
specified by PatternAngles must be the same as that specified by AntennaPattern. Angle units
are expressed in degrees and must lie between –90° and 90°. In general, the antenna pattern should
fill the whole range from –90° to 90° for the coverage to be computed properly.
Example: [-90:90]
Data Types: double

TiltAngle — Antenna tilt angle
0 (default) | real-valued scalar
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Antenna tilt angle, specified as a real-valued scalar. The tilt angle is the elevation angle of the
antenna with respect to the surface. Angle units are expressed in degrees.
Example: 10
Data Types: double

EffectiveEarthRadius — Effective Earth radius
positive scalar

Effective Earth radius in meters, specified as a positive scalar. The effective Earth radius is an
approximation used for modeling refraction effects in the troposphere. The default value calculates
the effective Earth radius using a refraction gradient of -39e-9, which results in approximately 4/3
of the real Earth radius.
Data Types: double

RefractiveIndex — Refractive index at surface
1.000318 (default) | scalar greater than 1

Refractive index at the surface, specified as a nonnegative scalar. Defaults to approximately
1.000318, which is the output of the refractiveidx function at an altitude of 0 meters.
Data Types: double

Output Arguments
F — One-way propagation factor
scalar | M-length vector

The one-way propagation factor, returned as a scalar or M-length column vector. Units are in
decibels.

Version History
Introduced in R2021a

References
[1] Blake, L.V. "Machine Plotting of Radar Vertical-Plane Coverage Diagrams." Naval Research

Laboratory, 1970 (NRL Report 7098).

[2] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer
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Functions
blakechart | el2height | height2el | height2range | height2grndrange | landroughness |
radarvcd | range2height | refractionexp | searoughness
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refractiveidx
Calculates the refractive index

Syntax
ridx = refractiveidx(h)
ridx = refractiveidx( ___ ,Name,Value)
[ridx,N] = refractiveidx( ___ )
refractiveidx( ___ )

Description
ridx = refractiveidx(h) calculates the refractive index ridx at height h above mean sea level
(MSL) using the International Telecommunication Union (ITU) standard atmospheric model.

ridx = refractiveidx( ___ ,Name,Value) calculates the refractive index with additional
options specified by one or more name-value pairs.

[ridx,N] = refractiveidx( ___ ) additionally outputs the refractivity N as a row vector.

refractiveidx( ___ ) with no output arguments plots the refractive index n as a function of
altitude in kilometers.

Examples

Compute Refractive Index and Refractivity

Compute the refractive index and refractivity at a height of 20 km using the mid-latitude model
during winter.

h = 20e3;

[ridx,N] = refractiveidx(h,'LatitudeModel','Mid','Season','Winter')

ridx = 1.0000

N = 21.1961

Input Arguments
h — Geometric heights
row vector

Geometric heights corresponding to the altitude above MSL in meters, specified as a row vector.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: refractiveidx(h,'LatitudeModel','Mid','Season','Winter') specifies the mid-
latitude model during winter.

VaporDensity — Standard ground-level water-vapor density
7.5 (default) | scalar

Standard ground-level water-vapor density in g/m3, specified as a scalar. VaporDensity applies only
when LatitudeModel is set to the default 'Standard' model.
Data Types: double

ScaleHeight — Scale height
2000 (default) | scalar

Scale height in meters, specified as a scalar. ScaleHeight applies only when LatitudeModel is set
to the default 'Standard' model. For a dry atmosphere, set ScaleHeight to 6000.
Data Types: double

LatitudeModel — Reference latitude model
'Standard' (default) | string

Reference latitude model, specified as a string vector. Specify LatitudeModel as:

• 'Standard'

This model is the Mean Annual Global Reference Atmosphere (MAGRA) that reflects the mean
annual temperature and pressure averaged across the world.

• 'Low'

Use this option for low latitudes less than 22°, where there exists little seasonal variation.
• 'Mid'

Use this option for mid-latitudes between 22° and 45° that have seasonal profiles for summer and
winter, which can be specified using the Season name-value pair.

• 'High'

Use this option for high latitudes greater than 45° that have seasonal profiles for summer and
winter, which can be specified using the Season name-value pair.

Season — Seasonal profile
'Summer' (default) | 'Winter'

Seasonal profile, specified as 'Summer' or 'Winter'. This argument is valid only when
LatitudeModel is set to 'Mid' or 'High'.

AtmosphereMeasurements — Custom atmospheric measurements
N-by-4 matrix

 refractiveidx

1-207



Custom atmospheric measurements for the calculation of ridx, specified as an N-by-4 matrix where
N corresponds to the number of altitude measurements. The first column in N is the atmospheric
temperature in Kelvin, the second column is the atmospheric pressure in hectopascals, the third
column is the atmospheric water-vapor density in g/m3, and the fourth column is the altitude above
MSL of the measurements in increasing order and specified in meters. When
AtmosphereMeasurements is specified, all other name-value pair options are ignored and ridx is
applicable for the input height h.

Output Arguments
ridx — Refractive index
row vector

Refractive index, returned as a row vector.

N — Refractivity
row vector

Refractivity, returned as a row vector.

Version History
Introduced in R2021a

References
[1] International Telecommunication Union (ITU). "The Radio Refractive Index: Its Formula and

Refractivity Data". Recommendation ITU-R P.453-11, P Series, Radiowave Propagation, July
2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
atmositu | tropopl | lenspl | effearthradius

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”

1 Functions

1-208



snowpl
Path loss due to wet snow

Syntax
l = snowpl(r,f,rs)
l = snowpl( ___ ,Name,Value)

Description
l = snowpl(r,f,rs) returns the one-way path loss l due to snow using the Gunn-East model for
RF frequencies.

l = snowpl( ___ ,Name,Value) returns the one-way path loss with additional options specified by
one or more name-value pairs. For example, 'Type','Dry' specifies dry snow.

Examples

Calculate Path Loss Due to Snow

Calculate the one-way path loss due to snow for an RF transmission of 77 GHz at a range of 10 km.
The snow equivalent precipitation rate is 0.75 mm/h.

r = 10e3;
f = 77e9;
rs = 0.75;

l = snowpl(r,f,rs)

l = 1.0017

Input Arguments
r — Propagation distances
M-length vector

Propagation distances in meters, specified as an M-length vector.
Data Types: double

f — Signal carrier frequency
N-length vector

Signal carrier frequency in hertz, specified as an N-length vector.
Data Types: double

rs — Equivalent liquid water content
scalar
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Equivalent liquid water content, specified as a scalar expressed in mm/h.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: snowpl(r,f,rs,'SnowModel','ITU','Type','Dry') specifies the ITU snow model
with dry snow.

SnowModel — Snow model
'GunnEast' (default) | 'ITU'

Snow model, specified as 'GunnEast' or 'ITU'. Use the 'GunnEast' model for RF frequencies and
the 'ITU' model for optical frequencies.

Type — Type of snow
'Wet' (default) | 'Dry'

Type of snow, specified as 'Wet' or 'Dry'. 'Type' applies only when SnowModel is set to 'ITU'.
The function ignores this input when SnowModel is set to 'GunnEast'.

Output Arguments
l — Path loss
M-by-N matrix

Path loss of each propagation path under the corresponding frequency, returned as an M-by-N matrix.

Version History
Introduced in R2021a

References
[1] Gunn, K. L. S., and T. W. R. East. “The Microwave Properties of Precipitation Particles.” Quarterly

Journal of the Royal Meteorological Society 80, no. 346 (October 1954): 522–45. https://
doi.org/10.1002/qj.49708034603.

[2] International Telecommunication Union (ITU). "Propagation Data Required for the Design of
Terrestrial Free-Space Optical Links". Recommendation ITU-R P.1817-1, P Series, Radiowave
Propagation, February 2012.

[3] Nakaya, Ukitiro, and Tôiti Jr Terada. “Simultaneous Observations of the Mass, Falling Velocity and
Form of Individual Snow Crystals.” Journal of the Faculty of Science, vol.1, no. 7 (January 30,
1935): 191–200.

[4] Richards, M. A., Jim Scheer, William A. Holm, and William L. Melvin, eds. Principles of Modern
Radar. Raleigh, NC: SciTech Pub, 2010.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cranerainpl | fogpl | fspl | gaspl | lenspl | rainpl | tropopl
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tropopl
Slant-path loss due to atmosphere gaseous absorption

Syntax
Lgas = tropopl(R,F,H,EL)
Lgas = tropopl( ___ ,Name,Value)
[Lgas,Llens] = tropopl( ___ )

Description
Lgas = tropopl(R,F,H,EL) calculates the path loss due to tropospheric refraction using the
International Telecommunication Union (ITU) standard atmospheric model known as the mean annual
global reference atmosphere (MAGRA), which approximates the U.S. Standard Atmosphere 1976 with
insignificant relative error.

Lgas = tropopl( ___ ,Name,Value) specifies options using one or more name-value arguments
in addition to the input arguments in the previous syntax.

[Lgas,Llens] = tropopl( ___ ) calculates the corresponding lens loss. The variation in
refractivity versus altitude makes the atmosphere act like a lens with loss independent of frequency.
Rays leaving an antenna are refracted in the troposphere and the energy radiated within some
angular extent is distributed over a slightly greater angular sector, thereby reducing the energy
density relative to propagation in a vacuum.

Examples

Plot Attenuation Versus Range for 100 GHz Radar Frequency

Calculate the attenuation versus range for a frequency of 100 GHz with an elevation of 5 degrees
using the mid-latitude, winter atmospheric model.

R  = (10:200)*1e3;      % m
f  = 100e9;             % Hz
ht = 0;                 % m
el = 5;                 % deg
Lgas = tropopl(R,f,ht,el,'LatitudeModel','Mid','Season','Winter');

Plot the results.

semilogy(R.*1e-3,Lgas);
xlabel('Range (km)');
ylabel('Attenuation (dB)');
title('Attenuation for Mid-Latitude, Winter Atmosphere');
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Input Arguments
R — Slant range
positive scalar | M-length vector

Slant range, specified as a positive scalar or an M-length column vector. Units are in meters.
Data Types: single | double

F — Radar frequency
positive scalar | N-length vector

Radar frequency, specified as a positive real scalar or N-length row vector. Units are in Hz.
Data Types: single | double

H — Altitude of radar platform
positive scalar

Mean sea level (MSL) altitude of the radar platform, specified as a positive scalar from 0 to 100 km.
Values outside the specified range result in NaN output. Units are in meters.
Example: 200e3
Data Types: single | double

 tropopl

1-213



EL — Elevation angle
scalar

Elevation angle of the propagation path, specified as a scalar. Units are in degrees.
Example: 10
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LatitudeModel','Mid','Season','Winter'

WaterVaporDensity — Standard ground-level water vapor density
7.5 (default) | positive scalar

Standard ground-level water vapor density, specified as a positive scalar in g/m3. Applicable only for
the default standard model (MAGRA). Defaults to 7.5 g/m3.
Data Types: double

ScaleHeight — Scale height above mean sea level
2e3 (default) | positive scalar

Altitude above mean sea level (MSL), specified as a positive scalar in meters. Applicable only for the
default standard model (MAGRA). Defaults to 2e3 meters. For a dry atmospheric conditions, set scale
height to 6e3 meters.
Data Types: double

LatitudeModel — Reference latitude model
'Standard' (default) | 'Low' | 'Mid' | 'High'

Reference latitude model, specified as one of these.

Model Description
'Standard'(default) This model is the mean annual global reference

atmosphere (MAGRA) that reflects the mean
annual temperature and pressure averaged
across the world.

'Low' This model is for low latitudes less than 22
degrees, where there is little seasonal variation.

'Mid' This model is for mid latitudes between 22 and
45 degrees with seasonal profiles for 'Summer'
and 'Winter', which can be specified using the
'Season' name-value argument.
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Model Description
'High' This model is for high latitudes greater than 45

degrees with seasonal profiles for 'Summer' and
'Winter', which can be specified using the
'Season' name-value argument.

Season — Season
'Summer' (default) | 'Winter'

Season for the 'Mid' and 'High' latitude models, specified as 'Summer' or 'Winter'. Other
models ignore this input. Defaults to 'Summer'.

AtmosphereMeasurements — Custom atmosphere measurements
N-by-4 matrix

Custom atmospheric measurements for the calculation of the refractive index, specified as an N-by-4
matrix, where N corresponds to the number of altitude measurements. N must be greater than or
equal to 2. The first column is the atmospheric temperature in kelvins, the second column is the
atmospheric pressure in hPa, the third column is the water vapor density in g/m3, and the fourth
column is the MSL altitude of the measurements in meters. When you use a custom model, all other
name-value arguments are ignored and the output refractive index is applicable for the input height.

Note The model used by lenspl assumes geometrical optics conditions, as a result anomalous
propagation like ducting and sub-refraction cannot be present in provided measurements. If
atmospheric measurements evidencing ducting and sub-refraction are provided, this function throws
an error.

Note The atmositu, gaspl, and tropopl functions use different units for pressure and
temperature.

Pressure and Temperature Units

Function Pressure Units Temperature Units
atmositu hectoPascals (hPa) kelvin (K)
tropopl hectoPascals (hPa) kelvin (K)
gaspl Pascals (Pa) Celsius (C)

One hPa equals 100 Pa and K = C + 273.15. Use caution when combining the use of these three
functions.

Data Types: single | double

Output Arguments
Lgas — Path loss
M-by-N matrix

Path loss due to tropospheric refraction, specified as an M-by-N matrix. M and N are defined by the
slant range, R, and frequency, F, arguments, respectively. Units are in decibels (dB).
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Llens — One-way lens loss
M-by-N matrix

One-way lens loss, specified as an M-by-N matrix for elevation angles less than 50 deg. M and N are
defined by the slant range, R, and frequency, F, arguments, respectively. Units are in decibels (dB).
Data Types: double

More About
Layered Atmosphere

The atmosphere is a used in tropopl is a layered model with temperature, pressure, and water vapor
density dependent on altitude.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
atmositu | refractiveidx | lenspl | gaspl | effearthradius

External Websites
https://www.itu.int/rec/R-REC-P.835-6-201712-I/en
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coverageConfig
Sensor and emitter coverage configuration

Syntax
configs = coverageConfig(sc)
configs = coverageConfig(sensors)
configs = coverageConfig(sensors,positions,orientations)

Description
configs = coverageConfig(sc) returns sensor coverage configuration structures in a radar
scenario sc.

configs = coverageConfig(sensors) returns sensor coverage configuration structures from a
list of sensors and emitters.

configs = coverageConfig(sensors,positions,orientations) allows you to specify the
position and orientation of the platform on which each sensor or emitter is mounted.

Examples

Obtain Coverage Configuration

Create a radar sensor and a radar emitter.

radar = radarDataGenerator(1,'Rotator');
emitter = radarEmitter(2);

Obtain coverage configurations based on the sensor's position information.

cfgs = coverageConfig({radar,emitter})

cfgs=2×1 struct array with fields:
    Index
    LookAngle
    FieldOfView
    ScanLimits
    Range
    Position
    Orientation

cfgs2 = coverageConfig({radar, emitter},[1000 0 0 ; 0 1000 0])

cfgs2=2×1 struct array with fields:
    Index
    LookAngle
    FieldOfView
    ScanLimits
    Range
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    Position
    Orientation

Create a radar scenario and add the radar sensor and the radar emitter to the scenario.

sc = radarScenario;
plat = platform(sc);
plat.Sensors = {radar};
plat.Emitters = {emitter};

Obtain all coverage configurations in the scenario.

cfgScenario = coverageConfig(sc)

cfgScenario=2×1 struct array with fields:
    Index
    LookAngle
    FieldOfView
    ScanLimits
    Range
    Position
    Orientation

Input Arguments
sc — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

sensors — Sensors or emitters
sensor or emitter object | N-element cell array of sensor or emitter objects

Sensors or emitters, specified as a sensor or emitter object, or an N-element cell array of sensor or
emitter objects, where N is the number of sensor or emitter objects. The applicable sensor or emitter
objects include radarDataGenerator and radarEmitter.

positions — Position of sensor or emitter's platform
N-by-3 matrix of scalars

Position of sensor or emitter's platform, specified as an N-by-3 matrix of scalars in meters. The ith
row of the matrix is the [x, y, z] Cartesian coordinates of the ith sensor or emitter's platform.

orientations — Orientation of sensor or emitter's platform
N-by-1 vector of quaternions

Orientation of sensor or emitter's platform, specified as an N-by-1 vector of quaternions. The ith
quaternion in the vector represents the rotation from the global or scenario frame to the ith sensor or
emitter's platform frame.
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Output Arguments
configs — Sensor or emitter coverage configurations
N-element array of configuration structures

Sensor or emitter coverage configurations, returned as an N-element array of configuration
structures. N is the number of sensor or emitter objects specified in the sensors input or the
number of sensors or emitters contained in the radarScenario object sc. Each configuration
structure contains seven fields:

Fields of configurations

Field Description
Index A unique integer to distinguish sensors or

emitters.
LookAngle The current boresight angles of the sensor or

emitter, specified as:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.

FieldOfView The field of view of the sensor or emitter,
specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can only scan in the
azimuth direction, specify the limits as a 1-
by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, specify the limits as a 2-
by-2 matrix [minAz, maxAz; minEl, maxEl] in
degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the theater plot's axes.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

You can use configs to plot the sensor coverage in a theaterPlot using its plotCoverage object
function.
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Note The Index field is returned as a positive integer if the input is a sensor object, such as a
radarDataGenerator object. The Index field is returned as a negative integer if the input is an
emitter object, such as a radarEmitter object.

Version History
Introduced in R2021a

See Also
coveragePlotter | plotCoverage
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emissionsInBody
Transform emissions to platform body frame

Syntax
EMBODY = emissionsInBody(EMSCENE,BODYFRAME)

Description
EMBODY = emissionsInBody(EMSCENE,BODYFRAME) returns radar emissions converted to the
body frame of the platform.

Examples

Convert Reflected Emission to Radar Body Frame

Convert a reflected radar emission back to radar body frame. Create a radar emitter.

emitter = radarEmitter(1);

Assume the radar is mounted on a platform located at [100 0 -10].

platTxRx = struct('PlatformID', 1, ...
    'Position', [100 0 -10], ...
    'Orientation', quaternion([0 0 0], 'eulerd', 'zyx', 'frame'));

Create a target.

platTgt = struct('PlatformID', 2, ...
    'Position', [20e3 0 -500], ...
    'Orientation', quaternion([45 0 0], 'eulerd', 'zyx', 'frame'), ...
    'Signatures', {rcsSignature});

Emit the signal. The emitted signal is in scenario frame.

simulationTime = 0;
emTx = step(emitter, platTxRx, simulationTime);

Reflect the emission off the target.

emProp = radarChannel(emTx, platTgt);

Convert the emission back to the body frame of the radar.

emRx = emissionsInBody(emProp, platTxRx)

emRx = 
  radarEmission with properties:

              PlatformID: 1
            EmitterIndex: 1
          OriginPosition: [0 0 0]
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          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [1 5]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 100
                     RCS: 0

Input Arguments
EMSCENE — Radar emission in scenario coordinates
radarEmission object

Emissions in scenario coordinates, specified as a cell array of radarEmission objects.
Data Types: cell

BODYFRAME — Body frame of platform
body frame structure

Body frame of the platform, specified as a structure. The body frame structure must have the
following fields.

Fieldname Description Default
Position A 3-element vector specifying

the position of the local
reference frame's origin relative
to its global frame in meters.

[0 0 0]

Velocity A 3-element vector specifying
the velocity of the local
reference frame's origin relative
to its global frame in meters per
second.

[0 0 0]

Orientation A scalar quaternion or a 3-by-3
real-valued orthonormal
rotation matrix specifying the
orientation of the local
reference frame relative to its
global frame.

eye(3)

Any structure that defines the fields above can be used to define a platform's body frame. For
example, the structures returned by the platformPoses method on radarScenario object can be
used.
Data Types: struct
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Output Arguments
EMBODY — Emissions in body coordinates
radarEmission object

Emissions in body coordinates, returned as a cell array of radarEmission objects

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarEmission | radarEmitter | radarChannel
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quanttemp
Quantization temperature

Syntax
qtemp = quanttemp(Ts,B)
qtemp = quanttemp( ___ ,Name,Value)
[qtemp,qnf] = quanttemp( ___ )

Description
qtemp = quanttemp(Ts,B) returns the quantization temperature in Kelvin based on the system
temperature Ts and the number of bits B.

qtemp = quanttemp( ___ ,Name,Value) returns the quantization temperature with additional
options specified by one or more name-value pairs. For example, 'ReferenceTemperature',275
specifies a reference temperature of 275 K.

[qtemp,qnf] = quanttemp( ___ ) also outputs the quantization noise figure qnf in decibels.

Examples

Calculate Quantization Temperature for Radar

Calculate the quantization temperature for a radar with a system temperature of 1000 K and number
of bits equal to 10.

Ts = 1000;
B = 10;

qtemp = quanttemp(Ts,B)

qtemp = 41.7656

Calculate Quantization Temperature with Specified Dynamic Range

Calculate the quantization temperature for a radar with a system temperature of 1000 K and number
of bits equal to 10. Assume a dynamic range of 45 dB.

Ts = 1000;
B = 10;

qtemp = quanttemp(Ts,B,'DynamicRange',45)

qtemp = 20.1052
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Input Arguments
Ts — System temperature
positive scalar

System temperature, specified as a positive scalar expressed in Kelvin.
Data Types: double

B — Number of bits
vector

Number of bits, specified as a vector of positive integers. B and DynamicRange have the same
length.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: quanttemp(Ts,B,'DynamicRange',45) specifies a dynamic range of 45 dB.

DynamicRange — Dynamic range
vector

Dynamic range corresponding to the number of bits in B, specified as a vector expressed in decibels.
B and DynamicRange have the same length.

ReferenceTemperature — Reference temperature
290 (default) | positive scalar

Reference temperature, specified as a positive scalar expressed in Kelvin.

Output Arguments
qtemp — Quantization temperature
row vector

Quantization temperature in Kelvin, returned as a row vector.

qnf — Quantization noise figure
row vector

Quantization noise figure in decibels, returned as a row vector.

Version History
Introduced in R2021a
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References
[1] Richards, M. A. Fundamentals of Radar Signal Processing. Second edition. New York: McGraw-

Hill Education, 2014.

[2] Barton, David K. Radar Equations for Modern Radar. Artech House Radar Series. Norwood, Mass:
Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
systemp

1 Functions

1-226



radarmetricplot
Plot radar performance metric against target range

Syntax
radarmetricplot(range,metric)
radarmetricplot(range,metric,objective)
radarmetricplot(range,metric,objective,threshold)
radarmetricplot( ___ ,Name,Value)
h = radarmetricplot( ___ )

Description
radarmetricplot(range,metric) plots a radar performance metric metric as a function of the
target range range. The input range is a length-J vector of target ranges. The input metric is a J-
by-K matrix of the performance metric values for K radar systems computed at the target ranges in
range.

radarmetricplot(range,metric,objective) also plots the objective requirement objective
on the radar performance metric.

radarmetricplot(range,metric,objective,threshold) also plots the threshold requirement
threshold on the radar performance metric.

radarmetricplot( ___ ,Name,Value) specifies additional Name,Value arguments.
Example: 'MaxRangeRequirement',125e3,'MetricName','Available SNR' specifies the
maximum range requirement to be 125000 m, and the metric name to be 'Available SNR'

h = radarmetricplot( ___ ) returns the handle to the axes in the figure.

Examples

Plot Available SNR and Detectability Factor

For a radar system, plot the available SNR and the detectability factor against the target range. Mark
the required maximum range. Use the stoplight chart to assess the detection performance of the
system at different ranges.

Scenario Parameters

Define the scenario parameters.

lambda = freq2wavelen(3e9);            % Wavelength (m)
Pt = 5e3;                              % Peak power (W)
tau = 1.2e-5;                          % Pulse width (s)
N = 24;                                % Number of received pulses
SwerlingCase = 'Swerling1';            % Swerling case
G = 40;                                % Antenna gain (dB)
Pfa = 1e-6;                            % Pfa
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Requirements

Specify the probability of detection to be 0.9 and the maximum range to be 125000 m.

Pd = 0.9;                              % Required Pd
MaxRangeRq = 125e3;                    % Maximum range requirement (m)

Specify the range points to evaluate the radar equation.

R = (1:1e2:200e3).';

Compute Performance Metric and Requirement

Compute the available SNR and the detectability factor.

Compute the available SNR from the radar equation using the radareqsnr function.

SNRav = radareqsnr(lambda,R,Pt,tau,'Gain',G);

Compute the detectability factor using the detectability function.

DxObj = detectability(Pd,Pfa,N,SwerlingCase)

DxObj = 10.9850

Plot Performance Metric and Requirement

Plot the available SNR in dB and the detectability factor against the target range using the
radarmetricplot function. In order to plot, specify the 'MaxRangeRequirement' to be 125000
m. Set 'ShowStoplight' to true to show a stoplight chart that color codes the area of the plot
according to the specified requirements.

radarmetricplot(R,SNRav,DxObj,'MaxRangeRequirement',MaxRangeRq, ...
    'MetricName','Available SNR','MetricUnit','dB',...
    'RequirementName','Detectability','ShowStoplight',true)
ylim([0 40])
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Input Arguments
range — Target ranges
column vector

Target ranges at which the metric is computed, specified as a length-J column vector, where J is the
number of target ranges.
Data Types: double

metric — Radar performance metric values
matrix

Radar performance metric values, specified as a J-by-K matrix, where J is the length of the target
range vector range and K is the number of radars.
Data Types: double

objective — Objective requirement
scalar | vector | matrix

Objective requirement, specified as one of the following:

• scalar –– The objective requirement is assumed to be constant across all ranges in range and
equal for all K radars.
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• 1-by-K vector –– The objective requirement is specified for each radar and is assumed to be
constant for all ranges in range.

• J-by-1 vector –– The objective requirement is specified for each range in range and is assumed to
be equal for all K radars.

• J-by-K matrix –– The objective requirement is specified for each range in range and for each
radar.

Data Types: double

threshold — Threshold requirement
scalar | vector | matrix

Threshold requirement, specified as one of the following:

• scalar –– The threshold requirement is assumed to be constant across all ranges in range and
equal for all K radars.

• 1-by-K vector –– The threshold requirement is specified for each radar and is assumed to be
constant for all ranges in range.

• J-by-1 vector –– The threshold requirement is specified for each range in range and is assumed to
be equal for all K radars.

• J-by-K matrix –– The threshold requirement is specified for each range in range and for each
radar.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxRangeRequirement',125e3,'MetricName','Available SNR' specifies the
maximum range requirement to be 125000 m, and the metric name to be 'Available SNR'

MaxRangeRequirement — Maximum range requirement
scalar | vector

Maximum range requirement, specified as one of the following:

• scalar –– Specifies the objective requirement on the maximum range.
• two-element vector –– Specifies both the objective and the threshold requirements in the

[objective threshold] format.

Data Types: double

ShowStoplight — Show stoplight chart
1 | 0

Specify whether to show the stoplight chart that color codes the area of the plot according to the
specified requirements, specified as a logical scalar value.

If you only specify objective, the function divides the area of the plot into two colored zones along
the metric axis. To satisfy the requirement, the function by default assumes that the metric must be
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greater than or equal to the objective. In this case, the area above objective is marked Pass and is
colored green, while the area below objective is marked Fail and is colored red.

To indicate the opposite case when the metric must be below the objective to satisfy the requirement,
specify the threshold input explicitly as Inf. On the resultant stoplight chart, the objective
requirement is satisfied at the ranges where the metric curve is in the Pass zone. At the ranges
where the curve passes through the Fail zone, the system violates the objective requirement.

If you specify a finite threshold, the area between objective and threshold is colored yellow
and marked Warn. At the ranges where the metric passes through the Warn zone, the objective
requirement is violated, while the threshold requirement is still satisfied. The stoplight chart can be
displayed only when the same requirements are specified for all radars (objective and threshold
are scalars or length-J column vectors). Otherwise, this name-value pair is ignored.

The value of the 'MaxRangeRequirement' name-value pair limits the Fail and the Warn zones
along the range axis. Both the Fail and the Warn zones extend to the objective value of the
maximum range requirement when only the objective is provided. If both the objective and the
threshold requirements are specified, the Fail zone extends to the threshold requirement while the
Warn zone extends to the objective.
Data Types: logical

RadarName — Names of radar systems
cell array of character vectors | string array

Names of the radar systems, specified as a length-K cell array of character vectors or a string array,
where K is the number of radars. The radar names are used to augment the corresponding legend
entries. When not specified, the default name 'Radark' is used for the kth radar system.
Data Types: string | char | cell

MetricName — Name of radar performance metric
character vector | string scalar

Name of radar performance metric, specified as a character vector or a string scalar. When not
specified, the default name 'Metric' is used.
Data Types: char | string

RequirementName — Name of requirement
character vector | string scalar

Name of requirement, specified as a character vector or a string scalar. When not specified, the
function uses the default name 'Requirement'.
Data Types: char | string

RangeUnit — Units for range values
'm' (default) | 'km' | 'mi''nmi' | 'ft'

Units for range values in vector range and for the value of 'MaxRangeRequirement', specified as
one of the following:

• 'm' –– Meters
• 'km' –– Kilometers
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• 'mi' –– Miles
• 'nmi' –– Nautical mile
• 'ft' –– Feet

MetricUnit — Units for metric values
'' (default) | character vector | string scalar

Units for metric values, specified as a character vector or a string scalar.
Data Types: char | string

Parent — Plot axes
current axes (default) | Axes object

Handle to plot axes, specified as an Axes object. The default value is the current axes, which can be
specified using gca.

Output Arguments
h — Handle to axes in figure
Axes object

Handle to the axes displayed in the figure, returned as an Axes object.

More About
Stoplight Chart

A radar system must meet a set of performance requirements that depend on the environment and
scenarios in which the system is intended to operate. A number of such requirements can be fairly
large and a design that satisfies all of them might be impractical. In this case a tradeoff analysis is
applied. A subset of the requirements is satisfied at the expense of accepting lower values for the rest
of the metrics. Such tradeoff analysis can be facilitated by specifying multiple requirement values for
a single metric.

The requirement for each metric is specified as a pair of values:

• Objective — The desired level of the performance metric
• Threshold — The value of the metric below which the system's performance is considered

unsatisfactory

The region between the Threshold and the Objective values is the trade-space. It defines a margin by
which a metric can be below the Objective value while the system is still considered to have a
satisfactory performance.

A stoplight chart color-codes the status of the performance metric for a radar system based on the
specified requirements. The plot is divided into three zones:

• A Pass zone, colored green — At the ranges where the curve is in the Pass zone, the system
performance satisfies the Objective value of the requirement.

• A Warn zone, colored yellow — At the ranges where the curve passes through the Warn zone, the
system performance violates the Objective value of the specified requirement but still satisfies the
Threshold value.
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• A Fail zone, colored red — At the ranges where the curve passes through the Fail zone, the system
performance violates the Threshold value of the specified requirement.

Version History
Introduced in R2021a

References
[1] Charles S. Wasson. System engineering analysis, design, and development: Concepts, principles,

and practices. John Wiley & Sons, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
radareqsnr | detectability | rocinterp

Apps
Radar Designer
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arrayscanloss
Loss due to electronic scanning off broadside

Syntax
LSS = arrayscanloss(PD,PFA,N)
LSS = arrayscanloss( ___ ,THETAM)
LSS = arrayscanloss( ___ ,SW)
LSS = arrayscanloss( ___ ,'CosinePower',COSINEPOWER)

Description
LSS = arrayscanloss(PD,PFA,N) returns the two-way statistical scan sector loss for a radar with
a phased array antenna that electronically scans a sector from -60 to +60 degrees off broadside. The
computation assumes a square-law detector and a nonfluctuating target.

LSS = arrayscanloss( ___ ,THETAM) computes the scan sector loss given the scan sector limits
specified about the broadside direction.

LSS = arrayscanloss( ___ ,SW) computes the scan sector loss for radar echoes received from a
chi-squared distributed target specified by the Swerling case.

LSS = arrayscanloss( ___ ,'CosinePower',COSINEPOWER) specifies the exponent of the
cosine modeling the gain loss of an array scanned off broadside. This exponent takes into account two
effects that result in the gain reduction due to array scanning. The first effect is the beam broadening
due to the reduced projected array area in the beam direction. The second effect is a reduction of the
effective aperture area of the individual array elements at off-broadside angles.

Examples

Plot Statistical Scan Sector Loss Phased Array Radar Antenna

Compute the statistical scan sector loss for a radar with a phased array antenna. The array scans
from -45 to 70 degrees about the broadside direction. Assume a single pulse is received from a
Swerling 1 case target by a square-law detector and the probability of false alarm is set to 1e-6. Plot
the computed loss as a function of the desired probability of detection.

Pd = 0.1:0.01:0.99;         % Detection probabilities
Pfa = 1e-6;                 % Probability of false alarm
N = 1;                      % Number of received pulses
ThetaM = [-45 70];          % Scan sector limits
Lss = arrayscanloss(Pd,Pfa,N,ThetaM,'Swerling1');

Plot the statistical scan sector loss.

plot(Pd,Lss)
xlabel('Probability of Detection')
ylabel('Loss (dB)')
title('Scan Sector Loss vs P_d for Swerling 1 Target')
grid on
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Input Arguments
PD — Desired probability of detection
scalar | J-length vector

Desired probability of detection, specified as a scalar or J-length vector between 0.1 and 0.999999.
Data Types: double

PFA — Probability of false alarm
scalar | K-length vector

Probability of false alarm, specified as a scalar or K-length vector between 1e-15 and 1e-3.
Data Types: double

N — Number of received pulses
positive scalar

Number of received pulses, specified as a positive scalar.
Data Types: double

THETAM — Scan sector limits
[-60 60] (default) | scalar | two-element vector
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Scan sector limits, specified as a scalar or two-element vector. If THETAM is a scalar, then the scan
sector spans from -THETAM to +THETAM. If THETAM is a two-element vector of the form [theta1
theta2], the scan sector spans from theta1 to theta2. The default value is [-60 60]. Units are in
degrees.
Data Types: double

SW — Scan sector limits
'Swerling0' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4' |
'Swerling5'

Scan sector limits, specified as the Swerling case for the chi-squared distributed target. The default
value of SW is 'Swerling0'.

COSINEPOWER — Gain loss cosine exponent
2.5 (default) | positive scalar

Exponent of the cosine modeling the gain loss of an array scanned off broadside, specified as a
positive scalar. Typically, the exponent value lies between 2 and 3. The default value is 2.5.
Data Types: double

Output Arguments
LSS — Two-way statistical scan loss
J-by-K matrix

Two-way statistical scan sector loss, returned as a J-by-K matrix, where J and K are the dimensions of
the PD and PFA arguments. Units are in decibels (dB).

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
beamloss | beamdwellfactor | detectability
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beamdwellfactor
Range-dependent loss for rapidly scanning beam

Syntax
fbd = beamdwellfactor(r,hpbw,scanrate)

Description
fbd = beamdwellfactor(r,hpbw,scanrate) calculates the range-dependent beam-dwell factor
on page 1-239 fbd for an antenna at the specified range r, half-power beamwidth hpbw, and scan
rate scanrate. The beamdwellfactor function assumes that the transmitter and receiver antennas
have equal beamwidth and an ideal Gaussian antenna pattern with no side lobes.

Examples

Calculate Beam-Dwell Factor

Calculate the beam-dwell factor for a surveillance radar at 100 linearly-spaced ranges in the interval
[0,100000] meters. Specify the beamwidth as 1 degree and the scan rate as 120 degrees per
second.

r = linspace(0,100000);
hpbw = 1;
scanrate = 120;
fbd = beamdwellfactor(r,hpbw,scanrate);

Plot the beam-dwell factor as a function of range. Before plotting, convert the range from meters to
kilometers.

plot(r*0.001,fbd)
grid on
xlabel('Range (km)')
ylabel('Beam-dwell Factor (dB)')
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Input Arguments
r — Range
scalar | vector

Range in meters, specified as a scalar or vector.
Data Types: double

hpbw — Half-power beamwidth
scalar | vector

Half-power beamwidth of the antenna in degrees, specified as a scalar or vector. If hpbw is a vector,
then scanrate must be a scalar or a vector of the same size.
Data Types: double

scanrate — Scan rate
scalar | vector

Scan rate of the antenna in degrees per second. If scanrate is a vector, then hpbw must be a scalar
or a vector of the same size.
Data Types: double
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Output Arguments
fbd — Range-dependent beam-dwell factor
matrix

Range-dependent beam-dwell factor in dB, returned as a j-by-k matrix such that j is the size of r and
k is the size of hpbw or scanrate, whichever is larger.

The rows of fbd correspond to the ranges in r. The columns depend on the sizes of hpbw and
scanrate.

• If hpbw is a vector and scanrate is a scalar, then the columns of fbd correspond to the half-
power beamwidths in hpbw.

• If hpbw is a scalar and scanrate is a vector, then the columns of fbd correspond to the scan
rates in scanrate.

• If hpbw and scanrate are both vectors, then the columns of fbd correspond to both the half-
power beamwidths in hpbw and the scan rates in scanrate.

Data Types: double

More About
Beam-Dwell Factor

The beam-dwell factor accounts for the misalignment between transmitter and receiver beam axes
when a scanning system has a high scan rate and long-range targets.

The equation for the beam-dwell factor, Fbd, is

Fbd = L ∫
−π

π
f 2(θ)f 2(θ− δ)dθ

where the terms in the equation are:

• L — Normalizing factor that brings Fbd to unity for ẟ = 0
• ẟ = td / t0 — Fractional beamwidth scanned during the delay, where:

• td = 2R / c — Time delay for a target, where R is the range and c is the wave propagation speed
• t0 = θ3 / ωs — The time the system takes to continuously scan through one beamwidth, where

θ3 is the half-power beamwidth and ωs is the scan rate
• f(θ) — Antenna pattern

The beamdwellfactor function assumes an ideal Gaussian antenna pattern with no side lobes. The
equation for the ideal Gaussian antenna pattern with no side lobes, f(θ), is:

f (θ) = exp −2(ln2)θ2

θ3
2

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
beamloss | arrayscanloss | detectability
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beamloss
Beam shape loss for Gaussian antenna pattern

Syntax
lb = beamloss
lb = beamloss(is2d)

Description
lb = beamloss calculates the beam shape loss on page 1-242 lb for a radar that scans over one
angular dimension (1-D). The beamloss function assumes the antenna has a Gaussian pattern and
densely samples the angular domain. For the angular domain to be densely sampled, beam dwells
must be spaced by less than 0.71 of the one-way half-power beamwidth.

You can use lb as an accurate approximation of loss for antenna patterns other than Gaussian
patterns.

lb = beamloss(is2d), where is2d is 1 (true), calculates the beam shape loss for a scanning
radar over two angular dimensions (2-D). The default for is2d is 0 (false), which calculates the
beam shape loss for a scanning radar in one angular dimension.

Examples

Calculate Power-Aperture Product with Beam Shape Loss

Calculate the power-aperture product for a search radar performing a two-dimensional search by
using the radareqsearchpap function. Include beam shape loss by using the beamloss function.

Specify a search volume of 0.2π steradians and a search time of 4 seconds. The radar requires a
signal-to-noise ratio (SNR) of 20 decibels to detect a 1 square meter radar cross-section (RCS) target
at a range of 100000 meters. By default, the system noise temperature is 290 kelvin.

omega = 0.2*pi;
tsearch = 4;
snr = 20;
range = 100000;

Calculate the power-aperture product, including the beam shape loss. Assume the rest of the losses
for the system are 0 decibels.

lb = beamloss;
pap = radareqsearchpap(range,snr,omega,tsearch,'Loss',lb)

pap = 105.0011
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Input Arguments
is2d — Scanning in two angular dimensions
false or 0 (default) | true or 1

Scanning in two angular dimensions, specified as numeric or logical 1 (true) or 0 (false). When you
do not specify is2d, or specify is2d as 0 (false), the function assumes the radar scans in one
angular dimension.
Data Types: logical

Output Arguments
lb — Beam shape loss
scalar

Beam shape loss in decibels, returned as a scalar.
Data Types: double

More About
Beam-Shape Loss

Incorporate beam shape loss into the standard form of the radar range equation implemented by the
radareqsearchsnr, radareqsearchrng, and radareqsearchpap functions to account for the
use of peak gain instead of effective gain. The effective gain results from the two-way pattern of the
scanning antenna modulating the received train of pulses.

The power equation for 1-D beam shape loss for an antenna with a Gaussian pattern, Lp1, is

Lp1 = 8ln2
π = 1.3288

The power equation for 2-D beam shape loss for an antenna with a Gaussian pattern, Lp2, is

Lp1 = 8ln2
π = 1.7658

In decibels, the 1-D beam shape loss is 1.2338 and the 2-D beam shape loss is 2.4677.

You can use beam shape loss for an antenna with a Gaussian pattern as an accurate approximation of
loss for antennas with other patterns.

Version History
Introduced in R2021a

References
[1] Barton, David Knox. "Beamshape Loss for Different Patterns." In Radar Equations for Modern

Radar, 148–149. Artech House Radar Series. Boston, Mass: Artech House, 2013.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
beamdwellfactor | arrayscanloss | detectability

 beamloss

1-243



radareqsearchpap
Power-aperture product using search radar equation

Syntax
pap = radareqsearchpap(range,snr,omega,tsearch)
pap = radareqsearchpap( ___ ,Name,Value)

Description
pap = radareqsearchpap(range,snr,omega,tsearch) computes the available power-aperture
product, pap, for a surveillance radar based on the range, range, required signal-to-noise ratio
(SNR), snr, solid angular search volume, omega, and search time, tsearch.

pap = radareqsearchpap( ___ ,Name,Value) computes the available power-aperture product
with additional options specified by one or more name-value arguments. For example, 'Loss',6
specifies system losses as 6 decibels.

Examples

Compute Power-Aperture Product Using Search Radar Equation

Compute the power-aperture product for a search radar that is required to detect a 1 square meter
RCS target at a range of 111 kilometers. Assume the antenna rotates at a rate of 12.5 RPM, the
signal-to-noise ratio required to make a detection is 13 decibels, the system noise temperature is 487
Kelvin, and the total system loss is 20 decibels.

range = 111e3;
tsearch = 60 / 12.5;
snr = 13;
ts = 487;
loss = 20;

The radar traverses a search volume with azimuths in the range [–180,180] degrees and elevations in
the range [0,45] degrees. Find the solid angular search volume in steradians by using the
solidangle function.

az = [-180;180];
el = [0;45];
omega = solidangle(az,el);

Calculate the power-aperture product. By default, the target RCS is 1 square meter.

snr = radareqsearchpap(range,snr,omega,tsearch,'Ts',ts,'Loss',loss)

snr = 2.3689e+04
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Plot Power-Aperture Product as Function of Required SNR

Plot the power-aperture product as a function of the required SNR for a search radar system located
at a range of 100 kilometers. Incorporate path loss due to absorption into the calculation of the
power-aperture product.

Specify the required SNR as values in the range [–5,25] decibels. Assume the search volume is 1.5
steradians and the search time is 12 seconds.

range = 100e3;
snr = -5:25;
omega = 1.5;
tsearch = 12;

Find the path loss due to atmospheric gaseous absorption by using the gaspl function. Specify the
radar operating frequency as 10 GHz, the temperature as 15 degrees Celsius, the dry air pressure as
1013 hPa, and the water vapour density as 7.5 g/m3.

freq = 10e9;
temp = 15;
pressure = 1013e2;
density = 7.5;
loss = gaspl(range,freq,temp,pressure,density);

Compute the power-aperture product. By default, the target RCS is 1 square meter.

pap = radareqsearchpap(range,snr,omega,tsearch,'AtmosphericLoss',loss);

Plot the power-aperture product as a function of the required SNR. Before plotting, convert the
power-aperture product from W ⋅m2 to kW ⋅m2.

plot(snr,pap*0.001)
grid on
xlabel('SNR (dB)')
ylabel('Power-Aperture Product (kW\cdotm^2)')
title('Power-Aperture Product vs. SNR')
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Input Arguments
range — Range
scalar | length-J vector of positive values

Range, specified as a scalar or a length-J vector of positive values, where J is the number of range
samples. Units are in meters.
Example: 1e5
Data Types: double

snr — Required signal-to-noise ratio
scalar | length-J vector of real values

Required signal-to-noise ratio (SNR), specified as a scalar or a length-J vector of real values. Units are
in decibels.
Example: 13
Data Types: double

omega — Solid angular search volume
scalar

Solid angular search volume, specified as a scalar. Units are in steradians.
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Given the elevation and azimuth ranges of a region, you can find the solid angular search volume by
using the solidangle function.
Example: 0.3702
Data Types: double

tsearch — Search time
scalar

Search time, specified as a scalar. Units are in seconds.
Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',487 specifies the system noise temperature as 487 Kelvin

RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section of the target, specified as a positive scalar or length-J vector of positive values.
The radareqsearchpap function assumes the target RCS is nonfluctuating (Swerling case 0). Units
are in square meters.
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. Units are in Kelvin.
Data Types: double

Loss — System losses
0 (default) | scalar | length-J vector of real values

System losses, specified as a scalar or a length-J vector of real values. Units are in decibels.
Example: 1
Data Types: double

AtmosphericLoss — One-way atmospheric absorption loss
0 (default) | scalar | length-J vector of real values

One-way atmospheric absorption loss, specified as a scalar or a length-J vector of real values. Units
are in decibels.
Example: [10,20]
Data Types: double
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PropagationFactor — One-way propagation factor
0 (default) | scalar | length-J vector of real values

One-way propagation factor for the transmit and receive paths, specified as a scalar or a length-J
vector of real values. Units are in decibels.
Example: [10,20]
Data Types: double

CustomFactor — Custom loss factors
0 (default) | scalar | length-J vector of real values

Custom loss factors, specified as a scalar or a length-J vector of real values. These factors contribute
to the reduction of the received signal energy and can include range-dependent sensitivity time
control (STC), eclipsing, and beam-dwell factors. Units are in decibels.
Example: [10,20]
Data Types: double

Output Arguments
pap — Power-aperture product
scalar | length-J column vector of positive values

Power-aperture product, returned as a scalar or a length-J column vector of positive values, where J is
the number of range samples. Units are in W·m2.
Data Types: double

More About
Power-Aperture Product Form of Search Radar Equation

The power-aperture product form of the search radar equation, PavA, is:

PavA =
4πΩR4kTs(SNR)La

2L
tsσF2Fc

where the terms of the equation are:

• Ω — Search volume in steradians
• R — Target range in meters. The equation assumes the radar is monostatic
• k — Boltzmann constant
• Ts — System temperature in Kelvin
• SNR — Required signal-to-noise ratio
• La — One-way atmospheric absorption loss
• L — Combined system losses
• ts — Search time in seconds
• σ — Nonfluctuating target radar cross section in square meters
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• F — One-way propagation factor for the transmit and receive paths
• Fc — Combined range-dependent factors that contribute to the reduction of the received signal

energy

You can derive this equation by rearranging the SNR form of the search radar equation. See the
radareqsearchsnr function for more information.

Version History
Introduced in R2021a

References
[1] Barton, David Knox. Radar Equations for Modern Radar. Artech House Radar Series. Boston,

Mass: Artech House, 2013.

[2] Skolnik, Merrill I. Introduction to Radar Systems. Third edition. McGraw-Hill Electrical
Engineering Series. Boston, Mass. Burr Ridge, IL Dubuque, IA: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
radareqsearchrng | radareqsearchsnr | radareqsnr | radareqrng | radareqpow
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radareqsearchrng
Maximum detectable range using search radar equation

Syntax
range = radareqsearchrng(snr,pap,omega,tsearch)
range = radareqsearchrng( ___ ,Name,Value)

Description
range = radareqsearchrng(snr,pap,omega,tsearch) computes the maximum detectable
range, range, for a surveillance radar based on the required signal-to-noise ratio (SNR), snr, power-
aperture product, pap, solid angular search volume, omega, and search time, tsearch.

range = radareqsearchrng( ___ ,Name,Value) computes the maximum detectable range with
additional options specified by one or more name-value arguments. For example, 'Loss',6 specifies
system losses as 6 decibels.

Examples

Compute Maximum Detectable Range Using Search Radar Equation

Compute the maximum detectable range at which a surveillance radar can detect a target.

The radar operates at a frequency of 2.5 GHz and transmits an average power of 2.1 kW. The gain of
the receiving antenna is 34 decibels. Calculate the power-aperture product using these values.

lambda = freq2wavelen(2.5e9);
pav = 2100;
g = 34;
a = gain2aperture(g,lambda);
pap = pav*a;

The radar traverses a search volume with azimuths in the range [–180,180] degrees and elevations in
the range [0,40] degrees. Find the solid angular search volume in steradians by using the
solidangle function.

az = [-180;180];
el = [0;40];
omega = solidangle(az,el); 

The antenna rotates at a rate of 12.5 RPM. Assume the system noise temperature is 487 Kelvin, the
total system loss is 20 decibels, and the minimum SNR required to make a detection is 13 decibels.

tsearch = 60 / 12.5;
ts = 487;
loss = 20;
snr = 13;

Compute the maximum detectable range. By default, the target RCS is 1 square meter.
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R = radareqsearchrng(snr,pap,omega,tsearch,...
    'Ts',ts,'Loss',loss,'unitstr','km') 

R = 80.7673

Input Arguments
snr — Required signal-to-noise ratio
scalar | length-J vector of real values

Required signal-to-noise ratio (SNR), specified as a scalar or a length-J vector of real values. Units are
in decibels.
Example: 13
Data Types: double

pap — Power-aperture product
scalar | length-J vector of positive values

Power-aperture product, specified as a scalar or a length-J vector of positive values. Units are in
W·m2.
Example: 3e6
Data Types: double

omega — Solid angular search volume
scalar

Solid angular search volume, specified as a scalar. Units are in steradians.

Given the elevation and azimuth ranges of a region, you can find the solid angular search volume by
using the solidangle function.
Example: 0.3702
Data Types: double

tsearch — Search time
scalar

Search time, specified as a scalar. Units are in seconds.
Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',487 specifies the system noise temperature as 487 Kelvin
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RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section of the target, specified as a positive scalar or length-J vector of positive values.
The radareqsearchrng function assumes the target RCS is nonfluctuating (Swerling case 0). Units
are in square meters.
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. Units are in Kelvin.
Data Types: double

Loss — System losses
0 (default) | scalar | length-J vector of real values

System losses, specified as a scalar or a length-J vector of real values. Units are in decibels.
Example: 1
Data Types: double

CustomFactor — Custom loss factors
0 (default) | scalar | length-J vector of real values

Custom loss factors, specified as a scalar or a length-J vector of real values. These factors contribute
to the reduction of the received signal energy. Units are in decibels.
Example: [10,20]
Data Types: double

unitstr — Range units
'm' (default) | 'km' | 'mi' | 'nmi'

Range units, specified as one of the following values:

• 'm' — Return range using meters
• 'km' — Return range using kilometers
• 'mi' — Return range using statute miles
• 'nmi' — Return range using nautical miles (US)

If you do not specify range units, then the radareqsearchrng function returns ranges using meters.
Data Types: string | char

Output Arguments
range — Maximum detectable range
scalar | length-J column vector of positive values

Maximum detectable range, returned as a scalar or a length-J column vector of positive values. Units
are in meters.

1 Functions

1-252



More About
Maximum Detectable Range Form of Search Radar Equation

The maximum detectable range form of the search radar equation, R, is:

R =
PavAtsσF2Fc

4πkTs(SNR)La
2LΩ

1/4

where the terms of the equation are:

• Pav — Average transmit power in watts
• A — Antenna effective aperture in square meters
• ts — Search time in seconds
• σ — Nonfluctuating target radar cross section in square meters
• F — One-way propagation factor for the transmit and receive paths
• Fc — Combined range-dependent factors that contribute to the reduction of the received signal

energy
• k — Boltzmann constant
• Ts — System temperature in Kelvin
• SNR — Required signal-to-noise ratio
• La — One-way atmospheric absorption loss
• L — Combined system losses
• Ω — Search volume in steradians

You can derive this equation by rearranging the SNR form of the search radar equation. See the
radareqsearchsnr function for more information.

Version History
Introduced in R2021a

References
[1] Barton, David Knox. Radar Equations for Modern Radar. Artech House Radar Series. Boston,

Mass: Artech House, 2013.

[2] Skolnik, Merrill I. Introduction to Radar Systems. Third edition. McGraw-Hill Electrical
Engineering Series. Boston, Mass. Burr Ridge, IL Dubuque, IA: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
radareqsearchpap | radareqsearchsnr | radareqsnr | radareqrng | radareqpow |
gain2aperture
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radareqsearchsnr
Range-dependent SNR using search radar equation

Syntax
snr = radareqsearchsnr(range,pap,omega,tsearch)
snr = radareqsearchsnr( ___ ,Name,Value)

Description
snr = radareqsearchsnr(range,pap,omega,tsearch) computes the available signal-to-noise
ratio (SNR), snr, for a surveillance radar based on the range, range, power-aperture product, pap,
solid angular search volume, omega, and search time, tsearch.

snr = radareqsearchsnr( ___ ,Name,Value) computes the available SNR with additional
options specified by one or more name-value arguments. For example, 'Loss',6 specifies system
losses as 6 decibels.

Examples

Compute SNR Using Search Radar Equation

Compute the available signal-to-noise ratio (SNR) for a search radar at a target range of 1000
kilometers with a power-aperture product of 3 × 106 W ⋅m2. Assume the search time is 10 seconds,
the RCS of the target is –10 dBsm, the system noise temperature is 487 Kelvin, and the total system
loss is 6 decibels.

range = 1000e3;
pap = 3e6;
tsearch = 10;
rcs = db2pow(-10);
ts = 487;       
loss = 6;

The radar surveys a region of space with azimuths in the range [0,30] degrees and elevations in the
range [0,45] degrees. Find the solid angular search volume in steradians by using the solidangle
function.

az = [0;30];
el = [0;45];
omega = solidangle(az,el); 

Calculate the available SNR.

snr = radareqsearchsnr(range,pap,omega,tsearch,'RCS',rcs,'Ts',ts,'Loss',loss)

snr = 13.8182
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Plot SNR as Function of Range

Plot the available signal-to-noise ratio (SNR) as a function of the range for a search radar with a
power-aperture product of 2 . 5 × 106 W ⋅m2. Incorporate path loss due to absorption into the
calculation of the SNR.

Specify the ranges as 1000 linearly-spaced values in the interval [0,1000] kilometers. Assume the
search volume is 1.5 steradians and the search time is 12 seconds.

range = linspace(1,1000e3,1000);
pap = 2.5e6;
omega = 1.5;
tsearch = 12;

Find the path loss due to atmospheric gaseous absorption by using the gaspl function. Specify the
radar operating frequency as 10 GHz, the temperature as 15 degrees Celsius, the dry air pressure as
1013 hPa, and the water vapour density as 7.5 g/m3.

freq = 10e9;
temp = 15;
pressure = 1013e2;
density = 7.5;
loss = gaspl(range,freq,temp,pressure,density);

Compute the available SNR. By default, the target RCS is 1 square meter.

snr = radareqsearchsnr(range,pap,omega,tsearch,'AtmosphericLoss',loss);

Plot the SNR as a function of the range. Before plotting, convert the range from meters to kilometers.

plot(range*0.001,snr)
grid on
ylim([-10 60])
xlabel('Range (km)')
ylabel('SNR (dB)')
title('SNR vs Range')
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Input Arguments
range — Range
scalar | length-J vector of positive values

Range, specified as a scalar or a length-J vector of positive values, where J is the number of range
samples. Units are in meters.
Example: 1e5
Data Types: double

pap — Power-aperture product
scalar | length-J vector of positive values

Power-aperture product, specified as a scalar or a length-J vector of positive values. Units are in
W·m2.
Example: 3e6
Data Types: double

omega — Solid angular search volume
scalar

Solid angular search volume, specified as a scalar. Units are in steradians.
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Given the elevation and azimuth ranges of a region, you can find the solid angular search volume by
using the solidangle function.
Example: 0.3702
Data Types: double

tsearch — Search time
scalar

Search time, specified as a scalar. Units are in seconds.
Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',487 specifies the system noise temperature as 487 Kelvin

RCS — Radar cross section
1 (default) | positive scalar | length-J vector of positive values

Radar cross section of the target, specified as a positive scalar or length-J vector of positive values.
The radareqsearchsnr function assumes the target RCS is nonfluctuating (Swerling case 0). Units
are in square meters.
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature, specified as a positive scalar. Units are in Kelvin.
Data Types: double

Loss — System losses
0 (default) | scalar | length-J vector of real values

System losses, specified as a scalar or a length-J vector of real values. Units are in decibels.
Example: 1
Data Types: double

AtmosphericLoss — One-way atmospheric absorption loss
0 (default) | scalar | length-J vector of real values

One-way atmospheric absorption loss, specified as a scalar or a length-J vector of real values. Units
are in decibels.
Example: [10,20]
Data Types: double
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PropagationFactor — One-way propagation factor
0 (default) | scalar | length-J vector of real values

One-way propagation factor for the transmit and receive paths, specified as a scalar or a length-J
vector of real values. Units are in decibels.
Example: [10,20]
Data Types: double

CustomFactor — Custom loss factors
0 (default) | scalar | length-J vector of real values

Custom loss factors, specified as a scalar or a length-J vector of real values. These factors contribute
to the reduction of the received signal energy and can include range-dependent sensitivity time
control (STC), eclipsing, and beam-dwell factors. Units are in decibels.
Example: [10,20]
Data Types: double

Output Arguments
snr — Available signal-to-noise ratio
scalar | length-J column vector of real values

Available signal-to-noise ratio, returned as a scalar or a length-J column vector of real values, where J
is the number of range samples. Units are in decibels.

More About
SNR Form of Search Radar Equation

The signal-to-noise ratio form of the search radar equation, SNR, is:

SNR =
PavAtsσF2Fc

4πkTsR4La
2LΩ

where the terms of the equation are:

• Pav — Average transmit power in watts
• A — Antenna effective aperture in square meters
• ts — Search time in seconds
• σ — Nonfluctuating target radar cross section in square meters
• F — One-way propagation factor for the transmit and receive paths
• Fc — Combined range-dependent factors that contribute to the reduction of the received signal

energy
• k — Boltzmann constant
• Ts — System temperature in Kelvin
• R — Target range in meters. The equation assumes the radar is monostatic.
• La — One-way atmospheric absorption loss
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• L — Combined system losses
• Ω — Search volume in steradians

You can derive this equation based on assumptions about the SNR form of the standard radar
equation. For more information about the SNR form of the standard radar equation, see the
radareqsnr function. These are the assumptions:

• The radar is monostatic, so that R = Rt = Rr, where Rt is the range from the transmitter to the
target and Rr is the range from the receiver to the target.

• The search time is the time the transmit beam takes to scan the entire search volume. As a result,
you can express the search time, ts, in terms of the search volume, Ω, the area of the beam in
steradians, Ωt, and the dwell time in seconds, Td.

ts = Td
Ω
Ωt

• The transmit antenna beam has an ideal rectangular shape. As a result, you can express the
transmit antenna gain, Gt, in terms of the angular area of the antenna beam.

Gt = 4π
Ωt

• The receive antenna is ideal. This means you can express the receive antenna gain, Gr, in terms of
the antenna effective aperture, A, and the radar operating frequency wavelength, λ.

Gr = 4πA
λ2

Version History
Introduced in R2021a

References
[1] Barton, David Knox. Radar Equations for Modern Radar. Artech House Radar Series. Boston,

Mass: Artech House, 2013.

[2] Skolnik, Merrill I. Introduction to Radar Systems. Third edition. McGraw-Hill Electrical
Engineering Series. Boston, Mass. Burr Ridge, IL Dubuque, IA: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
radareqsearchrng | radareqsearchpap | radareqsnr | radareqrng | radareqpow
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solidangle
Solid angle of region bounded by azimuth and elevation angles

Syntax
omega = solidangle(az,el)

Description
omega = solidangle(az,el) returns the solid angle omega in steradians for a region of a sphere
bounded by the azimuth angles az and the elevation angles el. az and el must have the same
number of columns or one of the inputs must be a 2-by-1 column vector.

Examples

Compute Solid Angle

Compute the solid angle for three regions of a sphere that have the same azimuth limits.

az = [0;65];
el = [-15 20 15;5 30 80];

omega = solidangle(az,el)

omega = 1×3

    0.3925    0.1792    0.8236

Input Arguments
az — Azimuth angles
two-row matrix

Azimuth angles in degrees, specified as a two-row matrix. Each column in az has the form [az1;az2],
where az1 and az2 are the azimuth limits of omega created by traveling from az1 to az2 counter-
clockwise. az1 and az2 must be between –180 and 180.
Data Types: double

el — Elevation angles
two-row matrix

Elevation angles in degrees, specified as a two-row matrix. Each column in el has the form
[el1;el2], where el1 and el2 are the limits of the elevation sector spanned by omega. el1 and el2
must be between –90 and 90.
Data Types: double
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Output Arguments
omega — Solid angle
row vector

Solid angle in steradians, returned as a row vector. The output omega depends on the sizes of az and
el:

• If both az and el are matrices, each element of omega is computed for azimuth and elevation
angles in the corresponding column of az and el.

• If az is a column vector and el is a matrix, omega is computed assuming the same azimuth angles
for all columns in el.

• If az is a matrix and el is a column vector, omega is computed assuming the same elevation
angles for all columns in az.

Version History
Introduced in R2021a

References
[1] Barton, David K. Radar Equations for Modern Radar. Artech House Radar Series. Norwood, Mass:

Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
radareqsearchrng | radareqsearchsnr | radareqsearchpap
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binaryintloss
Loss due to M-of-N binary pulse integration

Syntax
LB = binaryintloss(PD,PFA,N)
LB = binaryintloss(PD,PFA,N,M)
[LB,PDSP,PFASP] = binaryintloss( ___ )

Description
LB = binaryintloss(PD,PFA,N) calculates the binary integration loss, LB, in dB due to M-of-N
pulse integration. The function computes the loss assuming that you are using a square-law detector
and a nonfluctuating target.

Note The number of detections, M in the M-of-N integration scheme is set to M=0.955*N0.8. This
value is close to the optimal value that results in the binary integration loss lower than 1.5 dB for the
N in the range between [5,700].

LB = binaryintloss(PD,PFA,N,M) calculates the binary integration loss using number of
detections M.

[LB,PDSP,PFASP] = binaryintloss( ___ ) also calculates single-pulse probabilities of
detection, PDSP, and single-pulse probabilities of false alarm, PFASP, which are required at the input
of the binary integrator to achieve the desired PD and PFA. Specify the input arguments from any of
the previous syntax.

Examples

Calculate M-of-N Binary Integration Loss

Calculate binary integration loss for 12 detections from 24 received pulses. Assume a probability of
detection of 0.9 and probability of false alarm of 1e-6

PD = 0.9;  
PFA = 1e-6;
N = 24;    
M = 12;     
binaryintloss(PD,PFA,N,M)

ans = 1.0596

Input Arguments
PD — Probability of detection
positive scalar | length-J vector
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Probability of detection in the range [0.1,0.999999], specified as a positive scalar or as a length-J
vector with each element in the range [0.1,0.999999] .

PFA — Probability of false alarm
positive scalar | length-K vector

Probability of false alarm, specified as a positive scalar in the range [1e-15,1e-3] or as a length-K
vector with each element in the range [1e-15,1e-3] .

N — Number of received pulses
1 (default) | positive scalar

Number of received pulses, specified as a positive scalar.

M — Number of detections
0.955*N0.8 (default) | positive scalar

Number of detections, specified as positive scalar.

Output Arguments
LB — Binary integration loss
J-by-K matrix

Binary integration loss, returned as a J-by-K matrix in dB with rows corresponding to the number of
elements in PD and columns corresponding to the number of elements in PFA.

PDSP — Single-pulse probabilities of detection
J-by-K matrix

Single-pulse probabilities of the detection, returned as a J-by-K matrix with rows corresponding to the
number of elements in PD and columns corresponding to the number of elements in PFA.

PFASP — Single-pulse probabilities of false alarm
J-by-K matrix

Single-pulse probabilities of the false alarm, returned as a J-by-K matrix with rows corresponding to
the number of elements in PD and columns corresponding to the number of elements in PFA.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cfarloss | matchingloss | detectability | mtiloss
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cfarloss
Loss due to constant false alarm rate (CFAR) adaptive processing

Syntax
LCFAR = cfarloss(PFA,NRC)
LCFAR = cfarloss(PFA,NRC,Name,Value)

Description
LCFAR = cfarloss(PFA,NRC) computes approximated CFAR loss, LCFAR, in dB for the probability
of false alarm, PFA, and number of reference cells, NRC, that you specify. The function calculates loss
for the cell-averaging (CA) CFAR method and a square-law detector based on the Gregers-Hansen's
universal CFAR loss curve.

LCFAR = cfarloss(PFA,NRC,Name,Value) specifies additional options using name-value
arguments. For example, LCFAR = cfarloss(1e-8,4:4:64,'Method','CA') computes
approximate loss using the CA CFAR process.. You can specify multiple name-value arguments.

Examples

Compute CFAR Loss

Calculate the CFAR loss for an n-cell averaging and a square-law detector. Assume the numbers of
reference cells from 4–64 and the probability of false alarm of 1e-8.

PFA = 1e-8;
NRC = 4:4:64;     
LCFAR = cfarloss(PFA,NRC);

Plot the resulting loss vs CFAR ratio. The CFAR ratio is calculated using the equation, X = -log10
(PFA)/NRC.

plot(-log10(PFA)./NRC,LCFAR)
grid on;
xlabel('CFAR Ratio = -log_{10}(PFA)/NRC');
ylabel('CFAR Loss (dB)');
title({'Universal Curve for CFAR Loss for',...
       'n-cell Averaging and Square-Law Detector'});
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Input Arguments
PFA — Probability of false alarm
positive scalar | length-K vector

Probability of false alarm, specified as a positive scalar in the range [1e-15,1e-3] or as a length-K
vector with each element in the range [1e-15,1e-3] .

NRC — Number of reference cells
positive scalar | length-K vector

Number of reference cells used in CFAR processing, specified as a positive scalar or length-K vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: LCFAR = cfarloss(1e-8,4:4:64,'DetectorType','Log')

Method — Type of CFAR process
'CA' (default) | 'GOCA'
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Type of CFAR process, specified as a either 'CA' for cell-averaging process or 'GOCA' for greatest-of
cell-averaging process.
Example: 'Method','GOCA'

DetectorType — Type of detector in use
'SquareLaw' (default) | 'Linear' | 'Log'

Type of detector in use, specified as either 'SquareLaw', 'Linear', or 'Log'.
Example: 'DetectorType','Linear'

Output Arguments
LCFAR — CFAR loss
K-element vector

CFAR loss, returned as a K-element vector in dB.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryintloss | matchingloss | mtiloss
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detectability
Radar detectability factor

Syntax
D = detectability(PD,PFA)
D = detectability(PD,PFA,N)
D = detectability(PD,PFA,N,SW)

Description
D = detectability(PD,PFA) returns the detectability factor of a single radar pulse given the
probability of detection PD and probability of false alarm PFA.The function assumes that you are
using a square-law detector and a nonfluctuating target.

D = detectability(PD,PFA,N) returns the detectability factor using the number of pulses for
noncoherent integration N. .The function assumes that you are using a nonfluctuating target.

D = detectability(PD,PFA,N,SW) returns detectability factor using the Swerling case number
SW. The function assumes you are using a chi-squared distributed target.

Examples

Detectability Factor for Swerilng 1 Case Target

Calculate the detectability factor for a Swerling 1 case target. Assume a probability of detection from
0.01–0.99, probability of false alarm of 1e-6, and 24 received pulses.

PFA = 1e-6; 
PD = 0.01:0.01:0.99;
N = 24;  
D = detectability(PD,PFA,N,'Swerling1');       

Plot the detectability factor.

plot(PD,D)
xlabel('Probability of Detection');
ylabel('Detectability (dB)');
grid on
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Input Arguments
PD — Probability of detection
positive scalar | length-J vector

Probability of detection, specified as a positive scalar in the range (0,1) or as a length-J vector with
each element in the range (0,1).

PFA — Probability of false alarm
positive scalar | length-K vector

Probability of false alarm, specified as a positive scalar in the range (0,1) or as a length-K vector
with each element in the range (0,1).

N — Number of pulses for noncoherent integration
1 (default) | positive scalar

Number of pulses for noncoherent integration, specified as a positive scalar.

SW — Swerling case number
'Swerling0' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4' |
'Swerling5'

Swerling case number, specified as one of these
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• 'Swerling0'
• 'Swerling1'
• 'Swerling2'
• 'Swerling3'
• 'Swerling4'
• 'Swerling5'

Output Arguments
D — Detectability factor
J-by-K matrix

Detectability factor, returned as a J-by-K matrix in dB with rows corresponding to the number of
elements in PD and columns corresponding to the number of elements in PFA.

Algorithms
Computation methods used in detectability function

The function computes detectability using the computation methods summarized in this table.

Swerling Case Number PD is in the range [0.2,
1-1e-6] and PFA < 1e-4

PD outside the range [0.2,
1-1e-6] or PFA ≥ 1e-4

0 or 5 Shnidman's approximation Exact computation
1, 2, 3, 4 Barton's universal equation Exact computation

For Swerling1 and N = 1 and Swerling2 and N set to any positive scalar, the function computes the
radar detectability factor with no approximation errors using Barton's universal equation. For other
Swerling cases, there are small approximation errors when PD is in the range [0.2, 1-1e-6] and
PFA < 1e-4.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eclipsingfactor

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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radarbudgetplot
Display link budget as waterfall plot

Syntax
radarbudgetplot(gl,names)
radarbudgetplot(glnames,Parent = hax)
hax = radarbudgetplot( ___ )

Description
radarbudgetplot(gl,names) visualizes a radar link budget as a waterfall chart. A link budget
displays the gain or loss gl of each link component. The names argument specifies the names of the
link budget components corresponding to the entries in gl.

radarbudgetplot(glnames,Parent = hax) also specifies the plot axes hax.

hax = radarbudgetplot( ___ ) returns the plot axes hax.

Examples

Visualize Radar Link Budget

Visualize the link budget for a radar system designed to have a probability of detection of 0.9 and a
probability of false alarm of10−6. The radar observes a Swerling 1 target and performs M-of-N
integration with M = 6 and N = 10.

Pd = 0.9;
Pfa = 1e-6;
M = 6;
N = 10;

First, find the integration gain by comparing the detectability of a Swerling 0 target for N pulses
versus one pulse.

det_1 = detectability(Pd,Pfa,1,'Swerling0');
det_N = detectability(Pd,Pfa,N,'Swerling0');
Gain_int = det_N - det_1;

Next, compute the binary integration loss.

Loss_bi = binaryintloss(Pd,Pfa,N,M);

Last, compute the target fluctuation loss.

Loss_fluct = detectability(Pd,Pfa,N,'Swerling1') - det_N;

Plot the radar budget.
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radarbudgetplot([det_1 Gain_int Loss_bi Loss_fluct], ...
    {'Single-pulse steady target' 'Noncoherent integration gain' ...
    'Binary integration loss' 'Fluctuation loss'})

Input Arguments
gl — Radar gains and losses
length-N real-valued vector

Radar gains and losses components, specified as a real-valued vector. Each entry in the vector
represents a contribution to the total gains or losses. Units are in dB.
Example: [13.2, -7.8]
Data Types: double

names — Link budget component names
length-N cell array of character vectors | length-N cell array of strings

Link budget component names, specified as a length-N cell array of character vectors or length-N cell
array of strings.
Example: {'Single-pulse steady target','Pulse integration gain'}
Data Types: char | string

1 Functions

1-272



hax — Plot axes
current axes (default) | scalar

Plot axes, specified as a scalar.
Data Types: double

Output Arguments
hax — Plot axes
scalar

Plot axes, returned as a scalar.

More About
Radar Link Budget

Radar link budget and detectability.

A radar link budget is used to find the received radar signal level based on the transmitted signal
level, taking into account all the losses and gains found along the signal path. Together with the noise
level measurements, you can use the link budget to calculate the received signal to noise ratio. The
radarbudgetplot function illustrates the components of the link budget and lets you visualize the
radar detectability factor . The radar detectability factor is the minimum SNR required to make a
detection with specified probabilities of detection, Pd, and false alarm, Pfa. A waterfall chart shows the
contributions of the individual losses and gains present in the radar system to the total power
required by the radar to produce a detection.

Once the radar detectability factor is computed, you can use the radar equation to determine the
range at which the available SNR for a given target is equal to the radar detectability factor. At
ranges where the available SNR exceeds the detectability factor, the radar can make detections with
the specified Pd and Pfa. At the ranges where the available SNR is lower than the detectability factor,
the radar cannot achieve the required Pd and Pfa.

The actual SNR tells you if the combined gains and losses are sufficient to exceed the required SNR.
to declare a detection. For example the required SNR to detect a Swerling 1 target is substantially
higher than for a Swerling 0 target.

Pd = 0.9;
Pfa = 1e-6;
D0 = detectabilty(Pd,Pfs,1,'Swerling1')

D0 = 13.1

D1 = 21.1

A Swerling 0 target has a constant RCS while a Swerling 1 target has a fluctuating RCS. The
requirement to maintain a certain Pd and Pfa for a fluctuating target requires a larger SNR to ensure
that detections are made to satisfy the Pd level.

The waterfall chart represents each individual loss as a red bar with height equal to the value of that
loss in dB. Each gain is represented as a green bar with a height equal to the value of that gain.
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Because losses increase the required signal power, losses are represented as positive values on the
chart. Gains decrease the required signal power and are shown with a minus sign. The resulting
detectability factor is shown as a horizontal dashed line labeled with the corresponding detectability
value and is equal to the sum of the elements in the gl argument.

Version History
Introduced in R2022b

See Also
detectability | radarmetricplot

Topics
“Radar Link Budget Analysis”
“Modeling Radar Detectability Factors”
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eclipsingfactor
Range-dependent eclipsing factor

Syntax
FECL = eclipsingfactor(R,DU,PRF)

Description
FECL = eclipsingfactor(R,DU,PRF) computes the range-dependent eclipsing factor FECL in
decibels, given unambiguous range R duty cycle for a simple rectangular pulse or vector of samples
from an arbitrary waveform DU and pulse repetition frequency PRF.

Examples

Calculate and Plot Range-Dependent Eclipsing Factor

Calculate the range-dependent eclipsing factor at 1 km intervals between zero and the unambiguous
range, R, assuming an unmodulated rectangular pulse with a duty cycle of 0.1 and the pulse
repetition frequency of 1000 Hz.

DU = 0.1;
PRF = 1e3;
R = 0:1000:time2range(1/PRF);
FECL = eclipsingfactor(R,DU,PRF);

Plot the range-dependent eclipsing factor.

plot(R*1e-3,FECL)
xlabel('Range (km)');
ylabel('Eclipsing Factor (dB)');
ylim([-25 1]);
grid on;
title('Range-Dependent Eclipsing Factor');
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Input Arguments
R — Range at which to compute eclipsing factor
positive scalar | length-J vector

Range at which to compute the eclipsing factor, specified as a positive scalar or as a length-J vector in
meters.

DU — Duty cycle
nonnegative scalar | length-M vector

Duty cycle, specified as a nonnegative scalar in the range [0,1] or length-M vector with each
element in the range [0,1].

• If you specify DU as a scalar, the eclipsing factor is computed for an unmodulated rectangular
pulse with the specified duty cycle.

• If you specify DU as a length-M vector, the eclipsing factor is computed for a waveform, using time
domain samples taken over a one-pulse interval.

PRF — Pulse repetition frequency
positive scalar | length-K vector

Pulse repetition frequency, specified as a positive scalar or as a length-K vector in Hz.
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Output Arguments
FECL — Eclipsing factor
J-by-K matrix

Eclipsing factor, returned as a J-by-K matrix in decibels with rows corresponding to the ranges in R
and columns corresponding to the values in PRF.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eclipsingloss
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eclipsingloss
Loss due to pulse eclipsing

Syntax
LECL = eclipsingloss(PD,PFA,N)
LECL = eclipsingloss(PD,PFA,N,DU)
LECL = eclipsingloss(PD,PFA,N,DU, SW)

Description
LECL = eclipsingloss(PD,PFA,N) computes the statistical eclipsing loss, LECL, in decibels for
an unmodulated rectangular pulse with a duty cycle of 0.1 given the probability of detection, PD, the
probability of false alarm, PFA, and the number of received pulses, N. The function assuming you are
using a square-law detector and a nonfluctuating target.

LECL = eclipsingloss(PD,PFA,N,DU) computes the statistical eclipsing loss for an unmodulated
rectangular pulse given the duty cycle, DU, of the transmitted waveform as an additional input
argument.

LECL = eclipsingloss(PD,PFA,N,DU, SW) computes the statistical eclipsing loss for radar
echoes received from a chi-squared distributed target given the Swerling case number, SW, as an
additional input argument.

Examples

Eclipsing Loss for Single Unmodulated Rectangular Pulse

Compute the statistical eclipsing loss for a single unmodulated rectangular pulse. Specify the
probability of detection from 0.1–0.99 and probability of false alarm of 1e-6.

PD = 0.1:0.01:0.99;
PFA = 1e-6;         
N = 1; 
LECL = eclipsingloss(PD,PFA,N);

Plot the eclipsing loss.

plot(PD,LECL)
ylim([0 20]);
xlabel('Probability of Detection');
ylabel('Eclipsing loss (dB)');
title('Statistical Eclipsing Loss vs P_d for Swerling 0 Target');
grid on;
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Input Arguments
PD — Probability of detection
positive scalar | length-J vector

Probability of detection, specified as a positive scalar in the range of [0.1, 0.999999] or as a
length-J vector with each element in the range [0.1, 0.999999] .

PFA — Probability of false alarm
scalar | length-K vector

Probability of false alarm, specified as a positive scalar or as a length-K vector with each element in
the range [1e-15, 1e-3].

N — Number of received pulses
positive scalar

Number of received pulses, specified as a positive scalar.

DU — Duty cycle
0.1 (default) | scalar | length-M vector

Duty cycle, specified as a scalar or length-M vector.
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• If you set DU as a scalar, the function computes the eclipsing loss for an unmodulated rectangular
pulse with duty cycle in the range (0, 1).

• If you set DU as a length-M vector, the function computes the eclipsing loss for an arbitrary
waveform specified using the time domain samples taken over a one pulse repetition interval.

SW — Swerling case number
'Swerling0' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4' |
'Swerling5'

Swerling case number, specified as one of these

• 'Swerling0'
• 'Swerling1'
• 'Swerling2'
• 'Swerling3'
• 'Swerling4'
• 'Swerling5'

Output Arguments
LECL — Eclipsing loss
J-by-K matrix

Eclipsing loss, returned as a J-by-K matrix in decibels with rows corresponding to PD and columns
corresponding to PFA.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryintloss | matchingloss | cfarloss

1 Functions

1-280



matchinggain
Gain due to matched filtering

Syntax
gain = matchinggain(pw,bw)
gain = matchinggain(pw,bw,lr)

Description
gain = matchinggain(pw,bw) returns the gain due to matched filtering.

gain = matchinggain(pw,bw,lr) specifies the reduction in signal-to-noise ratio (SNR) gain due
to nonideal filtering.

Examples

Range Processing Gain

Compute the range processing gain of a side-looking airborne synthetic aperture radar (SAR). The
waveform has an effective pulse width of 100 microseconds. The antenna noise bandwidth is 5 MHz.
Assume a nonideal range filtering loss of 1.3 dB.

pw = 100e-6;
bw = 5e6;
lr = 1.3;

Compute the range processing gain.

gain = matchinggain(pw,bw,lr)

gain = 25.6897

Input Arguments
pw — Effective pulse width
positive real scalar | vector

Effective pulse width of the radar waveform in seconds, specified as a positive real scalar or a vector.
Data Types: double

bw — Noise bandwidth
positive real scalar | vector

Noise bandwidth at the antenna in hertz, specified as a positive real scalar or a vector.
Data Types: double
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lr — Reduction in SNR gain
0 (default) | nonnegative scalar

Reduction in signal-to-noise ratio (SNR) gain in decibels, specified as a nonnegative scalar. This
argument corresponds to the loss with respect to the ideal gain. Typical window functions like
hamming and hann exhibit losses on the order of 1 dB. The argument defaults to 0, which assumes a
rectangular window.
Data Types: double

Output Arguments
gain — Gain due to matched filtering
matrix

Gain due to matched filtering in decibels, returned as a matrix. The rows of gain correspond to the
pulse width values in pw. The columns of gain correspond to the bandwidth values in bw.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarazgain | sarchirprate | sarinttime | sarpointdopbw | sarprf | sarscenedopbw
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matchingloss
Receiver filter matching loss

Syntax
Lm = matchingloss(S,H)

Description
Lm = matchingloss(S,H) calculates the receiver filter loss, Lm, in dB. The receiver loss is
introduced due to a mismatch between the spectrum of the received signal, S, and the frequency
response of the mismatched filter, H.

Examples

Calculate Matching Loss

Compute the matching loss for a rectangular pulse and a mismatched second-order Butterworth filter.

Define sampling frequency, pulsewidth, and filter bandwidth.

Fs = 10;    % Sampling frequency (Hz)
tau = 1.2;  % Pulsewidth (s)
B = 1.0;    % Filter bandwidth (Hz)

Calculate the rectangular pulse in the time domain.

s = ones(1,Fs*tau);

Calculate the spectrum of the received pulse.

nfft = 2^(nextpow2(tau*Fs)+1);
S = fft(s,nfft);

Calculate the frequency response of a second-order Butterworth filter with bandwidth B.

[b,a] = butter(2,B/Fs);
[H,w] = freqz(b,a,nfft,'whole',Fs);

Compute the matching loss for the pulsewidth-bandwidth product, tau*B = 1.2.

Lm = matchingloss(S,H.')

Lm = 0.9806

Input Arguments
S — Spectrum of received signal
J-by-N matrix
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Spectrum of the received signal, specified as a J-by-N matrix with rows corresponding to spectra of J
signals and columns corresponding to N frequency bins.

H — Frequency response of mismatch filter
K-by-N matrix

Frequency response of the mismatch filter, specified as a K-by-N matrix with rows corresponding to
frequency responses of K filters and columns corresponding to N frequency bins.

Note The columns of S and H must correspond to the same N frequency bins.

Output Arguments
Lm — Matching loss
J-by-K matrix

Matching loss, returned as a J-by-K matrix in dB. The matching loss matrix is computed for each
combination of J signals and K filters.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cfarloss | eclipsingloss
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mtifactor
Improvement factor due to moving target indicator (MTI) processing

Syntax
IM = mtifactor(M,FREQ,PRF)
IM = mtifactor(M,FREQ,PRF,Name,Value)

Description
IM = mtifactor(M,FREQ,PRF) calculates the MTI improvement factor in dB given the number of
pulses in an (M - 1) delay canceler, M, the transmitted frequency, FREQ, and the pulse repetition
frequency, PRF. This syntax assumes you are using coherent processing, a clutter with mean velocity
of 0 m/s, and a standard deviation in clutter spread of 2 m/s.

IM = mtifactor(M,FREQ,PRF,Name,Value) specifies additional options using name-value
arguments. For example, IM = mtifactor(4,200e9,250,'IsCoherent',false) calculates the
MTI improvement factor assuming you are using noncoherent MTI processing. You can specify
multiple name-value arguments.

Examples

Calculate MTI Improvement Factor for Three-Delay Canceler

Calculate the MTI improvement factor for a three-delay canceler with the transmitted frequency set
to 300 MHz and the pulse repetition frequency set to 200 Hz.

M = 4;        
FREQ = 300e6; 
PRF = 200;    

Calculate the coherent MTI improvement factor.

ImCoherent = mtifactor(M,FREQ,PRF)

ImCoherent = 55.3986

Calculate the noncoherent MTI improvement factor.

ImNoncoherent = mtifactor(M,FREQ,PRF,'IsCoherent',false)

ImNoncoherent = 49.4972

The noncoherent improvement factor is less than the coherent MTI factor.

Input Arguments
M — Number of pulses in (M – 1) delay canceler
2 | 3 | 4
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Number of pulses in the (M – 1) delay canceler, specified as 2, 3, or 4. For example, specify M = 2 for a
single-delay canceler, M = 3 for a double-delay canceler, and so on.

FREQ — Transmitted frequency
positive scalar | length-K vector

Transmitted frequency, specified as a positive scalar or length-K vector in Hz.

PRF — Pulse repetition frequency
positive scalar | length-K vector

Pulse repetition frequency, specified as a positive scalar or length-K vector in Hz.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: IM = mtifactor(4,200e9,250,'ClutterStandardDeviation',3)

IsCoherent — Coherent or non-coherent MTI processing
true (default) | false

Coherent or noncoherent MTI processing, specified as a true or false.

• If you set the value of IsCoherent to true, the improvement factor is calculated assuming you
are using a coherent MTI process.

• If you set the value of IsCoherent to false, the improvement factor is calculated assuming you
are using a noncoherent MTI process.

Example: IM = mtifactor(4,200e9,250,'IsCoherent',false)

ClutterStandardDeviation — Standard deviation of clutter spread
2 (default) | positive scalar

Standard deviation of the clutter spread, specified as a positive scalar in m/s.
Example: IM = mtifactor(4,200e9,250,'ClutterStandardDeviation',1)

NullVelocity — Null velocity
0 (default) | positive scalar

Null velocity, specified as a positive scalar in m/s.

Note This name-value argument is valid only for coherent MTI processing. For noncoherent MTI
processing, the function ignores this input.

Example: IM = mtifactor(4,200e9,250,'NullVelocity',1)

ClutterVelocity — Clutter velocity
0 (default) | positive scalar
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Clutter velocity, specified as a positive scalar in m/s.

Note This name-value argument is valid only for coherent MTI processing. For noncoherent MTI
processing, the function ignores this input.

Example: IM = mtifactor(4,200e9,250,'ClutterVelocity',1)

Output Arguments
IM — MTI improvement factor
1-by-K vector

MTI improvement factor, returned as 1-by-K vector in dB.

Version History
Introduced in R2021a

References
[1] Barton, David Knox. Radar Equations for Modern Radar. Artech House Radar Series. Boston, MA.

Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mtiloss | cfarloss
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mtiloss
Losses due to moving target indicator (MTI) processing

Syntax
[LI,LV] = mtiloss(PD,PFA,N)
[LI,LV] = mtiloss(PD,PFA,N,M)
[LI,LV] = mtiloss(PD,PFA,N,M,SW)
[LI,LV] = mtiloss( ___ ,Name,Value)
[ ___ ,LBP] = mtiloss( ___ )

Description
[LI,LV] = mtiloss(PD,PFA,N) computes integration loss, LI, and velocity response loss, LV, due
to MTI processing with a two-pulse (first-order) canceller given the probability of detection, PD,
probability of false alarm, PFA, and the number of received pulses available at the MTI input, N.

The function computes the loss assuming you are using a square-law detector and a nonfluctuating
target.

[LI,LV] = mtiloss(PD,PFA,N,M) computes losses due to MTI processing with an M-pulse
canceler.

[LI,LV] = mtiloss(PD,PFA,N,M,SW) computes MTI losses for radar echoes received from a chi-
squared distributed target specified using the Swerling case number, SW.

[LI,LV] = mtiloss( ___ ,Name,Value) computes MTI losses using one or more name-value
arguments. For example, [LI,LV] = mtiloss(0.64,1e-12,8,'Method','Batch') calculates
LI and LV for MTI with batch processing. Specify the name-value arguments after any of the input
arguments from the previous syntax.

[ ___ ,LBP] = mtiloss( ___ ) computes the blind phase loss LBP only when you set
IsQuadrature name-value argument to false.

Examples

Plot Velocity Response Loss

Calculate the velocity response loss for an MTI processing with a three-pulse canceler, with the
probability of false alarm of 1e-6 and 24 pulses received from a nonfluctuating target.

PFA = 1e-6; 
N = 24;     
M = 3;      
PD = 0.1:0.01:0.99;
[~,LV] = mtiloss(PD,PFA,N,M);

Plot the velocity response loss.
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plot(PD,LV)
xlabel('Probability of Detection')
ylabel('Loss (dB)')
title('Velocity Response Loss for MTI with a Three-Pulse Canceler')
grid on

Compute Integration or Noise Correlation Loss

Compute the noise correlation loss for MTI processing with a three-pulse canceler. Assume that the
desired probability of detection is 0.9, the probability of false alarm is 1e-6, and 24 pulses are
received from a Swerling 1 target.

PD = 0.9;   
PFA = 1e-6;
N = 24;     
M = 3;      
LI = mtiloss(PD,PFA,N,M,'Swerling1')

LI = 2.0811
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Compute Blind Phase Loss for Two-Pulse Canceler

Compute the blind phase loss for an MTI with a two-pulse canceler with the desired probability of
detection of 0.95, the probability of false alarm of 1e-8, and 10 pulses received from a
nonfluctuating target.

PD = 0.95;   
PFA = 1e-8;  
N = 10;      
[~,~,LBP] = mtiloss(PD,PFA,N,'IsQuadrature',false)

LBP = 2.3881

Input Arguments
PD — Probability of detection
positive scalar | length-J vector

Probability of detection in the range [0.1,0.999999], specified as a positive scalar or as a length-J
vector with each element in the range [0.1,0.999999] .

PFA — Probability of false alarm
positive scalar | length-K vector

Probability of false alarm, specified as a positive scalar in the range [1e-15,1e-3] or as a length-K
vector with each element in the range [1e-15,1e-3] .

N — Number of received pulses
positive integer equal to or greater than 2

Number of received pulses available at the input of the MTI, specified as a positive integer equal to or
greater than 2.

M — Number of pulses in M-pulse MTI canceler
2 (default) | positive integer in the range [2,15]

Number of pulses in an M-pulse MTI canceler, specified as a positive integer in the range [2,15].
The M-pulse canceler is constructed using cascading M-1 two-pulse cancellers.

SW — Swerling case number
'Swerling0' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4' |
'Swerling5'

Swerling case number, specified as one of these

• 'Swerling0'
• 'Swerling1'
• 'Swerling2'
• 'Swerling3'
• 'Swerling4'
• 'Swerling5'

.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [LI,LV] = mtiloss(0.7,1e-8,10,'Method','Batch')

Method — Pulse processing method
'Sequential' (default) | 'Batch' | character vector | string scalar

Pulse processing method, specified as a character vector or string scalar.

• If you set 'Method' to 'Sequential', the received pulses are processed sequentially resulting
in N-M pulses at the output of the pulse canceler.

• If you set 'Method' to 'Batch', the N received pulses are divided into N/(M+1) batches, which
are processed separately resulting in N/(M+1) pulses at the output of the MTI.

Example: [LI,LV] = mtiloss(0.7,1e-9, 8,'Method','Batch')

IsQuadrature — Quadrature-channel or single-channel MTI processing
true (default) | false

Quadrature-channel (vector) or single-channel MTI processing, specified as a logical value.

• If you set 'IsQuadrature' to true, the MTI processing has two parallel cancelers for the I and
Q components. By default, the function sets 'IsQuadrature' to true and the blind phase loss
output is zero.

• If you set 'IsQuadrature' to false, only the I or the Q channel is used for MTI resulting in
blind phase loss LBP.

Example: [LI,LV,LBP] = mtiloss(0.9,1e-8,10,'IsQuadrature',false)

Output Arguments
LI — Integration loss
J-by-K matrix

Integration loss due to correlation in the noise samples at the output of the MTI filter, returned as a J-
by-K matrix in dB with rows corresponding to the values in PD and columns to the values in PFA.

LV — Velocity response loss
J-by-K matrix

Velocity response loss due to target velocity lying near the null of the MTI pulse canceler, returned as
a J-by-K matrix in dB with rows corresponding to the values in PD and columns to the values in PFA.

LBP — Blind phase loss
J-by-K matrix

Blind phase loss, returned as a J-by-K matrix in dB with rows corresponding to the values in PD and
columns to the values in PFA. LBP is computed only when you set the value of the 'IsQuadrature'
argument to false.
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Version History
Introduced in R2021a

See Also
binaryintloss | matchingloss | cfarloss | eclipsingloss
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stcfactor
Sensitivity time control (STC) factor

Syntax
FSTC = stcfactor(R,RC,X)

Description
FSTC = stcfactor(R,RC,X) computes the range-dependent STC factor, FSTC, in dB given , R, the
STC cutoff range, RC, and an exponent ,X.

Examples

Compute and Plot STC Factor

Compute the STC factor for the STC cutoff range of 50 km and the STC exponent of 3.0.

R = 0:1e3:100e3; 
RC = 50e3;          
X = 3.0;            
FSTC = stcfactor(R,RC,X);

Plot the STC factor.

semilogx(R*1e-3,FSTC)
grid on;
xlabel('Range (km)');
ylabel('STC Factor (dB)');
ylim([-70 5]);
title('STC Factor for RC = 50 km and X = 3.0');
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Input Arguments
R — Range at which to compute FSTC
positive scalar | length-J vector

Range at which to compute FSTC, specified as a positive scalar or length-J vector in meters.

RC — STC cutoff range
positive scalar | length-K vector

STC cutoff range, specified as a positive scalar or as a length-K vector in meters.

X — Exponent to maintain target detectability
positive scalar | length-K vector

Exponent to maintain the target detectability, specified as a positive scalar in the range of [3,4] or
as a length-K vector with each element in the range of [3,4]. The exponent maintains the target
detectability below the STC cutoff range.

Output Arguments
FSTC — Range-dependent STC factor
J-by-K matrix
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Range-dependent STC factor, returned as a J-by-K matrix in dB with rows corresponding to the values
in R and columns corresponding to the ranges in RC and X.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
detectability | eclipsingfactor
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toccgh
Compute track probabilities using the CGH algorithm

Syntax
[pdt,pft,eft] = toccgh(pd,pfa)
[pdt,pft,eft] = toccgh(pd,pfa,Name,Value)

toccgh( ___ )

Description
[pdt,pft,eft] = toccgh(pd,pfa) computes track probabilities using the “Common Gate
History Algorithm” on page 1-303. The algorithm uses a 2-out-of-3 track confirmation logic, where 2
hits must be observed in 3 updates for a track to be confirmed.

[pdt,pft,eft] = toccgh(pd,pfa,Name,Value) specifies additional options using name-value
arguments. Options include the confirmation logic, the gate size in bins, and the gate growth
sequence.

toccgh( ___ ) with no output arguments plots the tracker operating characteristic (TOC), which is
the probability of target track, pdt, as a function of the probability of false track, pft.

Examples

Tracker Operating Characteristic Curves

The tracker operating characteristic (TOC) curve is a plot of the probability of a target track as a
function of the probability of a false track. Plot the TOC curves for three different values of signal-to-
noise ratio (SNR) assuming a 2/3 confirmation logic and use a one-dimensional constant-velocity
Kalman filter to generate the tracker gate growth sequence.

Compute the probability of detection and the probability of false alarm for SNR values of 3, 6, and 9
dB. Assume a coherent receiver with a nonfluctuating target. Generate 20 probability-of-false-alarm
values logarithmically equally spaced between 10−10 and 10−3 and calculate the corresponding
probabilities of detection.

SNRdB = [3 6 9];

[pd,pfa] = rocsnr(SNRdB,'SignalType','NonfluctuatingCoherent', ...
    'NumPoints',20,'MaxPfa',1e-3);

Compute and plot the TOC curves and the corresponding receiver operating characteristic (ROC)
curves.

toccgh(pd,pfa)
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Compute Track Probabilities

Compute the probability of target track, the probability of false track, and the expected number of
false tracks corresponding to a probability of detection of 0.9, a probability of false alarm of 10−6,
and a 3-of-5 track confirmation logic.

pd = 0.9;
pfa = 1e-6;
logic = [3 5];

Use a modified version of the default one-dimensional constant-velocity Kalman filter to generate the
tracker gate growth sequence. Specify an update time of 0.3 second and a maximum target
acceleration of 20 meters per square second.

KFpars = {'UpdateTime',0.3,'MaxAcceleration',20};

Compute the probabilities and the expected number of false tracks.

[pdf,pft,eft] = toccgh(pd,pfa,'ConfirmationThreshold',logic,KFpars{:})

pdf = 0.9963

pft = 2.1555e-19

eft = 1
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Custom Gate Growth Sequence

Use the common gate history algorithm to compute the probability of target track and the probability
of track for a probability of detection of 0.5 and a probability of false alarm of 10−3. Use a custom
gate growth sequence and a confirmation threshold of 3/4.

pd = 0.5;
pfa = 1e-3;

cp = [3 4];
gs = [21 39 95 125];

Compute the probabilities.

[pdf,pft] = toccgh(pd,pfa,'ConfirmationThreshold',cp, ...
    'GateGrowthSequence',gs)

pdf = 0.5132

pft = 9.9973e-07

Varying False-Alarm Probabilities

Investigate how receiver operating characteristic (ROC) and tracker operating characteristic (TOC)
curves change with the probability of false alarm.

Compute probability-of-detection and signal-to-noise-ratio (SNR) values corresponding to
probabilities of false alarm of 10−4 and 10−6. Assume a coherent receiver with a nonfluctuating
target. Plot the resulting ROC curves. Use larger markers to denote a larger SNR value.

pfa = [1e-4 1e-6];
[pd,SNRdB] = rocpfa(pfa,'SignalType','NonfluctuatingCoherent');

scatter(SNRdB,pd,max(SNRdB,1),'filled')

title('Receiver Operating Characteristic (ROC)')
xlabel('SNR (dB)')
ylabel('P_d')
grid on
title(legend('10^{-6}','10^{-4}'),'P_{fa}')
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Compute the TOC curves using the probabilities of detection and probabilities of false alarm that you
obtained. As the SNR increases, the probability of a false track in the presence of target detection
increases. As the SNR decreases, the probability of target detection decreases, thereby increasing
the probability of a false track.

[pct,pcf] = toccgh(pd.',pfa);

scatter(pcf,pct,max(SNRdB,1),'filled')

set(gca,'XScale','log')
title('Tracker Operating Characteristic (TOC)')
xlabel('P_{FT}')
ylabel('P_{DT}')
grid on
title(legend('10^{-6}','10^{-4}'),'P_{fa}')
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Input Arguments
pd — Probability of detection
vector | matrix

Probability of detection, specified as a vector or a matrix of values in the range [0, 1].

• If pd is a vector, then it must have the same number of elements as pfa
• If pd is a matrix, then its number of rows must equal the number of elements of pfa. In that case,

the number of columns of pd equals the length of the signal-to-noise (SNR) ratio input to rocsnr
or output by rocpfa.

Note If you use rocpfa to obtain pd, you must transpose the output before using it as input to
toccgh. If you use rocsnr to obtain pd, you do not have to transpose the output.

Example: [pd,pfa] = rocsnr(6) returns single-pulse detection probabilities and false-alarm
probabilities for a coherent receiver with a nonfluctuating target and a signal-to-noise ratio of 6 dB.
Data Types: double

pfa — Probability of false alarm
vector
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Probability of false alarm per cell (bin), specified as a vector of values in the range [0, 1].

Tip Use pfa values of 10–3 or smaller to satisfy the assumptions of the common gate history
algorithm.

Example: [pd,pfa] = rocsnr(6) returns single-pulse detection probabilities and false-alarm
probabilities for a coherent receiver with a nonfluctuating target and a signal-to-noise ratio of 6 dB.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UpdateTime',0.25,'MaximumAcceleration',8 specifies that the 1-D constant-
velocity track Kalman filter used to compute the track gate growth has an update time of 0.25 second
and a maximum acceleration of targets of interest of 8 meters per square second.

ConfirmationThreshold — Confirmation threshold
[2 3] (default) | two-element row vector of positive integers | positive integer scalar

Confirmation threshold, specified as a two-element row vector of positive integers or a scalar. The
two-element vector [M N] corresponds to an M-out-of-N or M/N confirmation logic, a test that
stipulates that an event must occur at least M times in N consecutive updates.

• A track is confirmed if there are at least M detections in N updates.
• A track is deleted if there are less than M detections in N updates.

If this argument is specified as a scalar, toccgh treats it as a two-element vector with identical
elements. N cannot be larger than 50.
Data Types: double

NumCells — Number of cells
16384 (default) | positive integer scalar

Number of cells, specified as a positive integer scalar. Use this argument to compute the expected
number of false tracks.
Data Types: double

NumTargets — Number of targets
1 (default) | positive integer scalar

Number of targets, specified as a positive integer scalar. Use this argument to compute the expected
number of false tracks.
Data Types: double

UpdateTime — Update time for Kalman filter
0.5 (default) | positive scalar in seconds
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Update time for the default one-dimensional constant-velocity Kalman filter, specified as a positive
scalar in seconds. This argument impacts the track gate growth.
Data Types: double

MaxAcceleration — Maximum acceleration of targets of interest
10 (default) | nonnegative scalar in meters per square second

Maximum acceleration of targets of interest, specified as a nonnegative scalar in meters per square
second. Use this input to tune the process noise in the default one-dimensional constant-velocity
Kalman filter. This argument impacts the track gate growth.
Data Types: double

Resolution — Range and range-rate resolution
[1 1] (default) | two-element row vector of positive values

Range and range-rate resolution, specified as a two-element row vector of positive values. The first
element of 'Resolution' is the range resolution in meters. The second element of 'Resolution'
is the range rate resolution in meters per second. This argument is used to convert the predicted
tracker gate size to bins.
Data Types: double

GateGrowthSequence — Tracker gate growth sequence
vector of positive integers

Tracker gate growth sequence, specified as a vector of positive integers. The values in the vector
represent gate sizes in bins corresponding to N possible misses in N updates, where N is specified
using 'ConfirmationThreshold'. If 'ConfirmationThreshold' is a two-element vector, then N
is the second element of the vector.

If this argument is not specified, toccgh generates the tracker gate growth sequence using a one-
dimensional constant-velocity Kalman filter implemented as a trackingKF object with these
settings:

• Update time — 0.5 second
• Maximum target acceleration — 10 meters per square second
• Range resolution — 1 meter
• Range rate resolution — 1 meter per second
• StateTransitionModel — [1 dt; 0 1], where dt is the update time
• StateCovariance — [0 0; 0 0], which means the initial state is known perfectly
• MeasurementNoise — 0
• ProcessNoise — [dt^4/4 dt^3/2; dt^3/2 dt^2]*q, where dt is the update time, the

tuning parameter q is amax^2*dt, and amax is the maximum acceleration. The tuning parameter
is given in Equation 1.5.2-5 of [2].

To compute the gate sizes, the algorithm:

1 Uses the predict function to compute the predicted state error covariance matrix.
2 Calculates the area of the error ellipse as π times the product of the square roots of the

eigenvalues of the covariance matrix.
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3 Divides the area of the error ellipse by the bin area to express the gate size in bins. The bin area
is the product of the range resolution and the range rate resolution.

If this argument is specified, then the 'UpdateTime', 'MaxAcceleration', and 'Resolution'
arguments are ignored.
Example: [21 39 95 125 155 259 301] specifies a tracker grate growth sequence that occurs on
some radar applications.
Data Types: double

Output Arguments
pdt — Probability of true target track in presence of false alarms
matrix

Probability of true target track in the presence of false alarms, returned as a matrix. pdt has the
same size as pd.

pft — Probability of false track in presence of targets
matrix

Probability of false alarm track in the presence of targets, returned as a matrix. pft has the same
size as pd.

eft — Expected number of false tracks
matrix

Expected number of false tracks, returned as a matrix of the same size as pd. toccgh computes the
expected number of tracks using

Eft = Pft,ntNc + PftNt,

where Pft,nt is the probability of false track in the absence of targets, Nc is the number of resolution
cells specified in 'NumCells', Pft is the probability of false track in the presence of targets, and Nt is
the number of targets specified in 'NumTargets'.

More About
Common Gate History Algorithm

The common gate history (CGH) algorithm was developed by Bar-Shalom and collaborators and
published in [1]. For more information about the CGH algorithm, see “Assessing Performance with the
Tracker Operating Characteristic”.

The algorithm proceeds under these assumptions:

• A track is one of these:

1 Detections from targets only
2 Detections from false alarms only
3 Detections from targets and from false alarms

• The probability of more than one false alarm in a gate is low, which is true when the probability of
false alarm Pfa is low (Pfa ≤ 10–3).
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• The location of a target in a gate obeys a uniform spatial distribution.

The algorithm sequentially generates the gate history vector ω = [ωl, ωlt, λ], where:

• ωl is the number of time steps since the last detection, either of a target or of a false alarm.
• ωlt is the number of time steps since the last detection of a target.
• λ is the number of detections.

The state vector evolves as a Markov chain by means of these steps:

1 The algorithm initially creates a track. Only two events can initialize a track:

• A target detection
• A false alarm

2 There are only four types of events that continue a track:

• A1 — No detection

Events of Type 1 occur with probability

P A1 = 1−
g ωl
g ωlt

Pd 1− Pfa
g ωl

where Pd is the probability of detection specified using pd, Pfa is the probability of false alarm
specified using pfa, g(ωl) is the gate size at step ωl, and g(ωlt) is the gate size at step ωlt.

Note To reduce Pd to a lower effective value, toccgh weights it with the ratio

g ωl
g ωlt

= Actual gate size
Size of gate taking into account the time elapsed since the last target detection,

which assumes a uniform spatial distribution of the location of a target in a gate. The gate
sizes are specified using 'GateGrowthSequence'.

Events of Type 1 update the gate history vector as [ωl, ωlt, λ] ➔ [ωl + 1, ωlt + 1, λ].
• A2 — Target detection

Events of Type 2 occur with probability

P A2 =
g ωl
g ωlt

Pd 1− Pfa
g ωl

and update the gate history vector as [ωl, ωlt, λ] ➔ [1, 1, λ + 1].
• A3 — False alarm

Events of Type 3 occur with probability

P A3 = 1− 1− Pfa
g ωl 1−

g ωl
g ωlt

Pd

and update the gate history vector as [ωl, ωlt, λ] ➔ [1, ωlt + 1, λ + 1].
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• A4 — Target detection and false alarm

Events of Type 4 occur with probability

P A4 = 1− 1− Pfa
g ωl g ωl

g ωlt
Pd

and cause the track to split into a false track and a true track:

• As,2a — Continue with A3, updating [ωl, ωlt, λ] ➔ [1, ωlt + 1, λ + 1].
• As,2b — Continue with A2, updating [ωl, ωlt, λ] ➔ [1, 1, λ + 1].

At each step, the algorithm multiplies each track probability by the probability of the event that
continues the track.

3 The procedure then lumps together the tracks that have a common gate history vector ω by
adding their probabilities:

• Tracks continued with A4 are lumped with tracks that continue with A3 (one false alarm only).
• Tracks continued with A4 are lumped with tracks that continue with A2 (target detection only).

This step controls the number of track states within the Markov chain.

At the end, the algorithm computes and assigns the final probabilities:

• A target track is a sequence of detections that satisfies the M/N confirmation logic and contains at
least one detection from a target. To compute the probability of target track:

1 Determine the sequences that satisfy the confirmation logic under the assumption As,2b that A4
yields A2.

2 Separately store these probabilities.
• To compute the probability of false track:

1 Compute the probability of target track under the assumption As,2a that A4 yields A3.
2 Subtract this probability from the probability of all detection sequences that satisfy the

confirmation logic.

Version History
Introduced in R2021a

References
[1] Bar‐Shalom, Yaakov, Leon J. Campo, and Peter B. Luh. "From Receiver Operating Characteristic to

System Operating Characteristic: Evaluation of a Track Formation System." IEEE®

Transactions on Automatic Control 35, no. 2 (February 1990): 172–79. https://doi.org/
10.1109/9.45173.

[2] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. Tracking and Data Fusion: A Handbook of
Algorithms. Storrs, CT: YBS Publishing, 2011.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rocpfa | rocsnr

Topics
“Assessing Performance with the Tracker Operating Characteristic”
“Radar Vertical Coverage over Terrain”
“Linear Kalman Filters”
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sarazgain
SAR azimuth processing gain

Syntax
ag = sarazgain(r,lambda,v,azres,prf)
ag = sarazgain( ___ ,Name,Value)

Description
ag = sarazgain(r,lambda,v,azres,prf) computes the azimuth processing gain due to the
coherent integration of multiple pulses, either by presumming or through actual Doppler processing.

ag = sarazgain( ___ ,Name,Value) specifies additional options using name-value arguments.
Options include the azimuth impulse broadening factor and the Doppler cone angle.

Examples

Azimuth Processing Gain

Compute the azimuth processing gain of a side-looking airborne SAR operating in broadside at a
wavelength of 0.05 m with a sensor velocity of 100 m/s and a PRF of 2 kHz for a target at 5 km. The
cross-range resolution of the image is 1.5 m. Assume an azimuth broadening factor of 1.2 and a
nonideal azimuth filtering loss of 1.2 dB.

lambda = 0.05;
PRF = 2e3;
R = 5e3;
res = 1.5;
v = 100;
La = 1.2;
azb = 1.2;

Compute the azimuth processing gain.

azgain = sarazgain(R,lambda,v,res,PRF,'AzimuthBroadening',azb, ...
    'AzimuthFilteringLoss', La)

azgain = 31.8103

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double
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lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

v — Sensor velocity
positive real scalar

Sensor velocity in meters per second, specified as a positive real scalar.
Data Types: double

azres — Image azimuth or cross-range resolution
positive real scalar

Image azimuth or cross-range resolution in meters, specified as a positive real scalar.
Data Types: double

prf — Radar pulse repetition frequency
positive real scalar

Radar pulse repetition frequency (PRF) in hertz, specified as a positive real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.2,'ConeAngle',60

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

AzimuthFiltering Loss — Reduction in SNR gain
0 (default) | nonnegative scalar

Reduction in signal-to-noise ratio (SNR) gain in decibels, specified as a nonnegative scalar. This
argument corresponds to the loss with respect to the ideal gain. Typical window functions like
hamming and hann exhibit losses on the order of 1 dB. The argument defaults to 0, which assumes a
rectangular window.
Data Types: double
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ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
ag — Azimuth processing gain
matrix

Azimuth processing gain, returned as a matrix. The rows of ag correspond to the range values in r
and its columns correspond to the wavelength values in lambda.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarchirprate | sarinttime | sarpointdopbw | sarprf | sarscenedopbw
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sarchirprate
Azimuth chirp rate of received signal for SAR

Syntax
acr = sarchirprate(r,lambda,v)
acr = sarchirprate(r,lambda,v,dcang)

Description
acr = sarchirprate(r,lambda,v) computes the nominal azimuth chirp rate at which the
azimuth signal changes frequency as the sensor illuminates a scatterer.

acr = sarchirprate(r,lambda,v,dcang) specifies the Doppler cone angle that identifies the
direction towards the scene relative to the direction of motion of the array.

Examples

Azimuth Chirp Rate

Compute the azimuth chirp rate of received signal for a side-looking airborne synthetic aperture
radar (SAR) operating in broadside at a wavelength of 0.03 m with a sensor velocity of 100 m/s for a
target at 10 km. The sensor illuminates the scatterer at a Doppler cone angle of 90∘.

lambda = 0.03;
R = 10e3;
v = 100;

Compute the azimuth chirp rate.

azchirp = sarchirprate(R,lambda,v)

azchirp = 66.6667

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double
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v — Sensor velocity
positive real scalar

Sensor velocity in meters per second, specified as a positive real scalar.
Data Types: double

dcang — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
acr — Nominal azimuth chirp rate
matrix

Nominal azimuth chirp rate in hertz per second, returned as a matrix. The rows of acr correspond to
the range values in r. The columns of acr correspond to the wavelength values in lambda.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarazgain | sarinttime | sarpointdopbw | sarprf | sarscenedopbw
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sarpointdopbw
Doppler bandwidth due to cross-range platform motion

Syntax
dbwch = sarpointdopbw(v,azres)
dbwch = sarpointdopbw(v,azres,Name,Value)

Description
dbwch = sarpointdopbw(v,azres) returns the Doppler bandwidth of a single scatterer (chirped)
due to cross-range platform motion as the sensor illuminates the scatterer.

dbwch = sarpointdopbw(v,azres,Name,Value) specifies additional options using name-value
arguments. Options include the azimuth impulse broadening factor and the Doppler cone angle.

Examples

Doppler Bandwidth of Single Scatterer

A side-looking airborne synthetic aperture radar (SAR) operates in broadside at a wavelength of 0.03
m with a sensor velocity of 100 m/s. The sensor illuminates a scatterer over a small cone angle
interval having a cross-range resolution of 1 m and Doppler cone angle of 90 degrees. Compute the
Doppler bandwidth of the received chirped signal.

azres = 1;
v = 100;

Compute the Doppler bandwidth.

bwchirp = sarpointdopbw(v,azres)

bwchirp = 100

Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double

azres — Image azimuth or cross-range resolution
positive real scalar | vector

Image azimuth or cross-range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.3,'ConeAngle',120

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
dbwch — Doppler bandwidth of single scatterer
matrix

Doppler bandwidth of single scatterer (chirped) in hertz, returned as a matrix. The rows of dbwch
correspond to the velocity values in v. The columns of dbwch correspond to the azimuth resolution
values in azres.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarazgain | sarchirprate | sarinttime | sarprf | sarscenedopbw
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sarscenedopbw
Doppler bandwidth of full scene after azimuth dechirping

Syntax
bwdch = sarscenedopbw(r,lambda,v,wa)
bwdch = sarscenedopbw(r,lambda,v,wa,dcang)

Description
bwdch = sarscenedopbw(r,lambda,v,wa) returns the Doppler bandwidth of the full scene after
azimuth dechirping, corresponding to the composite signal received from all resolution cells within
the scene.

bwdch = sarscenedopbw(r,lambda,v,wa,dcang) specifies the Doppler cone angle that
identifies the direction towards the scene relative to the direction of motion of the array.

Examples

Doppler Bandwidth of Full Scene

A side-looking airborne synthetic aperture radar (SAR) operates in broadside at a wavelength of 0.03
m with a sensor velocity of 100 m/s. The sensor illuminates a scatterer with a Doppler cone angle of
90∘ at a range of 10 km. The azimuth size of the scene is 916 m. Compute the Doppler bandwidth of
the full scene after azimuth dechirping.

lambda = 0.03;
R = 10e3;
v = 100;
Wa = 916;

Compute the Doppler bandwidth.

bwdechirp = sarscenedopbw(R,lambda,v,Wa)

bwdechirp = 610.6667

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector
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Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

v — Sensor velocity
positive real scalar

Sensor velocity in meters per second, specified as a positive real scalar.
Data Types: double

wa — Azimuth size of scene
positive real scalar

Azimuth size of scene in degrees, specified as a positive real scalar.
Data Types: double

dcang — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
bwdch — Doppler bandwidth of full scene
matrix

Doppler bandwidth of full scene after azimuth dechirping in hertz, returned as a matrix. The rows of
bwdch correspond to the range values in r. The columns of bwdch correspond to the wavelength
values in lambda.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarazgain | sarchirprate | sarinttime | sarpointdopbw | sarprf
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sarinttime
Synthetic aperture integration time

Syntax
t = sarinttime(v,synlen)

t = sarinttime(r,lambda,v,azres)
t = sarinttime(r,lambda,v,azres,Name,Value)

Description
t = sarinttime(v,synlen) returns the synthetic aperture integration time corresponding to a
sensor velocity v and a synthetic aperture length synlen.

t = sarinttime(r,lambda,v,azres) returns the synthetic aperture integration time in terms of
azimuth or cross-range resolution.

t = sarinttime(r,lambda,v,azres,Name,Value) specifies additional options using name-
value arguments. Options include the azimuth impulse broadening factor and the Doppler cone angle.

Examples

Synthetic Aperture Integration Time

A side-looking airborne synthetic aperture radar (SAR) operating in broadside at 10 GHz is travelling
with a velocity of 100 m/s. The sensor illuminates the scatterer having cross-range resolution of 1 m
and Doppler cone angle of 90 degrees for a target range of 10 Km. Compute the synthetic aperture
integration time.

R = 10e3;
v = 100;
freq = 10e9;
azres = 1;

Compute the synthetic aperture time.

lambda = freq2wavelen(freq);
t = sarinttime(R,lambda,v,azres)

t = 1.4990

Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
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• If you specify v and synlen as input arguments, then v can be a scalar or a vector.
• If you specify r, lambda, v, and azres as input arguments, then v can only be a vector.

Data Types: double

synlen — Synthetic aperture length
scalar | vector

Synthetic aperture length in meters, specified as a scalar or a vector.
Data Types: double

r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

azres — Image azimuth or cross-range resolution
positive real scalar

Image azimuth or cross-range resolution in meters, specified as a positive real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.2,'ConeAngle',60

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
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Data Types: double

Output Arguments
t — Synthetic aperture integration time
matrix

Synthetic aperture integration time in seconds, returned as a matrix.

• If you specify v and synlen as input arguments, then the rows of t correspond to the velocity
values in v and its columns correspond to the synthetic length values in synlen.

• If you specify r, lambda, v, and azres as input arguments, then the rows of t correspond to the
range values in r and its columns correspond to the wavelength values in lambda.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarazgain | sarchirprate | sarpointdopbw | sarprf | sarscenedopbw
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sarprf
Synthetic aperture radar PRF

Syntax
prf = sarprf(v,daz)
prf = sarprf(v,daz,Name,Value)

Description
prf = sarprf(v,daz) computes the radar pulse repetition frequency (PRF) as a function of the
sensor velocity and the antenna dimension in the azimuth direction.

prf = sarprf(v,daz,Name,Value) specifies additional options using name-value arguments.

Examples

SAR Pulse Repetition Frequency

A side-looking airborne SAR operating in broadside moves with a velocity of 100 m/s. The sensor has
an aperture dimension of 1.5 m in azimuth. Compute the radar pulse repetition frequency. Assume an
antenna roll-off factor of 1.2.

daz = 1.5;
v = 100;
ka = 1.2

ka = 1.2000

Compute the SAR pulse repetition frequency.

prf = sarprf(v,daz,'RollOff',ka)

prf = 160

Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double

daz — Antenna width in azimuth direction
positive real scalar | vector

Antenna width in the azimuth direction in meters, specified as a positive real scalar or a vector.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RollOff',1.2,'ConeAngle',120

RollOff — Antenna roll-off factor
1 (default) | positive real scalar

Antenna roll-off factor, specified as a positive real scalar. This argument provides a safety factor that
prevents mainlobe returns from aliasing in the pulse repetition frequency (PRF) time interval. Adjust
the roll-off factor to make the PRF greater than the mainlobe Doppler bandwidth.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
prf — Radar pulse repetition frequency
matrix

Radar pulse repetition frequency in hertz, returned as a matrix. The rows of prf correspond to the
velocity values in v. The columns of prf correspond to the antenna dimension values in daz.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchinggain | sarazgain | sarchirprate | sarinttime | sarpointdopbw | sarscenedopbw
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sarmaxswath
Upper bound on swath length for SAR

Syntax
swlenc = sarmaxswath(v,azres,grazang)
swlenc = sarmaxswath(v,azres,grazang,dcang)

Description
swlenc = sarmaxswath(v,azres,grazang) computes the upper bound on swath length based
on SAR constraints.

swlenc = sarmaxswath(v,azres,grazang,dcang) specifies the Doppler cone angle that
identifies the direction towards the scene relative to the direction of motion of the array.

Examples

Swath Length Constraint

Estimate the constraint on swath length for a side-looking airborne SAR operating in broadside with a
sensor velocity of 100 m/s. The radar has a cross-range resolution of 1.5 m and a nominal grazing
angle of 30∘.

v = 100;
azres = 1.5;
grazang = 30;

Compute the swath length constraint.

swlen = sarmaxswath(v,azres,grazang)

swlen = 2.5963e+06

Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double

azres — Image azimuth or cross-range resolution
positive real scalar | vector

Image azimuth or cross-range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double

 sarmaxswath

1-321



grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

dcang — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
swlenc — Upper bound on swath length
matrix

Upper bound on swath length in meters, returned as a matrix. The rows of swlenc correspond to the
velocity values in v. The columns of swlenc correspond to the azimuth resolution values in azres.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
aperture2swath | sarmaxcovrate | sarminaperture | sarprfbounds | sarrange
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sarmaxcovrate
Upper bound on area coverage rate for SAR

Syntax
acr = sarmaxcovrate(azres,grazang)

Description
acr = sarmaxcovrate(azres,grazang) returns the upper bound on area coverage rate based on
SAR constraints.

Examples

Area Coverage Rate Constraint

Estimate the constraint on area coverage rate of a side-looking airborne SAR. The radar has a cross-
range resolution of 1.5 m and a nominal grazing angle of 30∘.

azres = 1.5;
grazang = 30;

Compute the area coverate rate constraint.

coverage = sarmaxcovrate(azres,grazang)

coverage = 2.5963e+08

Input Arguments
azres — Image azimuth or cross-range resolution
positive real scalar | vector

Image azimuth or cross-range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90] | vector

Grazing angle in degrees, specified as a scalar in the range [0, 90] or a vector.
Data Types: double

Output Arguments
acr — Upper bound on area coverage rate
matrix
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Upper bound on area coverage rate in square meters per second, returned as a matrix. The rows of
acr correspond to the azimuth resolution values in azres. The columns of acr correspond to the
grazing angle values in grazang.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
aperture2swath | sarmaxswath | sarminaperture | sarprfbounds | sarrange
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sarminaperture
Lower bound on antenna area for SAR

Syntax
aac = sarminaperture(r,lambda,v,grazang)
aac = sarminaperture(r,lambda,v,grazang,dcang)

Description
aac = sarminaperture(r,lambda,v,grazang) returns the lower bound on antenna area based
on synthetic aperture radar (SAR) constraints.

aac = sarminaperture(r,lambda,v,grazang,dcang) specifies the Doppler cone angle that
identifies the direction towards the scene relative to the direction of motion of the array.

Examples

Lower Bound on Antenna Area

Estimate the antenna area constraint of a side-looking airborne SAR operating in broadside at 16.7
GHz with a sensor velocity of 100 m/s for a target range of 10 km. Assume a nominal grazing angle of
30∘.

fc = 16.7e9;
lambda = freq2wavelen(fc);
grazang =30;
v = 100;
R = 10e3;

Compute the antenna area constraint.

area = sarminaperture(R,lambda,v,grazang)

area = 4.1486e-04

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
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Data Types: double

v — Sensor velocity
positive real scalar

Sensor velocity in meters per second, specified as a positive real scalar.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

dcang — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
aac — Upper bound on area coverage rate
matrix

Upper bound on area coverage rate in square meters per second, returned as a matrix. The rows of
aac correspond to the range values in r. The columns of aac correspond to the wavelength values in
lambda.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
aperture2swath | sarmaxcovrate | sarmaxswath | sarprfbounds | sarrange
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sarrange
Maximum unambiguous slant range of SAR

Syntax
mur = sarrange(v,daz,df)
mur = sarrange(v,daz,df,Name,Value)

Description
mur = sarrange(v,daz,df) returns the maximum unambiguous slant range of a synthetic
aperture radar (SAR) system.

mur = sarrange(v,daz,df,Name,Value) specifies additional options using name-value
arguments. Options include the Doppler cone angle and the antenna roll-off factor.

Examples

Maximum Unambiguous Slant Range

Estimate the maximum unambiguous range of a side-looking airborne synthetic aperture radar (SAR)
operating in broadside with a sensor velocity varying from 20 m/s to 300 m/s. The SAR antenna has
an aperture dimension of 3 m in the azimuth direction and a transmitter that works with a 5% duty
cycle. Plot the resulting unambiguous range as a function of sensor velocity.

v = 20:10:300;
daz = 3;
d = 0.05;

Compute the maximum unambiguous range in meters. Assume an antenna roll-off factor of 1.5.
Convert the range to nautical miles.

Rmet = sarrange(v,daz,d,'RollOff',1.5);
Rnau = Rmet*0.00053996;

Plot the unambiguous range as a function of the sensor velocity.

loglog(v,Rnau)

axis([10 1000 100 10000])
xlabel('Velocity (m/s)')
ylabel('Unambiguous Range (nmi)')
title('Unambiguous Range Limits for 1.5 Roll-Off')
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Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double

daz — Antenna width in azimuth direction
positive real scalar

Antenna width in the azimuth direction in meters, specified as a positive real scalar.
Data Types: double

df — Duty factor
positive real scalar in the range [0, 1] | vector

Duty factor, specified as a positive real scalar in the range [0, 1] or a vector. The duty factor is defined
as the ratio of the pulse width to the pulse period.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RollOff',1.2,'ConeAngle',120

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

RollOff — Antenna roll-off factor
1 (default) | positive real scalar

Antenna roll-off factor, specified as a positive real scalar. This argument provides a safety factor that
prevents mainlobe returns from aliasing in the pulse repetition frequency (PRF) time interval. Adjust
the roll-off factor to make the PRF greater than the mainlobe Doppler bandwidth.
Data Types: double

Output Arguments
mur — Maximum unambiguous range
matrix

Maximum unambiguous range, returned as a matrix. The rows of mur correspond to the velocity
values in v. The columns of mur correspond to the duty factor values in df.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
aperture2swath | sarmaxcovrate | sarmaxswath | sarminaperture | sarprfbounds
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aperture2swath
Swath extent for radar on ground plane

Syntax
[swlen,swwidth] = aperture2swath(r,lambda,d,grazang)

Description
[swlen,swwidth] = aperture2swath(r,lambda,d,grazang) returns the swath length and
width for a radar system at its maximum extent, assuming a flat Earth.

Examples

Swath Length and Width

Estimate the maximum swath length and width of side-looking airborne synthetic aperture radar
(SAR) operating at 16.7 GHz for a target range of 10 km. The radar has an aperture length of 3 m in
the elevation dimension and of 4 m in the azimuth dimension. Assume a nominal grazing angle of 30∘.

lambda = freq2wavelen(16.7e9);
R = 10e3;

elaz = [3 4];

grazang = 30;

Compute the swath length and the swath width.

[swl,swwid] = aperture2swath(R,lambda,elaz,grazang)

swl = 119.6776

swwid = 44.8791

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double
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d — Antenna dimensions
positive real scalar | 1-by-2 row vector

Antenna dimensions in meters, specified as a positive real scalar or a 1-by-2 row vector.

• If you specify d as a two-element vector, the first element of d represents the antenna dimension
in elevation and the second element represents the antenna dimension in azimuth.

• If you specify d as a scalar, aperture2swath assumes the antenna has equal elevation and
azimuth dimensions.

Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

Output Arguments
swlen, swwidth — Swath length and width
matrices

Swath length and width in meters, returned as matrices.

• The rows of the swath length swlength correspond to the range values in r. The columns of
swlength correspond to the wavelength values in lambda.

• The rows of the swath width swwidth correspond to the range values in r. The columns of
swwidth correspond to the wavelength values in lambda.

The swath width also corresponds to the azimuth or cross-range resolution of a real aperture
antenna.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarmaxcovrate | sarmaxswath | sarminaperture | sarprfbounds | sarrange
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sarprfbounds
Upper and lower bound on PRF for SAR

Syntax
[prfmin,prfmax] = sarprfbounds(v,azres,swlen,grazang)
[prfmin,prfmax] = sarprfbounds(v,azres,swlen,grazang,Name,Value)

Description
[prfmin,prfmax] = sarprfbounds(v,azres,swlen,grazang) returns the lower bound and
the upper bound on the pulse repetition frequency (PRF) of a SAR system based on eclipsing
constraints.

[prfmin,prfmax] = sarprfbounds(v,azres,swlen,grazang,Name,Value) specifies
additional options using name-value arguments.

Examples

PRF Constraint

Estimate the lower and upper PRF bounds due to eclipsing of a side-looking airborne SAR operating
in broadside. The sensor has a velocity of 100 m/s. The transmitted waveform has a pulse width of
100 microseconds. The radar is grazing at an angle of 30∘ with an image azimuth resolution of 1.5 m
and a swath length of 100 m.

v = 100;
pw = 100e-6;
grazang = 30;
azres = 1.5;
swl = 100;

Compute the PRF constraints.

[prfmin,prfmax] = sarprfbounds(v,azres,swl,grazang,'PulseWidth',pw)

prfmin = 66.6667

prfmax = 9.9426e+03

Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double
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azres — Image azimuth or cross-range resolution
positive real scalar | vector

Image azimuth or cross-range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double

swlen — Swath length
positive scalar | vector

Swath length in meters, specified as a positive scalar or a vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ConeAngle',60,'PulseWidth',2e-6

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

PulseWidth — Pulse width
1e-6 (default) | positive real scalar

Pulse width in seconds, specified as a positive real scalar
Data Types: double

Output Arguments
prfmin — PRF lower bound
matrix

PRF lower bound in hertz, returned as a matrix. The rows of prfmin correspond to the velocity
values in v. The columns of prfmin correspond to the resolution values in azres

prfmax — PRF upper bound
vector

PRF upper bound in hertz, returned as a vector of the same size as swlen.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
aperture2swath | sarmaxcovrate | sarmaxswath | sarminaperture | sarrange
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sarbeamwidth
Synthetic aperture azimuth beamwidth

Syntax
synhpbw = sarbeamwidth(lambda,synlen)
synhpbw = sarbeamwidth( ___ ,Name,Value)
[synhpbw,synfnbw] = sarbeamwidth( ___ )

Description
synhpbw = sarbeamwidth(lambda,synlen) computes the half-power azimuth beamwidth
synthesized by the coherent summation operation of the synthetic aperture radar (SAR).

synhpbw = sarbeamwidth( ___ ,Name,Value) specifies additional options using name-value
arguments. Options include the azimuth impulse broadening factor and the Doppler cone angle.

[synhpbw,synfnbw] = sarbeamwidth( ___ ) also returns the first null azimuth beamwidth in the
synthesized antenna pattern.

Examples

Half-Power and First Null Azimuth Beamwidths

Estimate the synthesized half-power beamwidth and the first null beamwidth of a side-looking
airborne SAR operating in broadside at a wavelength of 0.05 m. The radar has a synthetic aperture
length of 75 m and an azimuth impulse broadening factor of 0.9.

lambda = 0.05;
len = 75;
azb = 0.9;

Compute the synthetic aperture half-power and first null azimuth beamwidths.

[synhpbw,synfnbw] = sarbeamwidth(lambda,len,'AzimuthBroadening',azb)

synhpbw = 0.0172

synfnbw = 0.0191

Input Arguments
lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

 sarbeamwidth

1-335



synlen — Synthetic aperture length
scalar | vector

Synthetic aperture length in meters, specified as a scalar or a vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.2,'CoherentIntegrationAngle',0.3

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

CoherentIntegrationAngle — Coherent integration angle
0.1 (default) | scalar in the range [0, 180]

Coherent integration angle in degrees, specified as a scalar in the range [0, 180]. This argument
specifies the angle through which the target is viewed during the coherent processing aperture.
Data Types: double

Output Arguments
synhpbw — Half-power azimuth beamwidth
matrix

Half-power azimuth beamwidth in degrees, returned as a matrix. The rows of synhpbw correspond to
the radar wavelength values in lambda and its columns correspond to the synthetic aperture length
values in synlen.

synfnbw — First null azimuth beamwidth
matrix
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First null azimuth beamwidth in degrees, returned as a matrix. The rows of synfnbw correspond to
the radar wavelength values in lambda. The columns of synfnbw correspond to the synthetic
aperture length values in synlen.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarbeamcompratio | sarlen
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sarbeamcompratio
SAR beam compression ratio

Syntax
bcr = sarbeamcompratio(r,lambda,synlen,wa)
bcr = sarbeamcompratio(r,lambda,synlen,wa,Name,Value)

Description
bcr = sarbeamcompratio(r,lambda,synlen,wa) computes the beam compression ratio to
illuminate a scene.

bcr = sarbeamcompratio(r,lambda,synlen,wa,Name,Value) specifies additional options
using name-value arguments.

Examples

Beam Compression Ratio

Estimate the beam compression ratio of a side-looking airborne SAR operating in broadside at a
wavelength of 0.05 m for a target range of 5 km. The radar has a synthetic aperture length of 75 m.
The azimuth size of the scene is 50 m. Assume an azimuth impulse broadening factor of 1.3.

lambda = 0.05;
Wa = 50;
R = 5e3;
len = 75;
azb = 1.3;

Compute the beam compression ratio.

bcr = sarbeamcompratio(R,lambda,len,Wa,'AzimuthBroadening',azb)

bcr = 23.0769

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
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Data Types: double

synlen — Synthetic aperture length
scalar

Synthetic aperture length in meters, specified as a scalar.
Data Types: double

wa — Azimuth size of scene
positive real scalar

Azimuth size of scene in degrees, specified as a positive real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AzimuthBroadening',1.2,'ConeAngle',60

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
bcr — Beam compression ratio
matrix

Beam compression ratio, returned as a matrix. The rows of bcr correspond to the range values in r
and its columns correspond to the radar wavelength values in lambda.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarbeamwidth | sarlen
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sarlen
Synthetic aperture length

Syntax
len = sarlen(v,t)

len = sarlen(r)
len = sarlen(r,Name,Value)

len = sarlen(r,lambda,daz)
len = sarlen(r,lambda,daz,Name,Value)

Description
len = sarlen(v,t) returns the synthetic aperture length for a synthetic aperture radar given the
sensor velocity and the synthetic aperture time.

len = sarlen(r) returns the synthetic aperture length for the spotlight mode.

len = sarlen(r,Name,Value) specifies additional options using the ConeAngle and
CoherentIntegrationAngle name-value arguments.

len = sarlen(r,lambda,daz) returns the synthetic aperture length for the strip-map mode.

len = sarlen(r,lambda,daz,Name,Value) specifies additional options using the ConeAngle
and AzimuthBroadening name-value arguments.

Examples

Synthetic Aperture Length

Estimate the synthetic aperture length of a side-looking airborne stripmap synthetic aperture radar
(SAR) operating in broadside at a wavelength of 0.05 m for a target range of 10 km. The radar
antenna has an aperture length of 3 m in the azimuth dimension and an azimuth impulse broadening
factor of 1.3.

lambda = 0.05;
Daz = 3;
R = 10e3;
azb = 1.3;

Compute the synthetic aperture length.

synlen = sarlen(R,lambda,Daz,'AzimuthBroadening',azb)

synlen = 216.6667
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Input Arguments
v — Sensor velocity
positive real scalar | vector

Sensor velocity in meters per second, specified as a positive real scalar or vector.
Data Types: double

t — Synthetic aperture time
positive real scalar | vector

Synthetic aperture time in seconds, specified as a positive real scalar or a vector.
Data Types: double

r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

daz — Antenna width in azimuth direction
positive real scalar | vector

Antenna width in the azimuth direction in meters, specified as a positive real scalar or a vector.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.3,'ConeAngle',120

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

CoherentIntegrationAngle — Coherent integration angle
0.1 (default) | scalar in the range [0, 180]
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Coherent integration angle in degrees, specified as a scalar in the range [0, 180]. This argument
specifies the angle through which the target is viewed during the coherent processing aperture.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
len — Synthetic aperture length
matrix

Synthetic aperture length, returned as a matrix.

• If you specify v and t as input arguments, then len is a matrix with rows corresponding to the
velocity values in v and columns corresponding to the aperture time values in t.

• If you specify r as input for the spotlight mode, then len has the same dimensions as r.
• If you specify r, lambda, and daz as input for the strip-map mode, then len is a matrix with rows

corresponding to the radar range values in r and columns corresponding to the antenna azimuth
dimension in daz.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarbeamcompratio | sarbeamwidth
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sarazres
Azimuth or cross-range resolution for SAR

Syntax
azres = sarazres(r,lambda,synlen)
azres = sarazres( ___ ,Name,Value)

Description
azres = sarazres(r,lambda,synlen) returns the azimuth or cross-range resolution for the
synthetic aperture.

azres = sarazres( ___ ,Name,Value) specifies additional options using name-value arguments.

Examples

Azimuth Resolution

Estimate the azimuth resolution of a side-looking airborne SAR operating in broadside at a
wavelength of 0.03 m for a target range of 10 km. The radar has a synthetic aperture length of 195 m
and a range impulse broadening factor of 1.3.

lambda = 0.03;
len = 195;
R = 10e3;
azb = 1.3;

Compute the azimuth resolution for the synthetic aperture.

synazres = sarazres(R,lambda,len,'AzimuthBroadening',azb)

synazres = 1.0000

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double
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synlen — Synthetic aperture length
scalar

Synthetic aperture length in meters, specified as a scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthBroadening',1.2,'CoherentIntegrationAngle',0.3

AzimuthBroadening — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor due to data weighting or windowing for sidelobe control, specified
as a positive real scalar. This argument expresses the actual –3 dB mainlobe width with respect to the
nominal width. Typical window functions like hamming and hann exhibit values in the range from 1 to
1.5.
Data Types: double

CoherentIntegrationAngle — Coherent integration angle
0.1 (default) | scalar in the range [0, 180]

Coherent integration angle in degrees, specified as a scalar in the range [0, 180]. This argument
specifies the angle through which the target is viewed during the coherent processing aperture.
Data Types: double

ConeAngle — Doppler cone angle
90 (default) | scalar in the range [0, 180]

Doppler cone angle in degrees, specified as a scalar in the range [0, 180]. This argument identifies
the direction toward the scene relative to the direction of motion of the array.
Data Types: double

Output Arguments
azres — Azimuth or cross-range resolution
matrix

Azimuth or cross-range resolution in meters, returned as a matrix. The rows of azres correspond to
the range values in r and its columns correspond to the wavelength values in lambda.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
grnd2slantrange | rainelres | slant2grndrange
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rainelres
Elevation resolution of rain limited by radar resolution

Syntax
elres = rainelres(r,beamw,grazang)
elres = rainelres(r,beamw,grazang,hgt)

Description
elres = rainelres(r,beamw,grazang) returns the elevation resolution of rain limited by the
resolution of the radar.

elres = rainelres(r,beamw,grazang,hgt) also specifies the height extent of rain.

Examples

Elevation Resolution of Rain

Estimate the elevation resolution of rain for a side-looking airborne synthetic aperture radar (SAR)
with elevation beamwidth of 9∘ grazing at 60∘ for a target range of 10 km. Assume the height extent
of rain to be 3 km.

elbw = 9;
grazang = 60;

rng = 10e3;
hrain = 3000;    

Compute the rain elevation resolution.

elres = rainelres(rng,elbw,grazang,hrain)

elres = 782.1723

Input Arguments
r — Range from target to antenna
positive real scalar | vector

Range from target to antenna in meters, specified as a positive real scalar or a vector.
Data Types: double

beamw — Elevation beamwidth
positive real scalar | vector

Elevation beamwidth in degrees, specified as a positive real scalar or a vector.
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Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

hgt — Height extent of rain
4000 (default) | real scalar

Height extent of rain in meters, specified as a real scalar.
Data Types: double

Output Arguments
elres — Elevation resolution of rain
matrix

Elevation resolution of rain, returned as a matrix. The rows of elres correspond to the range values
in r and its columns correspond to the elevation beamwidth values in beamw.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
grnd2slantrange | sarazres | slant2grndrange
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grnd2slantrange
Convert ground range projection to slant range

Syntax
slrng = grnd2slantrange(grndrng,grazang)

Description
slrng = grnd2slantrange(grndrng,grazang) returns the slant range slrng corresponding to
the ground range projection grndrng.

Examples

Ground Range Projection to Slant Range

Determine the slant range given a 1000 m ground range and a grazing angle of 30∘.

grndrng = 1000;
grazang = 30;

Compute the slant range.

slantrng = grnd2slantrange(grndrng,grazang)

slantrng = 1.1547e+03

Input Arguments
grndrng — Ground range projection
scalar | vector

Ground range projection in meters, specified as a positive real scalar or vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

Output Arguments
slrng — Slant range
scalar | vector
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Slant range in meters, returned as a positive real scalar or vector. slrng has the same dimensionality
as grndrng.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rainelres | sarazres | slant2grndrange
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grnd2slantrngres
Convert ground range resolution to slant range resolution

Syntax
slrngres = grnd2slantrngres(grndrngres,grazang)

Description
slrngres = grnd2slantrngres(grndrngres,grazang) returns the slant range resolution
slrngres corresponding to the ground range resolution grndrngres and the grazing angle
grazang.

Examples

Ground Range Resolution to Slant Range Resolution

Determine the slant range resolution given a ground range resolution of 1 m and a grazing angle of
30∘.

grndrngres = 1;
grazang = 30;

Compute the slant range resolution.

slrngres = grnd2slantrngres(grndrngres,grazang)

slrngres = 0.8660

Input Arguments
grndrngres — Ground range resolution
positive real scalar | vector

Ground range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90] | vector

Grazing angle in degrees, specified as a scalar in the range [0, 90] or a vector.
Data Types: double

Output Arguments
slrngres — Slant range resolution
matrix
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Slant range resolution in meters, returned as a matrix. The rows in slrngres correspond to the
ground range resolutions in grndrngres and the columns correspond to the grazing angles in
grazang.

Version History
Introduced in R2021b

References
[1] Doerry, Armin W. "Performance Limits for Synthetic Aperture Radar," 2nd Ed. Sandia National

Laboratories, SAND2006-0821, February 2006.

[2] Carrara, Walter G., Ron S. Goodman, and Ronald M. Majewski. Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. The Artech House Remote Sensing Library. Boston,
Artech House, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
slant2grndrngres | sarazres
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slant2grndrange
Convert slant range to ground range projection

Syntax
grndrng = slant2grndrange(slrng,grazang)

Description
grndrng = slant2grndrange(slrng,grazang) returns the ground range projection grndrng
corresponding to the slant range slrng and grazing angle grazang.

Examples

Slant Range to Ground Range Projection

Determine the ground range projection given a slant range of 2000 m and a grazing angle of 30∘.

slantrng = 2000;
grazang = 30;

Compute the ground range projection.

grndrng = slant2grndrange(slantrng,grazang)

grndrng = 1.7321e+03

Ground Range Projection for Flat and Curved Earth

Compute the ground range projection for a target having a slant range of 1000 m from a sensor. The
sensor is mounted on a platform that is 300 m above ground. Assume the Earth is flat.

gang = grazingang(300,1000);  % Grazing angle
depang = gang;                % Depression angle
grndrng = slant2grndrange(1000,gang)

grndrng = 953.9561

Repeat the computation, but now assume the Earth is curved.

Rearth = physconst('earthradius');

gangsph = grazingang(300,1000,'Curved',Rearth);      % Grazing angle
depangsph = depressionang(300,1000,'Curved',Rearth); % Depression angle
tgtHeight = 0;                                       % Smooth Earth
Re = effearthradius(1000,300,tgtHeight);             % Effective Earth radius
grndrngcurved = Re*deg2rad(depangsph-gangsph)

grndrngcurved = 1.2344e+03
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Input Arguments
slrng — Slant range
scalar | vector

Slant range in meters, specified as a positive real scalar or vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

Output Arguments
grndrng — Ground range projection
scalar | vector

Ground range projection in meters, returned as a positive real scalar or vector. grndrng has the
same dimensionality as slrng.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
grnd2slantrange | rainelres | sarazres
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slant2grndrngres
Convert slant range resolution to ground range resolution

Syntax
grndrngres = slant2grndrngres(slrngres,grazang)

Description
grndrngres = slant2grndrngres(slrngres,grazang) returns the ground range resolution
grndrngres corresponding to the slant range resolution slrngres and the grazing angle grazang.

Examples

Slant Range Resolution to Ground Range Resolution

Determine the ground range resolution given a slant range resolution of 2 m and a grazing angle of
30∘.

slrngres = 2;
grazang = 30;

Compute the ground range resolution.

grndrngres = slant2grndrngres(slrngres,grazang)

grndrngres = 2.3094

Input Arguments
slrngres — Slant range resolution
positive real scalar | vector

Slant range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double

grazang — Grazing angle
scalar in the range [0, 90] | vector

Grazing angle in degrees, specified as a scalar in the range [0, 90] or a vector.
Data Types: double

Output Arguments
grndrngres — Ground range resolution
matrix
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Ground range resolution in meters, returned as a matrix. The rows in grndrngres correspond to the
slant range resolutions in slrngres and the columns correspond to the grazing angles in grazang.

Version History
Introduced in R2021b

References
[1] Doerry, Armin W. "Performance Limits for Synthetic Aperture Radar," 2nd Ed. Sandia National

Laboratories, SAND2006-0821, February 2006.

[2] Carrara, Walter G., Ron S. Goodman, and Ronald M. Majewski. Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. The Artech House Remote Sensing Library. Boston,
Artech House, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarazres | grnd2slantrngres
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slant2range
Convert slant range to propagated range

Syntax
r = slant2range(sr,anht,tgtht)
r = slant2range(sr,anht,tgtht,Name=Value)
[r,el,k] = slant2range(sr,anht,tgtht, ___ )

Description
r = slant2range(sr,anht,tgtht) returns the propagated range r between a target and sensor
as a function of the true target slant range sr, antenna height anht, and target height tgtht.
Propagated range is the actual curved path range caused by atmospheric refraction. Slant range is
the geometric range between target and sensor. The range computation assumes a “Curved Earth
Model” on page 1-362 where the atmospheric model is the CRPL exponential reference atmosphere
with a refractivity of 313 “N-units” on page 1-365 and a refraction exponent (decay constant) of
0.143859/km. The exponential atmosphere models refraction for elevation angles greater than
approximately 10 millirad (about 0.573 degrees) and heights above approximately 1 km.

r = slant2range(sr,anht,tgtht,Name=Value) specifies additional inputs using name-value
pair arguments.

[r,el,k] = slant2range(sr,anht,tgtht, ___ ) also returns the target elevation el and the
effective earth radius factor k.

If the outputs are returned as r = NaN, el = NaN, and k = 1, then the propagation path does not exist
or cannot be computed with the specified sr, anht, and tgtht arguments.

Examples

Calculate Propagated Range using Default Parameters

Calculate the propagated range from a slant range of 100 km, antenna height of 1 km, and target
height of 2 km. Use default parameter values.

R = slant2range(100000,1000,2000)

R = 1.0001e+05

Calculate Propagated Range with Effective Earth Radius

Compute the range between an antenna and a target. Start with a slant range of 250 km, an antenna
height of 1 km, and target height of 5 km. Using the default 'Curved' Method, set an effective earth
radius factor of 1.2.
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Re = physconst('EarthRadius');
effactor = 1.2;
R = slant2range(250000,1000,5000,'EffectiveEarthRadius',effactor*Re)

R = 2.5002e+05

Verify Target Height Calculation

Calculate the propagated range and elevation angle of a target at a slant range of 300 km, an
antenna height of 100 m, and target height of 5 km. Use the CRPL method and assume the surface
refractivity is equal to 400 N-units. From the calculated propagated range and elevation angle,
convert back to target height. Verify that the estimated target height from the range2height
function matches the expected 5 km.

sr = 300000;
ha = 100;
ht = 5000;
Ns = 400;
rexp = refractionexp(Ns);

Calculate propagated range and elevation angle.

[R,el] = slant2range(sr,ha,ht,'Method','CRPL', ...
        'SurfaceRefractivity',Ns,'RefractionExponent',rexp)

R = 3.0009e+05

el = 0.1286

Convert propagated range and elevation angle back to target height. Verify that calculated value
matches 5000 meters.

htest = range2height(R,ha,el,'Method','CRPL', ...,
    'SurfaceRefractivity',Ns,'RefractionExponent',rexp)

htest = 5.0000e+03

Compare Effective Earth Radius Factors

Compare the effective Earth radius factors calculated from the CRPL, the average radius of
curvature, and 4/3 Earth models. Assume the slant range is 100000 m, the antenna heights range
from 1 to 10 km, and the target is on the surface at zero altitude.

sr = 100000;
ha = linspace(1,10,50).*1000;
ht = 200;
[~,kAvgCurv] = effearthradius(sr,ha,ht);
[~,~,kCRPL] = slant2range(sr,ha,ht,'Method','CRPL');

Plot the effective earth radius factor as a function of antenna height.

plot(ha*1e-3,kCRPL)
hold on
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plot(ha*1e-3,kAvgCurv)
yline(4/3,'--k')
grid on
legend('CRPL','Average Curvature','4/3 Earth')
ylabel('Effective Earth radius factor k')
xlabel('Antenna height (km)')

Input Arguments
sr — True slant range
scalar | real-valued length-M row vector

True slant range, specified as a scalar or length-M real-valued row vector. If sr is a vector, it must
have the same size as the other vector input arguments, anht and tgtht. Units are in meters.
Example: 5000.0
Data Types: double

anht — Sensor height
nonnegative real-valued scalar | nonnegative real-valued vector

Sensor height in meters, specified as a nonnegative real-valued scalar or vector. If anht is a vector, it
must have the same size as the other vector input arguments of slant2range. Heights are
referenced to the ground.
Data Types: double

tgtht — Target height
nonnegative real-valued scalar | nonnegative real-valued vector

Target height in meters, specified as a nonnegative real-valued scalar or vector. If tgtht is a vector,
it must have the same size as the other vector input arguments of slant2range. Heights are
referenced to the ground.
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Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Method="CRPL",SurfaceRefractivity=300,RefractionExponent=0.15

Method — Earth model
"Curved" (default) | "CRPL"

Earth model used for computation, specified as "Curved" or "CPRL".

• "Curved" — Assumes a “Curved Earth Model” on page 1-362 with a 4/3 effective Earth radius a
commonly used approximation for modeling refraction effects in the troposphere. To specify
another value for the effective Earth radius, use the EffectiveEarthRadius name-value pair
argument.

• "CRPL" — Assumes a curved Earth model with the atmosphere defined by the “CRPL Exponential
Reference Atmosphere Model” on page 1-363 with a refractivity of 313 “N-units” on page 1-365
and a refraction exponent of 0.143859 km–1. To specify other values for the refractivity and the
refraction exponent, use the SurfaceRefractivity and RefractionExponent name-value
arguments. This method requires that el be positive. For more information, see “CRPL Model
Geometry” on page 1-364.

Data Types: char | string

EffectiveEarthRadius — Effective Earth radius
4/3 of Earth's radius (default) | positive scalar

Effective Earth radius, specified as a positive scalar. If this argument is not specified, slant2range
calculates the effective Earth radius using a refractivity gradient of –39 × 10–9 N-units/meter, which
results in approximately 4/3 of the real Earth radius. Units are in meters.

Dependencies

To enable this argument, set the Method name-value pair argument to "Curved".
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | nonnegative scalar

Surface refractivity in “N-units” on page 1-365, specified as a nonnegative scalar. The surface
refractivity is a parameter of the “CRPL Exponential Reference Atmosphere Model” on page 1-363
used by slant2range. This quantity is dimensionless.

Dependencies

To enable this argument, set the Method name-value pair argument to "CRPL".
Data Types: double
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RefractionExponent — Refraction exponent
0.143859 (default) | nonnegative scalar

Refraction exponent, specified as a nonnegative scalar. The refraction exponent is a parameter of the
“CRPL Exponential Reference Atmosphere Model” on page 1-363 used by slant2range. This
quantity is dimensionless.
Dependencies

To enable this argument, set the Method name-value pair argument to "CRPL".
Data Types: double

MaxNumIterations — Maximum number of iterations for the CRPL method
10 (default) | nonnegative integer

Maximum number of iterations for the CRPL method, specified as a nonnegative integer. This input
acts as a safeguard to preempt long iterative calculations.

If MaxNumIterations is set to 0, slant2range performs a faster but less accurate non-iterative
CRPL calculation. The non-iterative calculation has a maximum height error of 0.056388 m (0.185 ft)
at a target height of 30,480 m (100,000 ft) and an elevation angle of 0. The height error for the non-
iterative method decreases with decreasing target height and increasing elevation angle. This
quantity is dimensionless.
Dependencies

To enable this argument, set the Method name-value pair argument to "CRPL".
Data Types: double

Tolerance — Numerical tolerance for the CRPL method
1e-6 (default) | positive scalar

Numerical tolerance for the CRPL method, specified as a positive scalar. The iterative process
terminates when the numerical tolerance is achieved.
Dependencies

To enable this argument, set the Method name-value pair argument to "CRPL" and set the
MaxNumIterations name-value pair argument to be greater than 0. This quantity is dimensionless.
Data Types: double

Output Arguments
r — Target range
scalar | real-valued length-M row vector

Target range, returned as a scalar or real-valued length-M row vector. If r is a vector, it has the same
size as the vector input arguments of slant2range. Units are in meters.
Data Types: double

el — Elevation angle
scalar | real-valued length-M row vector

Elevation angle, returned as a scalar or real-valued length-M row vector. Units are in degrees.
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Data Types: double

k — Effective earth radius factor
scalar | real-valued length-M row vector

Effective earth radius factor, returned as a scalar or real-valued length-M row vector. This quantity is
dimensionless.
Data Types: double

More About
Curved Earth Model

The fact that the index of refraction of air depends on height can be treated approximately by using
an effective Earth's radius larger than the actual value.

Given the effective Earth's radius R0, the antenna height ha, and the initial elevation angle θ0, the
model relates the target height hT and the slant range RT by

R0 + hT
2 = R0 + ha

2 + RT
2 + 2RT R0 + ha sinθ0,

so knowing one of those magnitudes enables you to compute the other. In particular,

hT = R0 + ha
2 + RT

2 + 2RT R0 + ha sinθ0− R0 .

The actual range R is equal to the slant range. The true elevation angle θT is equal to the initial
elevation angle.

To compute the ground range G, use

G = R0ϕ = R0arcsin
RTcosθ0
R0 + hT

.
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A standard propagation model uses an effective Earth's radius that is 4/3 times the actual value. This
model has two major limitations:

1 The model implies a value for the index of refraction near the Earth's surface that is valid only for
certain areas and at certain times of the year. To mitigate this limitation, use an effective Earth's
radius based on the near-surface refractivity value.

2 The model implies a value for the gradient of the index of refraction that is unrealistically low at
heights of around 8 km. To partially mitigate this limitation, use an effective Earth's radius based
on the platform altitudes.

For more information, see effearthradius.

CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.
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CRPL Model Geometry

When the refractivity of air is incorporated into the curved Earth model, the ray paths do not follow a
straight line but curve downward. (This statement assumes standard atmospheric propagation and
nonnegative elevation angles.) The true elevation angle  is different from the initial . The actual
range , which is the distance along the curved path , is different from the slant range .

Given the Earth's radius , the antenna height , the initial elevation angle , and the height-
dependent index of refraction  with value  at , the modified model relates the target
height  and the actual range  by

When Method is specified as "CRPL", the integral is solved using  from “CRPL Exponential
Reference Atmosphere Model” on page 1-363.

To compute the ground range , use
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N-units

N-units are a convenient way to express the index of refraction. Because the index of refraction is
very close to unity, N-units express just the deviation from unity. The refractivity N in N-units is
related to the index of refraction n by

N = (n− 1) × 106.

For example, an index of refraction of 1.000313 becomes 313 in N-units. N-units are dimensionless.

Version History
Introduced in R2022b

References
[1] Barton, David K. Radar Equations for Modern Radar. Norwood, MA: Artech House, 2013.

[2] Bean, B.R., and G.D. Thayer. "Central Radio Propagation Laboratory Exponential Reference
Atmosphere." Journal of Research of the National Bureau of Standards, Section D: Radio
Propagation 63D, no. 3 (November 1959): 315. https://doi.org/10.6028/jres.063D.031.

[3] Blake, Lamont V. "Ray Height Computation for a Continuous Nonlinear Atmospheric Refractive-
Index Profile." Radio Science 3, no. 1 (January 1968): 85–92. https://doi.org/10.1002/
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Radar Designer

Functions
blakechart | el2height | height2el | height2range | height2grndrange | radarvcd |
refractionexp

Topics
“Radar Vertical Coverage over Terrain”
“Modeling Target Position Errors Due to Refraction”
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sarSurfaceRCS
Radar cross-section of target for SAR

Syntax
rcs = sarSurfaceRCS(sigmaref,freq,freqref,rngazres,grazang)
rcs = sarSurfaceRCS(sigmaref,freq,freqref,rngazres,grazang,n)
rcs = sarSurfaceRCS(nrcs,rngazres,grazang)

Description
rcs = sarSurfaceRCS(sigmaref,freq,freqref,rngazres,grazang) returns the target
radar cross-section (RCS) for SAR as projected on the ground.

rcs = sarSurfaceRCS(sigmaref,freq,freqref,rngazres,grazang,n) specifies a
frequency-dependent proportionality factor that depends upon the target characteristics.

rcs = sarSurfaceRCS(nrcs,rngazres,grazang) uses as input the surface normalized radar
cross-section, also known as the reflectivity or σ0.

Examples

Target Radar Cross-Section

Estimate the target radar cross-section (RCS) of a side-looking airborne SAR operating at frequencies
between 16 GHz to 17 GHz and grazing at 30∘. The target reflectivity is –25 dB at the Ku band
(nominally 16.7 GHz). The radar has a slant range resolution of 15 m and an azimuth resolution of 18
m. Assume a frequency-dependent proportionality factor of 1.

f = 16e9:1e7:17e9;

sigmaref = -25;
fref = 16.7e9;

rngazres = [15 18];
grazang = 30;

Convert the reflectivity to linear units. Compute the target RCS.

sigma = sarSurfaceRCS(db2pow(sigmaref),f,fref,rngazres,grazang);

Plot the RCS in decibels as a function of frequency.

plot(f/1e9,pow2db(sigma),'.-')
xlabel('Frequency (GHz)')
ylabel('Target RCS (dBsm)')
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Input Arguments
sigmaref — Reflectivity at nominal reference frequency
positive real scalar

Reflectivity at nominal reference frequency in square meters per square meter, specified as a positive
real scalar.
Data Types: double

freq — Radar frequency
positive real scalar | vector

Radar frequency in hertz, specified as a positive real scalar or a vector.
Data Types: double

freqref — Nominal reference frequency
positive real scalar

Nominal reference frequency in hertz, specified as a positive real scalar.
Data Types: double

rngazres — Slant range and azimuth resolutions
1-by-2 row vector of positive real scalars
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Slant range and azimuth resolutions, specified as a 1-by-2 row vector of positive real scalars.

• The first element of rngazres specifies the slant range resolution in meters.
• The second element of rngazres specifies the azimuth or cross-range resolution in meters.

Data Types: double

grazang — Grazing angle
scalar in the range [0, 90]

Grazing angle in degrees, specified as a scalar in the range [0, 90].
Data Types: double

n — Frequency-dependent proportionality factor
1 (default) | positive real scalar

Frequency-dependent proportionality factor, specified as a real scalar. For distributed targets, n
varies between 0 and 1. For nondistributed targets, n is a positive real scalar.
Data Types: double

nrcs — Surface normalized radar cross-section
nonnegative scalar | row vector

Surface normalized radar cross-section in square meters per square meter, specified as a nonnegative
scalar or row vector. The surface normalized radar cross-section is also known as the reflectivity or
σ0.
Data Types: double

Output Arguments
rcs — Target radar cross-section
scalar | vector

Target radar cross-section for SAR as projected on the ground in square meters, returned as a scalar
or a vector. rcs has the same dimensions as either freq or nrcs.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterVolumeRCS | rainreflectivity
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clutterVolumeRCS
Radar cross-section of volume clutter

Syntax
rcs = clutterVolumeRCS(volrefl,vol)

Description
rcs = clutterVolumeRCS(volrefl,vol) returns the radar cross-section (RCS) of volume clutter
defined by the resolution of the radar.

Examples

Radar Cross-Section of Rain

Estimate the radar cross-section of rain for a side-looking airborne SAR operating in the L band at 1.5
GHz. The rain is specified by a range resolution of 15 m, an azimuth resolution of 18 m, and a rain
elevation cell resolution of 20 m. The rain rates are 0.25 mm/hr, 1 mm/hr, 4 mm/hr, and 16 mm/hr.

f = 1.5e9;

rngres = 15;
azres = 18;
elres = 20;
res = [rngres azres elres];

rr = [0.25 1 4 16];

Compute the rain radar cross-section. Use rainreflectivity to compute the volume reflectivity of
the scattering particles.

volref = rainreflectivity(f,rr);

rcs = clutterVolumeRCS(volref,res);

Plot the rain radar cross-section as a function of the rain rate. Express the cross-section in dB.

semilogx(rr,pow2db(rcs),'.-')
xlabel('Rain Rate (mm/hr)')
ylabel('Rain RCS (dBsm)')
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Input Arguments
volrefl — Volume reflectivity of scattering particles
real scalar | vector

Volume reflectivity of scattering particles in square meters per cubic meter, specified as a scalar or a
vector.
Data Types: double

vol — Clutter extent
positive real scalar | 1-by-3 row vector

Clutter extent, specified as a positive real scalar or a 1-by-3 row vector.

• If specified as a positive real scalar, vol represents the volume of the clutter in cubic meters.
• If specified as a 1-by-3 row vector:

• The first element of vol is a positive real scalar that represents the clutter within the range
resolution in meters of the radar.

• The second element of vol is a positive real scalar that represents the clutter within the
azimuth (or cross-range) resolution in meters of the radar.

• The third element of vol is a positive real scalar that represents the clutter within the
elevation resolution in meters of the radar.
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Data Types: double

Output Arguments
rcs — Radar cross-section of volume clutter
scalar | vector

Radar cross-section of volume clutter in square meters, returned as a scalar or a vector. rcs has the
same dimensions as volrefl.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rainreflectivity | sarSurfaceRCS
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rainreflectivity
Volume reflectivity of rain

Syntax
volrefl = rainreflectivity(freq,rr)
volrefl = rainreflectivity(freq,rr,pol)

Description
volrefl = rainreflectivity(freq,rr) returns the volume reflectivity of rain, computed using
the “Marshall-Palmer Model” on page 1-375.

volrefl = rainreflectivity(freq,rr,pol) specifies the polarization of the transmitted and
received waves.

Examples

Rain Volume Reflectivity

Estimate the rain volume reflectivity of a side-looking airborne SAR operating in the L band at 1.5
GHz for rain rates of 0.25 mm/hr, 1 mm/hr, 4 mm/hr, and 16 mm/Hr.

f = 1.5e9;
rr = [0.25 1 4 16];

Compute the rain volume reflectivity.

volref = rainreflectivity(f,rr);

Plot the rain volume reflectivity as a function of the rain rate.

semilogx(rr,volref,'.-')
xlabel('Rain Rate (mm/hr)')
ylabel('Volume Reflectivity (dB/m)')
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Input Arguments
freq — Radar frequency
positive real scalar | vector

Radar frequency in hertz, specified as a positive real scalar or a vector.
Data Types: double

rr — Rain rate
real scalar | vector

Rain rate in millimeters per hour, specified as a real scalar or a vector.
Data Types: double

pol — Polarization of transmitted and received waves
'HH' (default) | 'HV' | 'VV' | 'VH' | 'RCPRCP' | 'RCPLCP' | 'LCPLCP' | 'LR' | 'HRCP' | 'VLCP' |
'RCPV' | 'LCPH'

Polarization of transmitted and received waves, specified as one of these.

Value Transmitted Wave Received Wave
'HH' Horizontal polarization Horizontal polarization
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Value Transmitted Wave Received Wave
'HV' Horizontal polarization Vertical polarization
'VV' Vertical polarization Vertical polarization
'VH' Vertical polarization Horizontal polarization
'RCPRCP' Right-hand circular polarization Right-hand circular polarization
'RCPLCP' Right-hand circular polarization Left-hand circular polarization
'LCPLCP' Left-hand circular polarization Left-hand circular polarization
'LR' Left-hand polarization Right-hand polarization
'HRCP' Horizontal polarization Right-hand circular polarization
'VLCP' Vertical polarization Left-hand circular polarization
'RCPV' Right-hand circular polarization Vertical polarization
'LCPH' Left-hand circular polarization Horizontal polarization

Data Types: char | string

Output Arguments
volrefl — Volume reflectivity of rain
matrix

Volume reflectivity (radar cross-section per unit volume) of rain in square meters per cubic meter,
returned as a matrix. The rows of volref correspond to the radar frequency values in freq. The
columns of volref correspond to the rain rate values in rr.

More About
Marshall-Palmer Model

The rain clutter reflectivity is computed based on the commonly used Marshall-Palmer drop-size
distribution model. The model assumes raindrops are generally small with respect to the wavelength
and are nearly spherical, indicating Rayleigh scattering.

The Marshall-Palmer model matches experimental results with measured data up to the Ka-band.
Additionally, rain is not a static target, and exhibits its own motion spectrum. The motion spectrum is
typically centered at some velocity with a recognizable velocity bandwidth. Data suggests a velocity
bandwidth sometimes as high as 8 m/s, with a median velocity bandwidth of about 4 m/s.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
clutterVolumeRCS | sarSurfaceRCS
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radareqsarsnr
Signal-to-noise ratio of SAR image

Syntax
imgsnr = radareqsarsnr(r,lambda,pt,tau,rnggain,azgain)
imgsnr = radareqsarsnr(r,lambda,pt,tau,rnggain,azgain,Name,Value)

Description
imgsnr = radareqsarsnr(r,lambda,pt,tau,rnggain,azgain) returns the SAR image signal-
to-noise ratio (SNR).

imgsnr = radareqsarsnr(r,lambda,pt,tau,rnggain,azgain,Name,Value) specifies
additional options using name-value arguments.

Examples

SAR Image SNR

Estimate the image SNR for a SAR operating in broadside at a frequency of 5.3 GHz and 5 kW peak
power to form an image of a target at 50 km. Assume an RCS of 1 m2 and rectangular waveform with
a bandwidth of 0.05 microseconds. The range processing gain is 29.8 dB and the azimuth processing
gain is 42.7 dB. Assume no losses.

lambda = freq2wavelen(5.3e9);
pt = 5e3;
r = 50e3; 

tau = 0.05e-6;

rnggain = 29.8;
azgain = 42.7;

Compute the image SNR.

snr = radareqsarsnr(r,lambda,pt,tau,rnggain,azgain)

snr = 34.5704

Input Arguments
r — Range to target
scalar | column vector | 1-by-2 row vector | 2-column matrix

Range to target in meters, specified as a scalar, a column vector, a 1-by-2 row vector, or a 2-column
matrix.
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• Specify this argument as a scalar or a column vector for a monostatic radar.
• Specify this argument as a 1-by-2 row vector or as a 2-column matrix for a bistatic radar.

• The first element or column corresponds to the range from the transmitter to the target.
• The second element or column corresponds to the range from the target to the receiver.

Data Types: double

lambda — Wavelength of radar operating frequency
positive real scalar

Wavelength of radar operating frequency in meters, specified as a positive real scalar.
Data Types: double

pt — Transmitter peak signal power
positive real scalar | vector

Transmitter peak signal power in watts, specified as a positive real scalar or a vector.
Data Types: double

tau — Pulse width at antenna port
positive real scalar

Pulse width at the antenna port in seconds, specified as a positive real scalar.
Data Types: double

rnggain — SNR gain due to range processing
real scalar

SNR gain due to range processing in decibels, specified as a real scalar.
Data Types: double

azgain — SNR gain due to azimuth processing
real scalar

SNR gain due to azimuth processing in decibels, specified as a real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',293,'Gain',12

RCS — Target radar cross-section
1 (default) | scalar | vector

Target radar cross-section in square meters, specified as a scalar or a vector. radareqsarsnr
assumes a nonfluctuating target (Swerling case 0).
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Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature in kelvins, specified as a positive scalar.
Data Types: double

Gain — Antenna gain
20 (default) | scalar | 1-by-2 row vector

Antenna gain in decibels, specified as a scalar or 1-by-2 row vector.

• If you specify this argument as a two-element vector, the first element represents antenna
transmit gain and the second element represents the antenna receive gain.

• If you specify this argument as a scalar, radareqsarsnr assumes the antenna has equal transmit
and receive gains.

Data Types: double

Loss — System loss
0 (default) | scalar | vector

System loss in decibels, specified as a scalar or a vector.
Data Types: double

AtmosphericLoss — Atmospheric absorption loss
0 (default) | scalar | column vector | 1-by-2 row vector | 2-column matrix

Atmospheric absorption loss in decibels, specified as a scalar, a column vector, a 1-by-2 row vector, or
a 2-column matrix.

• Specify this argument as a scalar or a column vector to represent the atmospheric absorption loss
for a one-way path.

• Specify this argument as a 1-by-2 row vector or as a 2-column matrix to represent a transmit path
and a receive path.

• The first element or column corresponds to the atmospheric absorption loss for the transmit
path.

• The second element or column corresponds to the atmospheric absorption loss for the receive
path.

Data Types: double

PropagationFactor — Propagation factor
0 (default) | scalar | column vector | 1-by-2 row vector | 2-column matrix

Propagation factor in decibels, specified as a scalar, a column vector, a 1-by-2 row vector, or a 2-
column matrix.

• Specify this argument as a scalar or a column vector to represent the propagation factor loss for a
one-way path.

• Specify this argument as a 1-by-2 row vector or as a 2-column matrix to represent a transmit path
and a receive path.
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• The first element or column corresponds to the propagation factor for the transmit path.
• The second element or column corresponds to the propagation factor for the receive path.

Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | vector

Custom factor in decibels, specified as a scalar or a vector. This argument contributes to the received
signal energy and can include other factors.
Data Types: double

Output Arguments
imgsnr — SAR image signal-to-noise ratio
column vector

SAR image signal-to-noise ratio in decibels, returned as a column vector.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radareqsarpow | radareqsarrng | rainscr | sarnoiserefl
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radareqsarpow
Minimum peak transmit power using SAR equation

Syntax
pt = radareqsarpow(r,lambda,snr,tau,rnggain,azgain)
pt = radareqsarpow(r,lambda,snr,tau,rnggain,azgain,Name,Value)

Description
pt = radareqsarpow(r,lambda,snr,tau,rnggain,azgain) returns the SAR peak transmit
power.

pt = radareqsarpow(r,lambda,snr,tau,rnggain,azgain,Name,Value) specifies additional
options using name-value arguments.

Examples

SAR Peak Transmit Power

Estimate the peak transmit power for a side-looking SAR operating at a frequency of 5.3 GHz to form
an image of a target at 50 km. Assume a radar cross-section (RCS) of 1 m2 and rectangular waveform
with a bandwidth of 0.05 microseconds. The antenna gain is 30 dB and the minimum SNR required to
make a detection is 30 dB. The range processing gain is 29.8 dB and the azimuth processing gain is
42.7 dB. Assume zero losses.

lambda = freq2wavelen(5.3e9);
r = 50e3; 

tau = 0.05e-6;

G = 30;
SNR = 30;
rnggain = 29.8;
azgain = 42.7;

Compute the peak transmit power.

pt = radareqsarpow(r,lambda,SNR,tau,rnggain,azgain,'Gain',G)

pt = 17.4555

Input Arguments
r — Range to target
scalar | column vector | 1-by-2 row vector | 2-column matrix

Range to target in meters, specified as a scalar, a column vector, a 1-by-2 row vector, or a 2-column
matrix.
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• Specify this argument as a scalar or a column vector for a monostatic radar.
• Specify this argument as a 1-by-2 row vector or as a 2-column matrix for a bistatic radar.

• The first element or column corresponds to the range from the transmitter to the target.
• The second element or column corresponds to the range from the target to the receiver.

Data Types: double

lambda — Wavelength of radar operating frequency
positive real scalar

Wavelength of radar operating frequency in meters, specified as a positive real scalar.
Data Types: double

snr — Required signal-to-noise ratio
real scalar | vector

Required signal-to-noise ratio (SNR) in decibels, specified as a real scalar or a vector.
Data Types: double

tau — Pulse width at antenna port
positive real scalar

Pulse width at the antenna port in seconds, specified as a positive real scalar.
Data Types: double

rnggain — SNR gain due to range processing
real scalar

SNR gain due to range processing in decibels, specified as a real scalar.
Data Types: double

azgain — SNR gain due to azimuth processing
real scalar

SNR gain due to azimuth processing in decibels, specified as a real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',293,'Gain',12

RCS — Target radar cross-section
1 (default) | scalar | vector

Target radar cross-section in square meters, specified as a scalar or a vector. radareqsarpow
assumes a nonfluctuating target (Swerling case 0).
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Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature in kelvins, specified as a positive scalar.
Data Types: double

Gain — Antenna gain
20 (default) | scalar | 1-by-2 row vector

Antenna gain in decibels, specified as a scalar or 1-by-2 row vector.

• If you specify this argument as a two-element vector, the first element represents antenna
transmit gain and the second element represents the antenna receive gain.

• If you specify this argument as a scalar, radareqsarpow assumes the antenna has equal transmit
and receive gains.

Data Types: double

Loss — System loss
0 (default) | scalar | vector

System loss in decibels, specified as a scalar or a vector.
Data Types: double

AtmosphericLoss — Atmospheric absorption loss
0 (default) | scalar | column vector | 1-by-2 row vector | 2-column matrix

Atmospheric absorption loss in decibels, specified as a scalar, a column vector, a 1-by-2 row vector, or
a 2-column matrix.

• Specify this argument as a scalar or a column vector to represent the atmospheric absorption loss
for a one-way path.

• Specify this argument as a 1-by-2 row vector or as a 2-column matrix to represent a transmit path
and a receive path.

• The first element or column corresponds to the atmospheric absorption loss for the transmit
path.

• The second element or column corresponds to the atmospheric absorption loss for the receive
path.

Data Types: double

PropagationFactor — Propagation factor
0 (default) | scalar | column vector | 1-by-2 row vector | 2-column matrix

Propagation factor in decibels, specified as a scalar, a column vector, a 1-by-2 row vector, or a 2-
column matrix.

• Specify this argument as a scalar or a column vector to represent the propagation factor loss for a
one-way path.

• Specify this argument as a 1-by-2 row vector or as a 2-column matrix to represent a transmit path
and a receive path.
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• The first element or column corresponds to the propagation factor for the transmit path.
• The second element or column corresponds to the propagation factor for the receive path.

Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | vector

Custom factor in decibels, specified as a scalar or a vector. This argument contributes to the received
signal energy and can include other factors.
Data Types: double

Output Arguments
pt — SAR peak transmit power
vector

SAR peak transmit power in watts, returned as a vector.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radareqsarrng | radareqsarsnr | rainscr | sarnoiserefl

1 Functions

1-384



radareqsarrng
Maximum detectable range using SAR equation

Syntax
rng = radareqsarrng(lambda,snr,pt,tau,rnggain,azgain)
rng = radareqsarrng(lambda,snr,pt,tau,rnggain,azgain,Name,Value)

Description
rng = radareqsarrng(lambda,snr,pt,tau,rnggain,azgain) returns the maximum
detectable range for a SAR.

rng = radareqsarrng(lambda,snr,pt,tau,rnggain,azgain,Name,Value) specifies
additional options using name-value arguments.

Examples

Maximum Detectable Range

Estimate the range for a side-looking SAR imaging a target with a radar cross-section (RCS) of 1 m2.
The radar operates at a frequency of 5.3 GHz and has a peak power of 5 kW. The SAR uses a
rectangular waveform with a pulse width of 0.05 microseconds. The antenna gain is 30 dB and the
minimum detectable SNR is 30 dB. The range processing gain is 29.8 dB and the azimuth processing
gain is 42.7 dB. Assume zero losses.

lambda = freq2wavelen(5.3e9);
pt = 5e3;

tau = 0.05e-6;

gain = 30;
SNR = 30; 

rnggain = 29.8;
azgain = 42.7; 

Compute the maximum detectable range. Express the result in kilometers.

rng = radareqsarrng(lambda,SNR,pt,tau,rnggain, azgain,'Gain', gain,'UnitStr','km')

rng = 205.6978

Input Arguments
lambda — Wavelength of radar operating frequency
positive real scalar

Wavelength of radar operating frequency in meters, specified as a positive real scalar.
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Data Types: double

snr — Required signal-to-noise ratio
real scalar | vector

Required signal-to-noise ratio (SNR) in decibels, specified as a real scalar or a vector.
Data Types: double

pt — Transmitter peak signal power
positive real scalar | vector

Transmitter peak signal power in watts, specified as a positive real scalar or a vector.
Data Types: double

tau — Pulse width at antenna port
positive real scalar

Pulse width at the antenna port in seconds, specified as a positive real scalar.
Data Types: double

rnggain — SNR gain due to range processing
real scalar

SNR gain due to range processing in decibels, specified as a real scalar.
Data Types: double

azgain — SNR gain due to azimuth processing
real scalar

SNR gain due to azimuth processing in decibels, specified as a real scalar.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',293,'Gain',12

RCS — Target radar cross-section
1 (default) | scalar | vector

Target radar cross-section in square meters, specified as a scalar or a vector. radareqsarrng
assumes a nonfluctuating target (Swerling case 0).
Data Types: double

Ts — System noise temperature
290 (default) | positive scalar

System noise temperature in kelvins, specified as a positive scalar.
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Data Types: double

Gain — Antenna gain
20 (default) | scalar | 1-by-2 row vector

Antenna gain in decibels, specified as a scalar or 1-by-2 row vector.

• If you specify this argument as a two-element vector, the first element represents antenna
transmit gain and the second element represents the antenna receive gain.

• If you specify this argument as a scalar, radareqsarrng assumes the antenna has equal transmit
and receive gains.

Data Types: double

Loss — System loss
0 (default) | scalar | vector

System loss in decibels, specified as a scalar or a vector.
Data Types: double

CustomFactor — Custom factor
0 (default) | scalar | vector

Custom factor in decibels, specified as a scalar or a vector. This argument contributes to the received
signal energy and can include other factors.
Data Types: double

UnitStr — Unit of range length
'm' (default) | 'km' | 'mi' | 'nmi'

Unit of range length, specified as 'm' (meter), 'km' (kilometer), 'mi' (statute mile), or 'nmi'
(nautical mile).
Data Types: char | string

Output Arguments
rng — Maximum detectable range
column vector

Maximum detectable range, returned as a column vector expressed in the units specified using
UnitStr. For bistatic radars, each element of rng is the geometric mean of the range from the
transmitter to the target and the range from the target to the receiver.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
radareqsarpow | radareqsarsnr | rainscr | sarnoiserefl
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sarnoiserefl
Noise equivalent reflectivity of SAR

Syntax
neq = sarnoiserefl(freq,freqref,imgsnr,sigmaref)
neq = sarnoiserefl(freq,freqref,imgsnr,sigmaref,n)

Description
neq = sarnoiserefl(freq,freqref,imgsnr,sigmaref) computes the noise equivalent
reflectivity.

neq = sarnoiserefl(freq,freqref,imgsnr,sigmaref,n) specifies a frequency-dependent
proportionality factor that depends upon the target characteristics.

Examples

Noise Equivalent Reflectivity

Estimate the noise equivalent reflectivity of a side-looking SAR operating at a frequency of 16 GHz for
a target reflectivity of –25 dB at the Ku band (nominally 16.7 GHz) and to form an image having an
SNR of 30 dB.

f = 16e9;
sigmaref = -25;
fref = 16.7e9;
snr = 30;

Convert the target reflectivity to linear units. Compute the noise equivalent reflectivity.

neq = sarnoiserefl(f,fref,snr,db2pow(sigmaref))

neq = -55.1860

Input Arguments
freq — Radar frequency
positive real scalar | vector

Radar frequency in hertz, specified as a positive real scalar or a vector.
Data Types: double

freqref — Nominal reference frequency
positive real scalar

Nominal reference frequency in hertz, specified as a positive real scalar.
Data Types: double
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imgsnr — Image signal-to-noise ratio
real scalar | vector

Image signal-to-noise ratio (SNR) of the SAR in decibels, specified as a real scalar or a vector.
Data Types: double

sigmaref — Reflectivity at nominal reference frequency
positive real scalar

Reflectivity at nominal reference frequency in square meters per square meter, specified as a positive
real scalar.
Data Types: double

n — Frequency-dependent proportionality factor
1 (default) | positive real scalar

Frequency-dependent proportionality factor, specified as a real scalar. For distributed targets, n
varies between 0 and 1. For nondistributed targets, n is a positive real scalar.
Data Types: double

Output Arguments
neq — Noise equivalent reflectivity
matrix

Noise equivalent reflectivity in decibels, returned as a matrix. The rows of neq correspond to the
frequency values in freq. The columns of neq correspond to the image SNR values in imgsnr.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radareqsarpow | radareqsarrng | radareqsarsnr | rainscr
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rainscr
Signal-to-clutter ratio due to rain

Syntax
scr = rainscr(lambda,rrcs,tgtrcs,t)
scr = rainscr(lambda,rrcs,tgtrcs,t,vbrain)

Description
scr = rainscr(lambda,rrcs,tgtrcs,t) returns the signal-to-clutter ratio (SCR) due to rain.

scr = rainscr(lambda,rrcs,tgtrcs,t,vbrain) specifies the rain velocity bandwidth.

Examples

Signal-to-Clutter Ratio Due to Rain

Estimate the signal-to-clutter-ratio due to rain of a side-looking airborne SAR. The SAR moves at 50
m/s in a direction orthogonal to the antenna boresight and operates at a frequency of 1.5 GHz. The
rain rates are 0.25 mm/hr, 1 mm/hr, 4 mm/hr, and 16 mm/hr. The rain clutter volume is 20 m3. The
SAR module has aperture processing length of 100 m. Assume the target RCS is 1 m2 and the velocity
bandwidth of the rain is 4 m/s.

v = 50;
f = 1.5e9;
lambda = freq2wavelen(f);

rr = [0.25 1 4 16];
vol = 20;

L = 100;
tgtrcs = 1;
vbrain = 4;

Compute the signal-to-clutter ratio. Use rainreflectivity and clutterVolumeRCS to compute
the rain radar cross-section. Use sarinttime to compute the aperture collection interval.

volref = rainreflectivity(f,rr);
rrcs = clutterVolumeRCS(volref,vol);
t = sarinttime(v,L);
scr = rainscr(lambda,rrcs,tgtrcs,t,vbrain);

Plot the signal-to-clutter ratio as a function of the rain rate.

semilogx(rr,scr,'o-')
xlabel('Rain Rate (mm/rr)')
ylabel('Signal-to-Clutter Ratio (dB)')
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Input Arguments
lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

rrcs — Rain radar cross-section
scalar | vector

Rain radar cross-section (RCS) in square meters, specified as a scalar or a vector.
Data Types: double

tgtrcs — Target radar cross-section
scalar

Target RCS in square meters, specified as a scalar.
Data Types: double

t — Aperture collection interval
positive real scalar

Aperture collection interval in seconds, specified as a positive real scalar.
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Data Types: double

vbrain — Rain velocity bandwidth
4 (default) | positive scalar

Rain velocity bandwidth in meters per second, specified as a positive scalar.
Data Types: double

Output Arguments
scr — Signal-to-clutter ratio due to rain
matrix

Signal-to-clutter ratio due to rain in decibels, returned as a matrix. The rows of scr correspond to the
radar wavelength values in lambda. The columns of scr correspond to the rain RCS values in rrcs.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radareqsarpow | radareqsarrng | radareqsarsnr | sarnoiserefl
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sarintang
Coherent integration angle for SAR

Syntax
ciang = sarintang(lambda,azres)
ciang = sarintang(lambda,azres,azb)

Description
ciang = sarintang(lambda,azres) returns the coherent integration angle, ciang, through
which the target is viewed during the coherent processing aperture.

ciang = sarintang(lambda,azres,azb) specifies the azimuth impulse broadening factor, azb,
due to data weighting or windowing for sidelobe control.

Examples

Coherent Integration Angle

Estimate the coherent integration angle of a side-looking airborne synthetic aperture radar (SAR)
with an operating frequency of 10 GHz and a cross-range resolution of 1 m. Assume the azimuth
broadening factor to be 1.3.

f = 10e9;
azres = 1;
azb = 1.3; 

Compute the coherent integration angle.

lambda = freq2wavelen(f);
ciang = sarintang(lambda,azres,azb)

ciang = 1.1165

Input Arguments
lambda — Radar wavelength
positive real scalar | vector

Radar wavelength in meters, specified as a positive real scalar or a vector.
Data Types: double

azres — Image azimuth or cross-range resolution
positive real scalar | vector

Image azimuth or cross-range resolution in meters, specified as a positive real scalar or a vector.
Data Types: double
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azb — Azimuth impulse broadening factor
1 (default) | positive real scalar

Azimuth impulse broadening factor, specified as a positive real scalar. azb expresses the actual –3 dB
mainlobe width with respect to the nominal width. Typical window functions like hamming and hann
exhibit azb values in the range from 1 to 1.5.
Data Types: double

Output Arguments
ciang — Coherent integration angle
matrix

Coherent integration angle in degrees, returned as a matrix. The rows in ciang correspond to the
wavelengths in lambda and the columns correspond to the resolution in azres.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sardispgrazang | sarsquintang
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sardispgrazang
Display grazing angle for SAR data collection

Syntax
dgrazang = sardispgrazang(pos)
dgrazang = sardispgrazang(pos,slope)
dgrazang = sardispgrazang(pos,slope,axes)

Description
dgrazang = sardispgrazang(pos) returns the display grazing angle, dgrazang, of an image
defined at the aperture reference point.

dgrazang = sardispgrazang(pos,slope) specifies the slope angle for the image display plane.

dgrazang = sardispgrazang(pos,slope,axes) specifies the antenna phase center traveling
axis.

Examples

Display Grazing Angle

Compute the grazing angle of a SAR image projected on the image display plane of an antenna phase
center located at [1000,2000,5000] meters with respect to a scene centered at [10,10,10]
meters. Assume the slope angle for the image display plane is 30∘.

pos1 = [1000;2000;5000];
pos2 = [10;10;10];
rngvec = pos1-pos2;
slope = 30;

Compute the image grazing angle.

dgrazang = sardispgrazang(rngvec,slope)

dgrazang = 27.3352

Input Arguments
pos — Measured line of sight vector
3-by-N matrix in meters

Measured line of sight vector from the scene center to the antenna phase center, specified as a 3-by-
N matrix in meters. Each column of pos represents a measured line-of-sight position. The geometric
location of the antenna phase center at the center of the processing aperture is the aperture
reference point. The antenna phase center serves as the reference point for the phase history of the
received signal.
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Example: [1000;2000;5000]
Data Types: double

slope — Slope angle
0 (default) | scalar between 0 and 90°

Slope angle, specified as a scalar between 0 and 90°. The slope angle is the angle between the image
display plane and the scene center plane.
Data Types: double

axes — Antenna phase center traveling axis
'x' (default) | 'y' | 'z'

Antenna phase center traveling axis, specified as 'x', 'y', or 'z'.

• 'x' — The antenna phase center travels in the x-direction and the surface plane is the xy-plane.
• 'y' — The antenna phase center travels in the y-direction and the surface plane is the yz-plane.
• 'z' — The antenna phase center travels in the z-direction and the surface plane is the zx-plane.

Data Types: double

Output Arguments
dgrazang — Display grazing angle
1-by-N row vector in degrees

Display grazing angle, returned as a 1-by-N row vector in degrees. The display grazing angle is the
angle between the vertical projections of the slant range vector onto the image display plane and the
scene center plane. The image display plane is the plane onto which the image formation processor
projects the scatterers in a 3-D scene.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sarintang | sarsquintang
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sarsquintang
Squint angle for SAR data collection

Syntax
[sqang,dsqang] = sarsquintang(pos)
[sqang,dsqang] = sarsquintang(pos,slope)
[sqang,dsqang] = sarsquintang(pos,slope,axes)

Description
[sqang,dsqang] = sarsquintang(pos) returns the squint angle, sqang, and display squint
angle, dsqang, of an image defined at the aperture reference point.

[sqang,dsqang] = sarsquintang(pos,slope) specifies the slope angle for the image display
plane.

[sqang,dsqang] = sarsquintang(pos,slope,axes) specifies the antenna phase center
traveling axis.

Examples

Squint Angle and Display Squint Angle

Compute the squint angle of a SAR image and the projected angle on the image display plane of an
antenna phase center located at [1000,2000,5000] meters with respect to a scene center. Assume
the slope angle for the image display plane is 30∘.

pos = [1000;2000;5000];
slope = 30;

Compute the image squint angle and display squint angle.

[sqang,dsqang] = sarsquintang(pos,slope)

sqang = 63.4349

dsqang = 66.5868

Input Arguments
pos — Measured line of sight vector
3-by-N matrix in meters

Measured line of sight vector from the scene center to the antenna phase center, specified as a 3-by-
N matrix in meters. Each column of pos represents a measured line-of-sight position. The geometric
location of the antenna phase center at the center of the processing aperture is the aperture
reference point. The antenna phase center serves as the reference point for the phase history of the
received signal.
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Example: [1000;2000;5000]
Data Types: double

slope — Slope angle
0 (default) | scalar between 0 and 90°

Slope angle, specified as a scalar between 0 and 90°. The slope angle is the angle between the image
display plane and the scene center plane.
Data Types: double

axes — Antenna phase center traveling axis
'x' (default) | 'y' | 'z'

Antenna phase center traveling axis, specified as 'x', 'y', or 'z'.

• 'x' — The antenna phase center travels in the x-direction and the surface plane is the xy-plane.
• 'y' — The antenna phase center travels in the y-direction and the surface plane is the yz-plane.
• 'z' — The antenna phase center travels in the z-direction and the surface plane is the zx-plane.

Data Types: double

Output Arguments
sqang — Squint angle
1-by-N row vector in degrees

Squint angle, returned as a 1-by-N row vector in degrees. The squint angle is the angle between the
antenna phase center axis and the vertical projection of the slant range vector onto the scene center
plane.

dsqang — Display squint angle
1-by-N row vector in degrees

Display squint angle, returned as a 1-by-N row vector in degrees. The display squint angle is the
angle between the antenna phase center axis and the vertical projection of the slant range vector
onto the image display center plane. The image display plane is the plane onto which the image
formation processor projects the scatterers in a 3-D scene.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sardispgrazang | sarintang
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randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r = 3x3 quaternion array
      0.17446 +  0.59506i -  0.73295j +  0.27976k      0.69704 - 0.060589i +  0.68679j -  0.19695k      0.35191 +  0.74478i +  0.52322j -  0.21842k
      0.21908 -  0.89875i -    0.298j +  0.23548k    -0.049744 +  0.59691i +  0.56459j +  0.56786k      0.17527 -  0.46955i +  0.52986j -  0.68414k
       0.6375 +  0.49338i -  0.24049j +  0.54068k       0.2979 -  0.53568i +  0.31819j +  0.72323k     -0.30189 -  0.22864i -  0.83159j +  0.40626k

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint to visualize the distribution of the
random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);
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figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values
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Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

Version History
Introduced in R2021a

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.

Extended Capabilities
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Generate C and C++ code using MATLAB® Coder™.
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angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

         0         0         0
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
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Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
quaternion
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rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

   96.6345 -119.0274   45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvec | euler | eulerd

Objects
quaternion
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eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion
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meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot( ___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot( ___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)
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quatAverage = quaternion
      0.88863 - 0.062598i +  0.27822j +  0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

   45.7876   32.6452    6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;   
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on
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Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')
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The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end
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plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3

         0         0   45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.
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q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3
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         0         0   90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

Version History
Introduced in R2021a
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slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T. The function always chooses the shorter interpolation path between q1 and q2.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

     0     0     0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

   45.0000         0         0
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  -45.0000         0         0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis
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4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
     T,q180pathEuler(:,1),'r*', ...
     T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
       'Path to 180 degrees', ...
       'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')
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The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Show Interpolated Quaternions on Sphere

Create two quaternions.

q1 = quaternion([75,-20,-10],'eulerd','ZYX','frame');
q2 = quaternion([-45,20,30],'eulerd','ZYX','frame');

Define the interpolation coefficient.

T = 0:0.01:1;

Obtain the interpolated quaternions.

quats = slerp(q1,q2,T);

Obtain the corresponding rotate points.

pts = rotatepoint(quats,[1 0 0]);

Show the interpolated quaternions on a unit sphere.

figure
[X,Y,Z] = sphere;
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surf(X,Y,Z,'FaceColor',[0.57 0.57 0.57])
hold on;

scatter3(pts(:,1),pts(:,2),pts(:,3))
view([69.23 36.60])
axis equal

Note that the interpolated quaternions follow the shorter path from q1 to q2.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array
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Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

Version History
Introduced in R2021a

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 345–354.
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classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans = 
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans = 
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
    1
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bS = single
    2

cS = single
    3

dS = single
    4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans = 
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Version History
Introduced in R2021a
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compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

quat = quaternion(randomParts)

quat = quaternion
     0.53767 +  1.8339i -  2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray = 2x2 quaternion array
      1 +  2i +  3j +  4k      9 + 10i + 11j + 12k
      5 +  6i +  7j +  8k     13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4

 compact
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     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | classUnderlying

Objects
quaternion
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conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

     0     1     0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
     0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
     0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
     1 + 0i + 0j + 0k
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Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times

Objects
quaternion
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ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat'

quatTransposed = 1x4 quaternion array
      0.53767 -  0.31877i -   3.5784j -   0.7254k       1.8339 +   1.3077i -   2.7694j + 0.063055k      -2.2588 +  0.43359i +   1.3499j -  0.71474k      0.86217 -  0.34262i -   3.0349j +  0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat'

quatTransposed = 2x2 quaternion array
      0.53767 +   2.2588i -  0.31877j +  0.43359k       1.8339 -  0.86217i +   1.3077j -  0.34262k
       3.5784 +   1.3499i -   0.7254j -  0.71474k       2.7694 -   3.0349i + 0.063055j +  0.20497k

 ctranspose, '
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Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, '

Objects
quaternion
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dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
     1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5x1 quaternion array
       0.92388 +         0i +   0.38268j +         0k
       0.70711 +         0i +   0.70711j +         0k
    6.1232e-17 +         0i +         1j +         0k
       0.70711 +         0i -   0.70711j +         0k
       0.92388 +         0i -   0.38268j +         0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

   45.0000
   90.0000
  180.0000
   90.0000
   45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
           30,5,15; ...

 dist
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           30,10,15; ...
           30,15,15];
angles2 = [30,6,15; ...
           31,11,15; ...
           30,16,14; ...
           30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

    6.0000
    6.0827
    6.0827
    6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
     0.72332 - 0.53198i + 0.20056j +  0.3919k

qNegative = -qPositive

qNegative = quaternion
    -0.72332 + 0.53198i - 0.20056j -  0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or
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• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for the
angle of q as θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). As p approaches q, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));

 dist
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | conj

Objects
quaternion

1 Functions
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euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

         0         0    1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

 euler
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

 euler
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exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A = 4x1 quaternion array
     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Compute the exponential of A.

B = exp(A)

B = 4x1 quaternion array
     5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
        -57.359 -     89.189i -     81.081j -     64.865k
        -6799.1 +     2039.1i +     1747.8j +     3495.6k
          -6.66 +     36.931i +     39.569j +     2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array

1 Functions

1-442



Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.^,power | log

Objects
quaternion

 exp
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ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B

C = 2x1 quaternion array
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A = 2x2 quaternion array
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B

C = 2x2 quaternion array
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times | conj | norm | ./,ldivide

Objects
quaternion

1 Functions
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log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A = 3x1 quaternion array
     0.53767 + 0.86217i - 0.43359j +  2.7694k
      1.8339 + 0.31877i + 0.34262j -  1.3499k
     -2.2588 -  1.3077i +  3.5784j +  3.0349k

Compute the logarithmic values of A.

B = log(A)

B = 3x1 quaternion array
      1.0925 + 0.40848i - 0.20543j +  1.3121k
      0.8436 + 0.14767i + 0.15872j - 0.62533k
      1.6807 - 0.53829i +   1.473j +  1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array

 log
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Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | .^,power

Objects
quaternion
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minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
     0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
     1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
     0 + 1i + 1j + 1k

 minus, -
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
-,uminus | .*,times | *,mtimes

Objects
quaternion

1 Functions

1-450



mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

b = quaternion(randn(1,4))

b = quaternion
    -0.12414 +  1.4897i +   1.409j +  1.4172k

C = A*b

C = 4x1 quaternion array
      -6.6117 +   4.8105i +  0.94224j -   4.2097k
      -2.0925 +   6.9079i +   3.9995j -   3.3614k
       1.8155 -   6.2313i -    1.336j -     1.89k
      -4.6033 +   5.8317i + 0.047161j -    2.791k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
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j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2021a

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times

Objects
quaternion
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norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array
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Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
normalize | parts | conj

Objects
quaternion

 norm
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normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
                        2,3,4,1; ...
                        3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized = 3x1 quaternion array
     0.18257 + 0.36515i + 0.54772j +  0.7303k
     0.36515 + 0.54772i +  0.7303j + 0.18257k
     0.54772 +  0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array
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Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times | conj

Objects
quaternion

 normalize
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ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones( ___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
     1 + 0i + 0j + 0k
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Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes = 3x3 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
   1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.

 ones
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Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes = 2x2 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
zeros

Objects
quaternion
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parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

     1
     5

qB = 2×1

     2
     6

qC = 2×1

     3
     7

qD = 2×1
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     4
     8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, c, and d. Each part is the same size as quat.
Data Types: single | double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion
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power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
     1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
     -86 -  52i -  78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

     1     0     2
     3     2     1

C = A.^b

1 Functions

1-464



C = 2x3 quaternion array
        1 +    2i +    3j +    4k        1 +    0i +    0j +    0k      -28 +    4i +    6j +    8k
    -2110 -  444i -  518j -  592k     -124 +   60i +   70j +   80k        5 +    6i +    7j +    8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
log | exp

Objects
quaternion
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prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A = 3x3 quaternion array
      0.53767 +   2.7694i +    1.409j -  0.30344k      0.86217 +   0.7254i -   1.2075j +   0.8884k     -0.43359 -  0.20497i +  0.48889j -   0.8095k
       1.8339 -   1.3499i +   1.4172j +  0.29387k      0.31877 - 0.063055i +  0.71724j -   1.1471k      0.34262 -  0.12414i +   1.0347j -   2.9443k
      -2.2588 +   3.0349i +   0.6715j -  0.78728k      -1.3077 +  0.71474i +   1.6302j -   1.0689k       3.5784 +   1.4897i +  0.72689j +   1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B = 1x3 quaternion array
     -19.837 -  9.1521i +  15.813j -  19.918k     -5.4708 - 0.28535i +   3.077j -  1.2295k      -10.69 -  8.5199i -  2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.
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dim = 3;
B = prod(A,dim)

B = 2x2 quaternion array
     -2.4847 +  1.1659i - 0.37547j +  2.8068k     0.28786 - 0.29876i - 0.51231j -  4.2972k
     0.38986 -  3.6606i -  2.0474j -   6.047k      -1.741 - 0.26782i +  5.4346j +  4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
mtimes | .*,times

Objects
quaternion

 prod

1-469



rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B

C = 2x1 quaternion array
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B

C = 2x2 quaternion array
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ./,ldivide | norm | .*,times

Objects
quaternion
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rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','frame');
               
rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

    0.7071   -0.0000         0
   -0.5000    0.5000         0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')
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Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

    0.6124   -0.3536    0.7071
    0.5000    0.8660   -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2021a

 rotateframe

1-477



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotatepoint

Objects
quaternion
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rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

 rotatepoint
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Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','point');
               
rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

   -0.0000    0.7071         0
    0.5000   -0.5000         0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')

1 Functions

1-480



Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

    0.6124    0.5000   -0.6124
   -0.3536    0.8660    0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion
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cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotateframe

Objects
quaternion
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rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

    0.7071   -0.0000    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           sind(theta) ; ...
      0             1           0           ; ...
     -sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) -sind(gamma) ;     ...
      0             sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry
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rotationMatrixVerification = 3×3

    0.7071         0    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

    0.7071   -0.0000   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           -sind(theta) ; ...
      0             1           0           ; ...
     sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) sind(gamma) ;     ...
      0             -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

1 Functions

1-486



Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

    0.9524    0.5297    0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
    totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

    0.9524
    0.5297
    0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string
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Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

Version History
Introduced in R2021a

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.
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See Also
Functions
rotvec | rotvecd | euler | eulerd
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quaternion
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rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

    1.6866   -2.0774    0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C = 2x1 quaternion array
     -28 +   4i +   6j +   8k
    -124 +  60i +  70j +  80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C = 3x3 quaternion array
     0.60169 +  2.4332i -  2.5844j + 0.51646k    -0.49513 +  1.1722i +  4.4401j -   1.217k      2.3126 + 0.16856i +  1.0474j -  1.0921k
     -4.2329 +  2.4547i +  3.7768j + 0.77484k    -0.65232 - 0.43112i -  1.4645j - 0.90073k     -1.8897 - 0.99593i +  3.8331j + 0.12013k

1 Functions

1-492



     -4.4159 +  2.1926i +  1.9037j -  4.0303k     -2.0232 +  0.4205i - 0.17288j +  3.8529k     -2.9137 -  5.5239i -  1.3676j +  3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
   0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a = 1x3 quaternion array
           0 +       0i +       0j +       0k           1 +       0i +       0j +       0k     0.53767 +  1.8339i -  2.2588j + 0.86217k

b = quaternion(randn(4,4))

b = 4x1 quaternion array
      0.31877 +   3.5784i +   0.7254j -  0.12414k
      -1.3077 +   2.7694i - 0.063055j +   1.4897k
     -0.43359 -   1.3499i +  0.71474j +    1.409k
      0.34262 +   3.0349i -  0.20497j +   1.4172k

a.*b

ans = 4x3 quaternion array
            0 +        0i +        0j +        0k      0.31877 +   3.5784i +   0.7254j -  0.12414k      -4.6454 +   2.1636i +   2.9828j +   9.6214k
            0 +        0i +        0j +        0k      -1.3077 +   2.7694i - 0.063055j +   1.4897k      -7.2087 -   4.2197i +   2.5758j +   5.8136k
            0 +        0i +        0j +        0k     -0.43359 -   1.3499i +  0.71474j +    1.409k       2.6421 -     5.32i -   2.3841j -   1.3547k
            0 +        0i +        0j +        0k      0.34262 +   3.0349i -  0.20497j +   1.4172k      -7.0663 -  0.76439i -  0.86648j +   7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double
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B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:
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z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2021a

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,
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transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat.'

quatTransposed = 1x4 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k       1.8339 -   1.3077i +   2.7694j - 0.063055k      -2.2588 -  0.43359i -   1.3499j +  0.71474k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat.'

quatTransposed = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       1.8339 +  0.86217i -   1.3077j +  0.34262k
       3.5784 -   1.3499i +   0.7254j +  0.71474k       2.7694 +   3.0349i - 0.063055j -  0.20497k
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Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion
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uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q = 2x2 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k      -2.2588 -  0.43359i -   1.3499j +  0.71474k
       1.8339 -   1.3077i +   2.7694j - 0.063055k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R = 2x2 quaternion array
     -0.53767 -  0.31877i -   3.5784j -   0.7254k       2.2588 +  0.43359i +   1.3499j -  0.71474k
      -1.8339 +   1.3077i -   2.7694j + 0.063055k     -0.86217 -  0.34262i -   3.0349j +  0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion
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zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros( ___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
     0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros = 3x3 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
   1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros = 2x2 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array
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Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion
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getTrackPositions
Returns updated track positions and position covariance matrix

Syntax
positions = getTrackPositions(tracks,modelName)
positions = getTrackPositions(tracks,positionSelector)
[positions,positionCovariances] = getTrackPositions( ___ )

Description
positions = getTrackPositions(tracks,modelName) returns a matrix of track positions
based on tracks and the model name.

positions = getTrackPositions(tracks,positionSelector) returns a matrix of track
positions based on tracks and the position selector.

[positions,positionCovariances] = getTrackPositions( ___ ) also returns the track
position covariance matrices.

Examples

Find Position of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = radarTracker('FilterInitializationFcn',@initcaekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = tracker(detection,0)

tracks = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 0
                  UpdateTime: 0
                         Age: 1
                       State: [9x1 double]
             StateCovariance: [9x9 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 3
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: [1 0 0 0 0]
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
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            ObjectAttributes: [1x1 struct]

Obtain the position vector from the track state using the model name.

position1 = getTrackPositions(tracks,"constacc")

position1 = 1×3

    10   -20     4

Obtain the position vector from the track state using the position selector.

positionSelector = [1 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 1 0 0];
position2 = getTrackPositions(tracks,positionSelector)

position2 = 1×3

    10   -20     4

Find Position and Covariance of 3-D Constant-Velocity Object

Create an extended Kalman filter tracker for 3-D constant-velocity motion.

tracker = radarTracker("FilterInitializationFcn",@initcvekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;3;-7],"ObjectClassID",3);
tracks = tracker(detection,0)

tracks = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 0
                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 3
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: [1 0 0 0 0]
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Obtain the position vector and position covariance for that track using the model name.

[position1,positionCovariance1] = getTrackPositions(tracks,"constvel")
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position1 = 1×3

    10     3    -7

positionCovariance1 = 3×3

     1     0     0
     0     1     0
     0     0     1

Obtain the position vector and position covariance for that track using the position selector.

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
[position2,positionCovariance2] = getTrackPositions(tracks,positionSelector)

position2 = 1×3

    10     3    -7

positionCovariance2 = 3×3

     1     0     0
     0     1     0
     0     0     1

Input Arguments
tracks — Object tracks
array of objectTrack objects | array of structures

Object tracks, specified as an array of objectTrack objects or an array of structures containing
sufficient information to obtain the track position information. At a minimum, these structures must
contain a State column vector field and a positive-definite StateCovariance matrix field. For a
sample track structure, see toStruct.

modelName — Motion model name
"constvel" | "constacc" | "singer" | "constturn"

Motion model name, specified as one of these options:

• "constvel" — The function obtains the position states based on the state definition in the
constvel function.

• "constacc" — The function obtains the position states based on the state definition in the
constacc function.

• "constturn" — The function obtains the position states based on the state definition in the
constturn function.

• "singer" — The function obtains the position states based on the state definition in the singer
function. The use of singer model requires the Sensor Fusion and Tracking Toolbox™.

positionSelector — Position selection matrix
D-by-N real-valued matrix.
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Position selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track positions from the state vector. Multiply the state vector by position selector matrix returns
positions. The same selector is applied to all object tracks.

Output Arguments
positions — Positions of tracked objects
real-valued M-by-D matrix

Positions of tracked objects at last update time, returned as a real-valued M-by-D matrix. D
represents the number of position elements. M represents the number of tracks.

positionCovariances — Position covariance matrices of tracked objects
real-valued D-by-D-M array

Position covariance matrices of tracked objects, returned as a real-valued D-by-D-M array. D
represents the number of position elements. M represents the number of tracks. Each D-by-D
submatrix is a position covariance matrix for a track.

More About
Position Selector for 2-Dimensional Motion

Show the position selection matrix for two-dimensional motion when the state consists of the position
and velocity.

1 0 0 0
0 0 1 0

Position Selector for 3-Dimensional Motion

Show the position selection matrix for three-dimensional motion when the state consists of the
position and velocity.

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Position Selector for 3-Dimensional Motion with Acceleration

Show the position selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

Version History
Introduced in R2021a
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Obtain position and covariance from tracks using motion model name input

You can now obtain positions and associated covariances of tracks by specifying the motion model
name as an input. For example,

[positions,covariances] = getTrackPositions(tracks,"constvel")

returns positions and position covariances in tracks based on the constant-velocity model in the
constvel function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• In code generation, the tracks input must be specified as non-empty structures.

See Also
Functions
getTrackVelocities | initcaekf | initcakf | initcaukf | initctekf | initctukf |
initcvkf | initcvukf

Objects
objectDetection | radarTracker
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getTrackVelocities
Obtain updated track velocities and velocity covariance matrix

Syntax
positions = getTrackVelocities(tracks,modelName)
velocities = getTrackVelocities(tracks,velocitySelector)
[velocities,velocityCovariances] = getTrackVelocities(tracks,
velocitySelector)

Description
positions = getTrackVelocities(tracks,modelName) returns a matrix of track velocities
based on tracks and the model name.

velocities = getTrackVelocities(tracks,velocitySelector) returns a matrix of track
velocities based on tracks and the velocity selector.

[velocities,velocityCovariances] = getTrackVelocities(tracks,
velocitySelector) also returns the track velocity covariance matrices.

Examples

Find Velocity of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = radarTracker("FilterInitializationFcn",@initcaekf);

Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],"ObjectClassID",3);
tracks = tracker(detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4],"ObjectClassID",3);
tracks = tracker(detection,0.2);

Obtain the velocity vector from the track state using the model name.

velocity1 = getTrackVelocities(tracks,"constacc")

velocity1 = 1×3

    1.0093   -0.6728         0

Obtain the velocity vector from the track state using the position selector.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
velocity2 = getTrackVelocities(tracks,velocitySelector)
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velocity2 = 1×3

    1.0093   -0.6728         0

Velocity and Covariance of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = radarTracker("FilterInitializationFcn",@initcaekf);

Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],"ObjectClassID",3);
tracks = step(tracker,detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4.3],"ObjectClassID",3);
tracks = step(tracker,detection,0.2);

Obtain the velocity vector and covariance from the track state using the model name.

[velocity1,velocityCovariance1] = getTrackVelocities(tracks,"constacc")

velocity1 = 1×3

    1.0093   -0.6728    1.0093

velocityCovariance1 = 3×3

   70.0685         0         0
         0   70.0685         0
         0         0   70.0685

Obtain the velocity vector and covariance from the track state using the velocity selector.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
[velocity2,velocityCovariance2] = getTrackVelocities(tracks,velocitySelector)

velocity2 = 1×3

    1.0093   -0.6728    1.0093

velocityCovariance2 = 3×3

   70.0685         0         0
         0   70.0685         0
         0         0   70.0685
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Input Arguments
tracks — Object tracks
array of objectTrack objects | array of structures

Object tracks, specified as an array of objectTrack objects or an array of structures containing
sufficient information to obtain the track velocity information. At a minimum, these structures must
contain a State column vector field and a positive-definite StateCovariance matrix field. For a
sample track structure, see toStruct.

modelName — Motion model name
"constvel" | "constacc" | "singer" | "constturn"

Motion model name, specified as one of these options:

• "constvel" — The function obtains the velocity states based on the state definition in the
constvel function.

• "constacc" — The function obtains the velocity states based on the state definition in the
constacc function.

• "constturn" — The function obtains the velocity states based on the state definition in the
constturn function.

• "singer" — The function obtains the velocity states based on the state definition in the singer
function. The use of singer model requires the Sensor Fusion and Tracking Toolbox.

velocitySelector — Velocity selection matrix
D-by-N real-valued matrix.

Velocity selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track velocities from the state vector. Multiply the state vector by velocity selector matrix returns
velocities. The same selector is applied to all object tracks.

Output Arguments
velocities — Velocities of tracked objects
real-valued 1-by-D vector | real-valued M-by-D matrix

Velocities of tracked objects at last update time, returned as a 1-by-D vector or a real-valued M-by-D
matrix. D represents the number of velocity elements. M represents the number of tracks.

velocityCovariances — Velocity covariance matrices of tracked objects
real-valued D-by-D-matrix | real-valued D-by-D-by-M array

Velocity covariance matrices of tracked objects, returned as a real-valued D-by-D-matrix or a real-
valued D-by-D-by-M array. D represents the number of velocity elements. M represents the number of
tracks. Each D-by-D submatrix is a velocity covariance matrix for a track.
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More About
Velocity Selector for 2-Dimensional Motion

Show the velocity selection matrix for two-dimensional motion when the state consists of the position
and velocity.

0 1 0 0
0 0 0 1

Velocity Selector for 3-Dimensional Motion

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position and velocity.

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Velocity Selector for 3-Dimensional Motion with Acceleration

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

Version History
Introduced in R2021a

Obtain velocity and covariance from tracks using motion model name input

You can now obtain velocities and associated covariances of tracks by specifying the motion model
name as an input. For example,

[positions,covariances] = getTrackVelocities(tracks,"constvel")

returns velocities and velocity covariances in tracks based on the constant-velocity model in the
constvel function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• In code generation, the tracks input must be specified as non-empty structures.
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See Also
Functions
getTrackPositions | initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf
| initcvukf

Objects
objectDetection | radarTracker
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cameas
Measurement function for constant-acceleration motion

Syntax
measurement = cameas(state)
measurement = cameas(state,frame)
measurement = cameas(state,frame,sensorpos)
measurement = cameas(state,frame,sensorpos,sensorvel)
measurement = cameas(state,frame,sensorpos,sensorvel,laxes)
measurement = cameas(state,measurementParameters)
[measurement,bounds] = cameas( ___ )

Description
measurement = cameas(state) returns the measurement, for the constant-acceleration Kalman
filter motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = cameas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cameas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cameas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cameas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = cameas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

[measurement,bounds] = cameas( ___ ) returns the measurement bounds, used by a tracking
filter (trackingEKF or trackingUKF) in residual calculations. See the HasMeasurementWrapping
of the filter object for more details.

Examples

Create Measurement from Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in rectangular coordinates.

state = [1,10,3,2,20,0.5].';
measurement = cameas(state)

measurement = 3×1

1 Functions

1-514



     1
     2
     0

The measurement is returned in three-dimensions with the z-component set to zero.

Create Measurement from Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in spherical coordinates.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Accelerating Object in Translated Spherical Frame

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.
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Create Measurement from Constant-Accelerating Object Using Measurement Parameters

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state2d = [1,10,3,2,20,5].';

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cameas(state2d,'spherical',sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurement = cameas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Display Residual Wrapping Bounds for cameas

Specify a 2-D state and specify a measurement structure such that the function outputs azimuth,
range, and range-rate measurements.

state = [10 1 0.1 10 1 0.1]'; % [x vx ax y vy ay]'
mp = struct("Frame","Spherical", ...
    "HasAzimuth",true, ...
    "HasElevation",false, ...
    "HasRange",true, ...
    "HasVelocity",false);

Output the measurement and wrapping bounds using the cameas function.
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[measure,bounds] = cameas(state,mp)

measure = 2×1

   45.0000
   14.1421

bounds = 2×2

  -180   180
  -Inf   Inf

Input Arguments
state — Kalman filter state
real-valued 3D-byN matrix

Kalman filter state for constant-acceleration motion, specified as a real-valued 3D-byN matrix. D is
the number of spatial degrees of freedom of motion and N is the number states. For each spatial
degree of motion, the state vector, as a column of the state matrix, takes the form shown in this
table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double
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sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1
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Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurement — Measurement vector
real-valued M-by-N matrix

Measurement vector, returned as an M-by-N matrix. M is the dimension of the measurement and N,
the number of measurement, is the same as the number of states. The form of each measurement
depends upon which syntax you use.

 cameas

1-519



• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular' Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

bounds — Measurement residual wrapping bounds
M-by-2 real-valued matrix

Measurement residual wrapping bounds, returned as an M-by-2 real-valued matrix, where M is the
dimension of the measurement. Each row of the matrix corresponds to the lower and upper bounds
for the specific dimension in the measurement output.

The function returns different bound values based on the frame input.

• If the frame input is specified as 'Rectangular', each row of the matrix is [-Inf Inf],
indicating the filter does not wrap the measurement residual in the filter.
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• If the frame input is specified as 'Spherical', the returned bounds contains the bounds for
specific measurement dimension based on the following:

• When HasAzimuth = true, the matrix includes a row of [-180 180], indicating the filter
wraps the azimuth residual in the range of [-180 180] in degrees.

• When HasElevation = true, the matrix includes a row of [-90 90], indicating the filter
wraps the elevation residual in the range of [-90 90] in degrees.

• When HasRange = true, the matrix includes a row of [-Inf Inf], indicating the filter does
not wrap the range residual.

• When HasVelocity = true, the matrix includes a row of [-Inf Inf], indicating the filter
does not wrap the range rate residual.

If you specify any of the options as false, the returned bounds does not contain the corresponding
row. For example, if HasAzimuth = true, HasElevation = false, HasRange = true,
HasVelocity = true, then bounds is returned as

  -180   180
  -Inf   Inf
  -Inf   Inf

The filter wraps the measuring residuals based on this equation:

xwrap = mod(x− a− b
2 , b− a) + a− b

2

where x is the residual to wrap, a is the lower bound, b is the upper bound, mod is the modules after
division function, and xwrap is the wrapped residual.
Data Types: single | double

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameasjac | constturn | constturnjac | ctmeas | ctmeasjac |
constvel | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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cameasjac
Jacobian of measurement function for constant-acceleration motion

Syntax
measurementjac = cameasjac(state)
measurementjac = cameasjac(state,frame)
measurementjac = cameasjac(state,frame,sensorpos)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cameasjac(state,measurementParameters)

Description
measurementjac = cameasjac(state) returns the measurement Jacobian, for constant-
acceleration Kalman filter motion model in rectangular coordinates. The state argument specifies
the current state of the filter.

measurementjac = cameasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cameasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cameasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Construct the measurement Jacobian in rectangular
coordinates.

state = [1,10,3,2,20,5].';
jacobian = cameasjac(state)

jacobian = 3×6

     1     0     0     0     0     0
     0     0     0     1     0     0
     0     0     0     0     0     0
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Measurement Jacobian of Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates.

state = [1;10;3;2;20;5];
measurementjac = cameasjac(state,'spherical')

measurementjac = 4×6

  -22.9183         0         0   11.4592         0         0
         0         0         0         0         0         0
    0.4472         0         0    0.8944         0         0
    0.0000    0.4472         0    0.0000    0.8944         0

Measurement Jacobian of Accelerating Object in Translated Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
measurementjac = cameasjac(state,'spherical',sensorpos)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5903   -0.1789         0    0.1073    0.9839         0

Create Measurement Jacobian of Accelerating Object Using Measurement Parameters

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state2d = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
frame = 'spherical';
sensorvel = [0;8;0];
laxes = eye(3);
measurementjac = cameasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
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         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5274   -0.1789         0    0.0959    0.9839         0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = cameasjac(state2d,measparm)

measurementjac = 4×6

   -2.5210         0         0   -0.4584         0         0
         0         0         0         0         0         0
   -0.1789         0         0    0.9839         0         0
    0.5274   -0.1789         0    0.0959    0.9839         0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector
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Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]
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Field Description Example
HasAzimuth Logical scalar indicating if

azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix
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Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The interpretation of the rows and columns depends on the frame argument, as
described in this table.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameas | constturn | constturnjac | ctmeas | ctmeasjac |
constvel | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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constacc
Constant-acceleration motion model

Syntax
updatedstate = constacc(state)
updatedstate = constacc(state,dt)
updatedstate = constacc(state,w,dt)

Description
updatedstate = constacc(state) returns the updated state, state, of a constant acceleration
Kalman filter motion model for a step time of one second.

updatedstate = constacc(state,dt) specifies the time step, dt.

updatedstate = constacc(state,w,dt) also specifies the state noise, w.

Examples

Predict State for Constant-Acceleration Motion

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 1 second later.

state = constacc(state)

state = 6×1

    2.5000
    2.0000
    1.0000
    3.0000
    1.0000
         0

Predict State for Constant-Acceleration Motion With Specified Time Step

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 0.5 s later.

state = constacc(state,0.5)
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state = 6×1

    1.6250
    1.5000
    1.0000
    2.5000
    1.0000
         0

Input Arguments
state — Kalman filter state
real-valued 3D-by-N matrix

Kalman filter state for constant-acceleration motion, specified as a real-valued 3D-by-N matrix. D is
the number of spatial degrees of freedom of motion and N is the number states. For each spatial
degree of motion, the state vector, as a column of the state matrix, takes the form shown in this
table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of spatial degrees of
freedom of motion and N is the number of state vectors. If specified as a scalar, the scalar value is
expanded to a D-by-N matrix.
Data Types: single | double
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Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-acceleration process, the state transition matrix after a time step, T,
is block diagonal:

xk + 1
vxk + 1
axk + 1
yk + 1

vyk + 1
ayk + 1

=

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

xk
vxk
axk
yk

vyk
ayk

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas | ctmeasjac |
constvel | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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constaccjac
Jacobian for constant-acceleration motion

Syntax
jacobian = constaccjac(state)
jacobian = constaccjac(state,dt)
[jacobian,noisejacobian] = constaccjac(state,w,dt)

Description
jacobian = constaccjac(state) returns the updated Jacobian , jacobian, for a constant-
acceleration Kalman filter motion model. The step time is one second. The state argument specifies
the current state of the filter.

jacobian = constaccjac(state,dt) also specifies the time step, dt.

[jacobian,noisejacobian] = constaccjac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Acceleration Motion

Compute the state Jacobian for two-dimensional constant-acceleration motion.

Define an initial state and compute the state Jacobian for a one second update time.

state = [1,1,1,2,1,0];
jacobian = constaccjac(state)

jacobian = 6×6

    1.0000    1.0000    0.5000         0         0         0
         0    1.0000    1.0000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    1.0000    0.5000
         0         0         0         0    1.0000    1.0000
         0         0         0         0         0    1.0000

Compute State Jacobian for Constant-Acceleration Motion with Specified Time Step

Compute the state Jacobian for two-dimensional constant-acceleration motion. Set the step time to
0.5 seconds.

state = [1,1,1,2,1,0].';
jacobian = constaccjac(state,0.5)
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jacobian = 6×6

    1.0000    0.5000    0.1250         0         0         0
         0    1.0000    0.5000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    0.5000    0.1250
         0         0         0         0    1.0000    0.5000
         0         0         0         0         0    1.0000

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion
dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to a N-by-1 vector.
Data Types: single | double
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Output Arguments
jacobian — Constant-acceleration motion Jacobian
real-valued 3N-by-3N matrix

Constant-acceleration motion Jacobian, returned as a real-valued 3N-by-3N matrix.

noisejacobian — Constant acceleration motion noise Jacobian
real-valued 3N-by-N matrix

Constant acceleration motion noise Jacobian, returned as a real-valued 3N-by-N matrix. N is the
number of spatial degrees of motion. For example, N = 2 for the 2-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Algorithms
For a two-dimensional constant-acceleration process, the Jacobian matrix after a time step, T, is block
diagonal:

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | cameas | cameasjac | constturn | constturnjac | ctmeas | ctmeasjac | constvel
| constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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constturn
Constant turn-rate motion model

Syntax
updatedstate = constturn(state)
updatedstate = constturn(state,dt)
updatedstate = constturn(state,w,dt)

Description
updatedstate = constturn(state) returns the updated state, updatedstate, obtained from
the previous state, state, after a one-second step time for motion modelled as constant turn rate.
Constant turn rate means that motion in the x-y plane follows a constant angular velocity and motion
in the vertical z directions follows a constant velocity model.

updatedstate = constturn(state,dt) also specifies the time step, dt.

updatedstate = constturn(state,w,dt) also specifies noise, w.

Examples

Update State for Constant Turn-Rate Motion

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to one second later.

state = [500,0,0,100,12].';
state = constturn(state)

state = 5×1

  489.5662
  -20.7912
   99.2705
   97.8148
   12.0000

Update State for Constant Turn-Rate Motion with Specified Time Step

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to 0.1 seconds later.

state = [500,0,0,100,12].';
state = constturn(state,0.1)

state = 5×1
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  499.8953
   -2.0942
    9.9993
   99.9781
   12.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1)-by-N matrix

State noise, specified as a scalar or real-valued (D+1)-length -by-N matrix. D is the number of motion
dimensions and N is the number of state vectors. The components are each columns are
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[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1)-by-N matrix.
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturnjac | ctmeas | ctmeasjac |
constvel | constveljac | cvmeas | cvmeasjac | initctekf | initctukf

Objects
trackingEKF | trackingUKF
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constturnjac
Jacobian for constant turn-rate motion

Syntax
jacobian = constturnjac(state)
jacobian = constturnjac(state,dt)
[jacobian,noisejacobian] = constturnjac(state,w,dt)

Description
jacobian = constturnjac(state) returns the updated Jacobian, jacobian, for constant turn-
rate Kalman filter motion model for a one-second step time. The state argument specifies the
current state of the filter. Constant turn rate means that motion in the x-y plane follows a constant
angular velocity and motion in the vertical z directions follows a constant velocity model.

jacobian = constturnjac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constturnjac(state,w,dt) also specifies noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant Turn-Rate Motion

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is one second.

state = [500,0,0,100,12];
jacobian = constturnjac(state)

jacobian = 5×5

    1.0000    0.9927         0   -0.1043   -0.8631
         0    0.9781         0   -0.2079   -1.7072
         0    0.1043    1.0000    0.9927   -0.1213
         0    0.2079         0    0.9781   -0.3629
         0         0         0         0    1.0000

Compute State Jacobian for Constant Turn-Rate Motion with Specified Time Step

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is 0.1 second.

state = [500,0,0,100,12];
jacobian = constturnjac(state,0.1)
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jacobian = 5×5

    1.0000    0.1000         0   -0.0010   -0.0087
         0    0.9998         0   -0.0209   -0.1745
         0    0.0010    1.0000    0.1000   -0.0001
         0    0.0209         0    0.9998   -0.0037
         0         0         0         0    1.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1) vector

State noise, specified as a scalar or real-valued M-by-(D+1)-length vector. D is the number of motion
dimensions. D is two for 2-D motion and D is three for 3-D motion. The vector components are
[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1) vector.
Data Types: single | double
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Output Arguments
jacobian — Constant turn-rate motion Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion Jacobian, returned as a real-valued 5-by-5 matrix or 7-by-7 matrix
depending on the size of the state vector. The Jacobian is constructed from the partial derivatives of
the state at the updated time step with respect to the state at the previous time step.

noisejacobian — Constant turn-rate motion noise Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion noise Jacobian, returned as a real-valued 5-by-(D+1) matrix where D is two
for 2-D motion or a real-valued 7-by-(D+1) matrix where D is three for 3-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | ctmeas | ctmeasjac | constvel |
constveljac | cvmeas | cvmeasjac | initctekf

Objects
trackingEKF

1 Functions
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constvel
Constant velocity state update

Syntax
updatedstate = constvel(state)
updatedstate = constvel(state,dt)
updatedstate = constvel(state,w,dt)

Description
updatedstate = constvel(state) returns the updated state, state, of a constant-velocity
Kalman filter motion model after a one-second time step.

updatedstate = constvel(state,dt) specifies the time step, dt.

updatedstate = constvel(state,w,dt) also specifies state noise, w.

Examples

Update State for Constant-Velocity Motion

Update the state of two-dimensional constant-velocity motion for a time interval of one second.

state = [1;1;2;1];
state = constvel(state)

state = 4×1

     2
     1
     3
     1

Update State for Constant-Velocity Motion with Specified Time Step

Update the state of two-dimensional constant-velocity motion for a time interval of 1.5 seconds.

state = [1;1;2;1];
state = constvel(state,1.5)

state = 4×1

    2.5000
    1.0000
    3.5000
    1.0000
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Input Arguments
state — Kalman filter state
real-valued 2D-by-N matrix

Kalman filter state for constant-velocity motion, specified as a real-valued 2D-by-N matrix. D is the
number of spatial degrees of freedom of motion and N is the number states. The state is expected to
be Cartesian state. For each spatial degree of motion, the state vector, as a column of the state
matrix, takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued D-by-N matrix

State noise, specified as a scalar or real-valued D-by-N matrix. D is the number of spatial degrees of
freedom of motion and N is the number of state vectors. For example, D = 2 for the 2-D motion. If
specified as a scalar, the scalar value is expanded to a D-by-N matrix.
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.
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Algorithms
For a two-dimensional constant-velocity process, the state transition matrix after a time step, T, is
block diagonal as shown here.

xk + 1
vx, k + 1
yk + 1

vy, k + 1

=

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk
vxk
yk

vyk

The block for each spatial dimension is:

1 T
0 1

For each additional spatial dimension, add an identical block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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constveljac
Jacobian for constant-velocity motion

Syntax
jacobian = constveljac(state)
jacobian = constveljac(state,dt)
[jacobian,noisejacobian] = constveljac(state,w,dt)

Description
jacobian = constveljac(state) returns the updated Jacobian , jacobian, for a constant-
velocity Kalman filter motion model for a step time of one second. The state argument specifies the
current state of the filter.

jacobian = constveljac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constveljac(state,w,dt) specifies the state noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant-Velocity Motion

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a one second
update time.

state = [1,1,2,1].';
jacobian = constveljac(state)

jacobian = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

Compute State Jacobian for Constant-Velocity Motion with Specified Time Step

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a half-second
update time.

state = [1;1;2;1];

Compute the state update Jacobian for 0.5 second.

jacobian = constveljac(state,0.5)
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jacobian = 4×4

    1.0000    0.5000         0         0
         0    1.0000         0         0
         0         0    1.0000    0.5000
         0         0         0    1.0000

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued N-by-1 vector

State noise, specified as a scalar or real-valued real valued N-by-1 vector. N is the number of motion
dimensions. For example, N = 2 for the 2-D motion. If specified as a scalar, the scalar value is
expanded to an N-by-1 vector.
Data Types: single | double

Output Arguments
jacobian — Constant-velocity motion Jacobian
real-valued 2N-by-2N matrix
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Constant-velocity motion Jacobian, returned as a real-valued 2N-by-2N matrix. N is the number of
spatial degrees of motion.

noisejacobian — Constant velocity motion noise Jacobian
real-valued 2N-by-N matrix

Constant velocity motion noise Jacobian, returned as a real-valued 2N-by-N matrix. N is the number
of spatial degrees of motion. The Jacobian is constructed from the partial derivatives of the state at
the updated time step with respect to the noise components.

Algorithms
For a two-dimensional constant-velocity motion, the Jacobian matrix for a time step, T, is block
diagonal:

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

The block for each spatial dimension has this form:

1 T
0 1

For each additional spatial dimension, add an identical block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constvel | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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ctmeas
Measurement function for constant turn-rate motion

Syntax
measurement = ctmeas(state)
measurement = ctmeas(state,frame)
measurement = ctmeas(state,frame,sensorpos)
measurement = ctmeas(state,frame,sensorpos,sensorvel)
measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = ctmeas(state,measurementParameters)
[measurement,bounds] = ctmeas( ___ )

Description
measurement = ctmeas(state) returns the measurement for a constant turn-rate Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = ctmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = ctmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = ctmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = ctmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

[measurement,bounds] = ctmeas( ___ ) returns the measurement bounds, used by a tracking
filter (trackingEKF or trackingUKF) in residual calculations. See the HasMeasurementWrapping
of the filter object for more details.

Examples

Create Measurement from Constant Turn-Rate Motion in Rectangular Frame

Create a measurement from an object undergoing constant turn-rate motion. The state is the position
and velocity in each dimension and the turn-rate. The measurements are in rectangular coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state)

measurement = 3×1
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     1
     2
     0

The z-component of the measurement is zero.

Create Measurement from Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. The measurements are in spherical coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive indicating that the object is
moving away from the sensor.

Create Measurement from Constant Turn-Rate Motion in Translated Spherical Frame

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.
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Create Measurement from Constant Turn-Rate Motion using Measurement Parameters

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state2d = [1;10;2;20;5];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = ctmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes);
measurement = ctmeas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Display Residual Wrapping Bounds for ctmeas

Specify a 2-D state and specify a measurement structure such that the function outputs azimuth,
range, and range-rate measurements.

state = [10 1 10 1 0.5]'; % [x vx y vy omega]'
mp = struct("Frame","Spherical", ...
    "HasAzimuth",true, ...
    "HasElevation",false, ...
    "HasRange",true, ...
    "HasVelocity",false);

Output the measurement and wrapping bounds using the ctmeas function.

[measure,bounds] = ctmeas(state,mp)

measure = 2×1
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   45.0000
   14.1421

bounds = 2×2

  -180   180
  -Inf   Inf

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector
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Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]
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Field Description Example
HasAzimuth Logical scalar indicating if

azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurement — Measurement vector
real-valued M-by-N matrix
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Measurement vector, returned as an M-by-N matrix. M is the dimension of the measurement and N,
the number of measurement, is the same as the number of states. The form of each measurement
depends upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular' Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

bounds — Measurement residual wrapping bounds
M-by-2 real-valued matrix

Measurement residual wrapping bounds, returned as an M-by-2 real-valued matrix, where M is the
dimension of the measurement. Each row of the matrix corresponds to the lower and upper bounds
for the specific dimension in the measurement output.
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The function returns different bound values based on the frame input.

• If the frame input is specified as 'Rectangular', each row of the matrix is [-Inf Inf],
indicating the filter does not wrap the measurement residual in the filter.

• If the frame input is specified as 'Spherical', the returned bounds contains the bounds for
specific measurement dimension based on the following:

• When HasAzimuth = true, the matrix includes a row of [-180 180], indicating the filter
wraps the azimuth residual in the range of [-180 180] in degrees.

• When HasElevation = true, the matrix includes a row of [-90 90], indicating the filter
wraps the elevation residual in the range of [-90 90] in degrees.

• When HasRange = true, the matrix includes a row of [-Inf Inf], indicating the filter does
not wrap the range residual.

• When HasVelocity = true, the matrix includes a row of [-Inf Inf], indicating the filter
does not wrap the range rate residual.

If you specify any of the options as false, the returned bounds does not contain the corresponding
row. For example, if HasAzimuth = true, HasElevation = false, HasRange = true,
HasVelocity = true, then bounds is returned as

  -180   180
  -Inf   Inf
  -Inf   Inf

The filter wraps the measuring residuals based on this equation:

xwrap = mod(x− a− b
2 , b− a) + a− b

2

where x is the residual to wrap, a is the lower bound, b is the upper bound, mod is the modules after
division function, and xwrap is the wrapped residual.
Data Types: single | double

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeasjac |
constvel | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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ctmeasjac
Jacobian of measurement function for constant turn-rate motion

Syntax
measurementjac = ctmeasjac(state)
measurementjac = ctmeasjac(state,frame)
measurementjac = ctmeasjac(state,frame,sensorpos)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = ctmeasjac(state,measurementParameters)

Description
measurementjac = ctmeasjac(state) returns the measurement Jacobian, measurementjac,
for a constant turn-rate Kalman filter motion model in rectangular coordinates. state specifies the
current state of the track.

measurementjac = ctmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = ctmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = ctmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant Turn-Rate Motion in Rectangular Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20;5];
jacobian = ctmeasjac(state)

jacobian = 3×5

     1     0     0     0     0
     0     0     1     0     0
     0     0     0     0     0
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Measurement Jacobian of Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates.

state = [1;10;2;20;5];
measurementjac = ctmeasjac(state,'spherical')

measurementjac = 4×5

  -22.9183         0   11.4592         0         0
         0         0         0         0         0
    0.4472         0    0.8944         0         0
    0.0000    0.4472    0.0000    0.8944         0

Measurement Jacobian of Constant Turn-Rate Object in Translated Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [5;-20;0].

state = [1;10;2;20;5];
sensorpos = [5;-20;0];
measurementjac = ctmeasjac(state,'spherical',sensorpos)

measurementjac = 4×5

   -2.5210         0   -0.4584         0         0
         0         0         0         0         0
   -0.1789         0    0.9839         0         0
    0.5903   -0.1789    0.1073    0.9839         0

Measurement Jacobian of Constant Turn-Rate Object Using Measurement Parameters

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [25;-40;0].

state2d = [1;10;2;20;5];
sensorpos = [25,-40,0].';
frame = 'spherical';
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = ctmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×5
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   -1.0284         0   -0.5876         0         0
         0         0         0         0         0
   -0.4961         0    0.8682         0         0
    0.2894   -0.4961    0.1654    0.8682         0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = ctmeasjac(state2d,measparm)

measurementjac = 4×5

   -1.0284         0   -0.5876         0         0
         0         0         0         0         0
   -0.4961         0    0.8682         0         0
    0.2894   -0.4961    0.1654    0.8682         0

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double
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frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'
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Field Description Example
OriginPosition Position offset of the origin of

the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0
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If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-5 matrix | real-valued 4-by-5 matrix

Measurement Jacobian, returned as a real-valued 3-by-5 or 4-by-5 matrix. The row dimension and
interpretation depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
constvel | constveljac | cvmeas | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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cvmeas
Measurement function for constant velocity motion

Syntax
measurement = cvmeas(state)
measurement = cvmeas(state,frame)
measurement = cvmeas(state,frame,sensorpos)
measurement = cvmeas(state,frame,sensorpos,sensorvel)
measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = cvmeas(state,measurementParameters)
[measurement,bounds] = cvmeas( ___ )

Description
measurement = cvmeas(state) returns the measurement for a constant-velocity Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
tracking filter.

measurement = cvmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cvmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cvmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes) specifies the local
sensor axes orientation, laxes.

measurement = cvmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

[measurement,bounds] = cvmeas( ___ ) returns the measurement bounds, used by a tracking
filter (trackingEKF or trackingUKF) in residual calculations. See the HasMeasurementWrapping
of the filter object for more details.

Examples

Create Measurement from Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
both dimensions. The measurements are in rectangular coordinates.

state = [1;10;2;20];
measurement = cvmeas(state)

measurement = 3×1
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     1
     2
     0

The z-component of the measurement is zero.

Create Measurement from Constant Velocity Object in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. The measurements are in spherical coordinates.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical')

measurement = 4×1

   63.4349
         0
    2.2361
   22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
         0
   42.4853
  -22.3607

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.
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Create Measurement from Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cvmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurement = cvmeas(state2d,measparm)

measurement = 4×1

 -116.5651
         0
   42.4853
  -17.8885

Display Residual Wrapping Bounds for cvmeas

Specify a 2-D state and specify a measurement structure such that the function outputs azimuth,
range, and range-rate measurements.

state = [10 1 10 1]'; % [x vx y vy]'
mp = struct("Frame","Spherical", ...
    "HasAzimuth",true, ...
    "HasElevation",false, ...
    "HasRange",true, ...
    "HasVelocity",false);

Output the measurement and wrapping bounds using the cvmeas function.

[measure,bounds] = cvmeas(state,mp)

measure = 2×1
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   45.0000
   14.1421

bounds = 2×2

  -180   180
  -Inf   Inf

Input Arguments
state — Kalman filter state vector
real-valued 2D-by-N matrix

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2D-by-N matrix. D is
the number of spatial degrees of freedom of motion and N is the number states. The state is
expected to be Cartesian state. For each spatial degree of motion, the state vector, as a column of the
state matrix, takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector
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Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1
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Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurement — Measurement vector
real-valued M-by-N matrix

Measurement vector, returned as an M-by-N matrix. M is the dimension of the measurement and N,
the number of measurement, is the same as the number of states. The form of each measurement
depends upon which syntax you use.
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• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

  HasElevation
  false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular' Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

bounds — Measurement residual wrapping bounds
M-by-2 real-valued matrix

Measurement residual wrapping bounds, returned as an M-by-2 real-valued matrix, where M is the
dimension of the measurement. Each row of the matrix corresponds to the lower and upper bounds
for the specific dimension in the measurement output.

The function returns different bound values based on the frame input.

• If the frame input is specified as 'Rectangular', each row of the matrix is [-Inf Inf],
indicating the filter does not wrap the measurement residual in the filter.
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• If the frame input is specified as 'Spherical', the returned bounds contains the bounds for
specific measurement dimension based on the following:

• When HasAzimuth = true, the matrix includes a row of [-180 180], indicating the filter
wraps the azimuth residual in the range of [-180 180] in degrees.

• When HasElevation = true, the matrix includes a row of [-90 90], indicating the filter
wraps the elevation residual in the range of [-90 90] in degrees.

• When HasRange = true, the matrix includes a row of [-Inf Inf], indicating the filter does
not wrap the range residual.

• When HasVelocity = true, the matrix includes a row of [-Inf Inf], indicating the filter
does not wrap the range rate residual.

If you specify any of the options as false, the returned bounds does not contain the corresponding
row. For example, if HasAzimuth = true, HasElevation = false, HasRange = true,
HasVelocity = true, then bounds is returned as

  -180   180
  -Inf   Inf
  -Inf   Inf

The filter wraps the measuring residuals based on this equation:

xwrap = mod(x− a− b
2 , b− a) + a− b

2

where x is the residual to wrap, a is the lower bound, b is the upper bound, mod is the modules after
division function, and xwrap is the wrapped residual.
Data Types: single | double

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constvel | constveljac | cvmeasjac

Objects
trackingKF | trackingEKF | trackingUKF
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cvmeasjac
Jacobian of measurement function for constant velocity motion

Syntax
measurementjac = cvmeasjac(state)
measurementjac = cvmeasjac(state,frame)
measurementjac = cvmeasjac(state,frame,sensorpos)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cvmeasjac(state,measurementParameters)

Description
measurementjac = cvmeasjac(state) returns the measurement Jacobian for constant-velocity
Kalman filter motion model in rectangular coordinates. state specifies the current state of the
tracking filter.

measurementjac = cvmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cvmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cvmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20];
jacobian = cvmeasjac(state)

jacobian = 3×4

     1     0     0     0
     0     0     1     0
     0     0     0     0
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Measurement Jacobian of Constant-Velocity Motion in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each dimension. Compute the measurement Jacobian with respect to spherical coordinates.

state = [1;10;2;20];
measurementjac = cvmeasjac(state,'spherical')

measurementjac = 4×4

  -22.9183         0   11.4592         0
         0         0         0         0
    0.4472         0    0.8944         0
    0.0000    0.4472    0.0000    0.8944

Measurement Jacobian of Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Compute the measurement Jacobian with respect to spherical coordinates
centered at (5;-20;0) meters.

state = [1;10;2;20];
sensorpos = [5;-20;0];
measurementjac = cvmeasjac(state,'spherical',sensorpos)

measurementjac = 4×4

   -2.5210         0   -0.4584         0
         0         0         0         0
   -0.1789         0    0.9839         0
    0.5903   -0.1789    0.1073    0.9839

Create Measurement Jacobian for Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = cvmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×4

    1.2062         0   -0.6031         0
         0         0         0         0
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   -0.4472         0   -0.8944         0
    0.0471   -0.4472   -0.0235   -0.8944

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
    'Orientation',laxes);
measurementjac = cvmeasjac(state2d,measparm)

measurementjac = 4×4

    1.2062         0   -0.6031         0
         0         0         0         0
   -0.4472         0   -0.8944         0
    0.0471   -0.4472   -0.0235   -0.8944

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. The state is expected to be
Cartesian state. For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement output frame
'rectangular' (default) | 'spherical'

Measurement output frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of x, y, and z Cartesian coordinates. When specified as
'spherical', a measurement consists of azimuth, elevation, range, and range rate.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in meters.
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Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the navigation frame, specified as a real-valued 3-by-1 column vector.
Units are in m/s.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the navigation frame. That is, the
matrix is the rotation matrix from the global frame to the sensor frame.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1
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Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

If you only want to perform one coordinate transformation, such as a transformation from the body
frame to the sensor frame, you only need to specify a measurement parameter structure. If you want
to perform multiple coordinate transformations, you need to specify an array of measurement
parameter structures. To learn how to perform multiple transformations, see the “Convert Detections
to objectDetection Format” (Sensor Fusion and Tracking Toolbox) example.
Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The first dimension and meaning depend on value of the frame argument.
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Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in the toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constvel | constveljac | cvmeas

Objects
trackingKF | trackingEKF | trackingUKF
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initcaabf
Create constant acceleration alpha-beta tracking filter from detection report

Syntax
abf = initcaabf(detection)

Description
abf = initcaabf(detection) initializes a constant acceleration alpha-beta tracking filter for
object tracking based on information provided in detection.

The function initializes a constant acceleration state with the same convention as constacc and
cameas, [x vx ax y vy ay z vz az].

Examples

Creating Constant Acceleration trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initccabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcaabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 6×1

     1
     0
     0
     3
     0
     0

ABF.MeasurementNoise

ans = 2×2

    1.0000    0.2000
    0.2000    2.0000
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Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant acceleration alpha-beta tracking filter for object tracking, returned as a trackingABF
object.

Algorithms
• The function computes the process noise matrix assuming a unit standard deviation for the

acceleration change rate.
• You can use this function as the FilterInitializationFcn property of trackers.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackingABF | objectDetection | trackingKF | trackingEKF | trackingUKF
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initcvabf
Create constant velocity tracking alpha-beta filter from detection report

Syntax
abf = initcvabf(detection)

Description
abf = initcvabf(detection) initializes a constant velocity alpha-beta filter for object tracking
based on information provided in detection.

The function initializes a constant velocity state with the same convention as constvel and cvmeas,
[x vx y vy z vz].

Examples

Creating trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initcvabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcvabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 4×1

     1
     0
     3
     0

ABF.MeasurementNoise

ans = 2×2

    1.0000    0.2000
    0.2000    2.0000
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Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant velocity alpha-beta tracking filter for object tracking, returned as a trackingABF object.

Algorithms
• The function computes the process noise matrix assuming a unit acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackers.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackingABF | objectDetection | trackingKF | trackingEKF | trackingUKF
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initcaekf
Create constant-acceleration extended Kalman filter from detection report

Syntax
filter = initcaekf(detection)

Description
filter = initcaekf(detection) creates and initializes a constant-acceleration extended
Kalman filter from information contained in a detection report. For more information about the
extended Kalman filter, see trackingEKF.

The function initializes a constant acceleration state with the same convention as constacc and
cameas, [x vx ax y vy ay z vz az].

Examples

Initialize 3-D Constant-Acceleration Extended Kalman Filter

Create and initialize a 3-D constant-acceleration extended Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200;30;0) , of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;0],'MeasurementNoise',2.1*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display its properties.

filter = initcaekf(detection)

filter = 
  trackingEKF with properties:

                          State: [9x1 double]
                StateCovariance: [9x9 double]

             StateTransitionFcn: @constacc
     StateTransitionJacobianFcn: @constaccjac
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cameas
         MeasurementJacobianFcn: @cameasjac
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                MaxNumOOSMSteps: 0
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                EnableSmoothing: 0

Show the filter state.

filter.State

ans = 9×1

  -200
     0
     0
   -30
     0
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

    2.1000         0         0         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0         0         0
         0         0  100.0000         0         0         0         0         0         0
         0         0         0    2.1000         0         0         0         0         0
         0         0         0         0  100.0000         0         0         0         0
         0         0         0         0         0  100.0000         0         0         0
         0         0         0         0         0         0    2.1000         0         0
         0         0         0         0         0         0         0  100.0000         0
         0         0         0         0         0         0         0         0  100.0000

Create 3D Constant Acceleration EKF from Spherical Measurement

Initialize a 3D constant-acceleration extended Kalman filter from an initial detection report made
from an initial measurement in spherical coordinates. If you want to use spherical coordinates, then
you must supply a measurement parameter structure as part of the detection report with the Frame
field set to 'spherical'. Set the azimuth angle of the target to 45∘, the elevation to 22∘, the range
to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to true.
Then, the measurement vector consists of azimuth, elevation, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
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    'HasElevation',true);
meas = [45;22;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [4x1 double]
         MeasurementNoise: [4x4 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcaekf(detection);

Display the state vector.

disp(filter.State)

  680.6180
   -2.6225
         0
  615.6180
    2.3775
         0
  364.6066
   -1.4984
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration-rate standard deviation of 1 m/s3.
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• You can use this function as the FilterInitializationFcn property of a radarTracker
object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initctekf | initctukf | initcvkf | initcvekf | initcvukf | initcakf | initcaukf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initcakf
Create constant-acceleration linear Kalman filter from detection report

Syntax
filter = initcakf(detection)

Description
filter = initcakf(detection) creates and initializes a constant-acceleration linear Kalman
filter from information contained in a detection report. For more information about the linear
Kalman filter, see trackingKF.

The function initializes a constant acceleration state with the same convention as constacc and
cameas, [x vx ax y vy ay z vz az].

Examples

Initialize 2-D Constant-Acceleration Linear Kalman Filter

Create and initialize a 2-D constant-acceleration linear Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (10,−5), of the object position. Assume
uncorrelated measurement noise.

detection = objectDetection(0,[10;-5],'MeasurementNoise',eye(2), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',5});

Create the new filter from the detection report.

filter = initcakf(detection);

Show the filter state.

filter.State

ans = 6×1

    10
     0
     0
    -5
     0
     0

Show the state transition model.

filter.StateTransitionModel
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ans = 6×6

    1.0000    1.0000    0.5000         0         0         0
         0    1.0000    1.0000         0         0         0
         0         0    1.0000         0         0         0
         0         0         0    1.0000    1.0000    0.5000
         0         0         0         0    1.0000    1.0000
         0         0         0         0         0    1.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a radarTracker

object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcaukf | initctekf | initctukf | initcvkf | initcvekf | initcvukf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initcaukf
Create constant-acceleration unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-acceleration unscented
Kalman filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

The function initializes a constant acceleration state with the same convention as constacc and
cameas, [x vx ax y vy ay z vz az].

Examples

Initialize 3-D Constant-Acceleration Unscented Kalman Filter

Create and initialize a 3-D constant-acceleration unscented Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200,-30,5), of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;5],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initcaukf(detection)

filter = 
  trackingUKF with properties:

                          State: [9x1 double]
                StateCovariance: [9x9 double]

             StateTransitionFcn: @constacc
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cameas
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0
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                EnableSmoothing: 0

Show the state.

filter.State

ans = 9×1

  -200
     0
     0
   -30
     0
     0
     5
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

    2.0000         0         0         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0         0         0
         0         0  100.0000         0         0         0         0         0         0
         0         0         0    2.0000         0         0         0         0         0
         0         0         0         0  100.0000         0         0         0         0
         0         0         0         0         0  100.0000         0         0         0
         0         0         0         0         0         0    2.0000         0         0
         0         0         0         0         0         0         0  100.0000         0
         0         0         0         0         0         0         0         0  100.0000

Create 3D Constant Acceleration UKF from Spherical Measurement

Initialize a 3D constant-acceleration unscented Kalman filter from an initial detection report made
from a measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45∘, and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement structure. Set 'HasVelocity' and 'HasElevation' to false. Then, the
measurement vector consists of azimuth angle and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
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    'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [2x1 double]
         MeasurementNoise: [2x2 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcaukf(detection);

Display the state vector.

disp(filter.State)

  732.1068
         0
         0
  667.1068
         0
         0
  -10.0000
         0
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
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• You can use this function as the FilterInitializationFcn property of a radarTracker
object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcakf | initcaekf | initctekf | initctukf | initcvkf | initcvekf | initcvukf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initctekf
Create constant turn-rate extended Kalman filter from detection report

Syntax
filter = initctekf(detection)

Description
filter = initctekf(detection) creates and initializes a constant-turn-rate extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

The function initializes a constant turn-rate state with the same convention as constturn and
ctmeas, [x vx y vy ω z vz], where ω is the turn-rate.

Examples

Initialize 2-D Constant Turn-Rate Extended Kalman Filter

Create and initialize a 2-D constant turn-rate extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (-250,-40), of the object position.
Assume uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctekf(detection)

filter = 
  trackingEKF with properties:

                          State: [7x1 double]
                StateCovariance: [7x7 double]

             StateTransitionFcn: @constturn
     StateTransitionJacobianFcn: @constturnjac
                   ProcessNoise: [4x4 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @ctmeas
         MeasurementJacobianFcn: @ctmeasjac
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1
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                MaxNumOOSMSteps: 0

                EnableSmoothing: 0

Show the state.

filter.State

ans = 7×1

  -250
     0
   -40
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

    2.0000         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0
         0         0    2.0000         0         0         0         0
         0         0         0  100.0000         0         0         0
         0         0         0         0  100.0000         0         0
         0         0         0         0         0    2.0000         0
         0         0         0         0         0         0  100.0000

Create 2-D Constant Turnrate EKF from Spherical Measurement

Initialize a 2-D constant-turnrate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees, the range to 1000 meters,
and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
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meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initctekf(detection);

Filter state vector.

disp(filter.State)

  732.1068
   -2.8284
  667.1068
    2.1716
         0
  -10.0000
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.
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• You can use this function as the FilterInitializationFcn property of a radarTracker
object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaukf | initctukf | initcvkf | initcvekf | initcvukf | initcakf | initcaekf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initctukf
Create constant turn-rate unscented Kalman filter from detection report

Syntax
filter = initctukf(detection)

Description
filter = initctukf(detection) creates and initializes a constant-turn-rate unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

The function initializes a constant turn-rate state with the same convention as constturn and
ctmeas, [x vx y vy ω z vz], where ω is the turn-rate.

Examples

Initialize 2-D Constant Turn-Rate Unscented Kalman Filter

Create and initialize a 2-D constant turn-rate unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 2D measurement, (-250,-40), of the object position. Assume
uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctukf(detection)

filter = 
  trackingUKF with properties:

                          State: [7x1 double]
                StateCovariance: [7x7 double]

             StateTransitionFcn: @constturn
                   ProcessNoise: [4x4 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @ctmeas
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
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                           Beta: 2
                          Kappa: 0

                EnableSmoothing: 0

Show the filter state.

filter.State

ans = 7×1

  -250
     0
   -40
     0
     0
     0
     0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

    2.0000         0         0         0         0         0         0
         0  100.0000         0         0         0         0         0
         0         0    2.0000         0         0         0         0
         0         0         0  100.0000         0         0         0
         0         0         0         0  100.0000         0         0
         0         0         0         0         0    2.0000         0
         0         0         0         0         0         0  100.0000

Create 2-D Constant Turn-rate UKF from Spherical Measurement

Initialize a 2-D constant turn-rate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to
false. Then, the measurement consists of azimuth and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
    'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2].^2);
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detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [2x1 double]
         MeasurementNoise: [2x2 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initctukf(detection);

Filter state vector.

disp(filter.State)

  732.1068
         0
  667.1068
         0
         0
  -10.0000
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a radarTracker
object.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaukf | initcvkf | initcvekf | initcvukf | initcakf | initcaekf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initcvekf
Create constant-velocity extended Kalman filter from detection report

Syntax
filter = initcvekf(detection)

Description
filter = initcvekf(detection) creates and initializes a constant-velocity extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

The function initializes a constant velocity state with the same convention as constvel and cvmeas,
[x vx y vy z vz].

Examples

Initialize 3-D Constant-Velocity Extended Kalman Filter

Create and initialize a 3-D constant-velocity extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report.

filter = initcvekf(detection)

filter = 
  trackingEKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
     StateTransitionJacobianFcn: @constveljac
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
         MeasurementJacobianFcn: @cvmeasjac
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                MaxNumOOSMSteps: 0
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                EnableSmoothing: 0

Show the filter state.

filter.State

ans = 6×1

    10
     0
    20
     0
    -5
     0

Show the state covariance.

filter.StateCovariance

ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Create 3-D Constant Velocity EKF from Spherical Measurement

Initialize a 3-D constant-velocity extended Kalman filter from an initial detection report made from a
3-D measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45 degrees, the elevation to -10 degrees, the
range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);
measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',true);
meas = [45;-10;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [4x1 double]
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         MeasurementNoise: [4x4 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvekf(detection);

Filter state vector.

disp(filter.State)

  721.3642
   -2.7855
  656.3642
    2.2145
 -173.6482
    0.6946

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a radarTracker

object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
initcaukf | initctekf | initctukf | initcvkf | initcvukf | initcakf | initcaekf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initcvkf
Create constant-velocity linear Kalman filter from detection report

Syntax
filter = initcvkf(detection)

Description
filter = initcvkf(detection) creates and initializes a constant-velocity linear Kalman filter
from information contained in a detection report. For more information about the linear Kalman
filter, see trackingKF.

The function initializes a constant velocity state with the same convention as constvel and cvmeas,
[x vx y vy z vz].

Examples

Initialize 2-D Constant-Velocity Linear Kalman Filter

Create and initialize a 2-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 2-D measurement, (10,20), of the object position.

detection = objectDetection(0,[10;20],'MeasurementNoise',[1 0.2; 0.2 2], ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Yellow Car',5});

Create the new track from the detection report.

filter = initcvkf(detection)

filter = 
  trackingKF with properties:

               State: [4x1 double]
     StateCovariance: [4x4 double]

         MotionModel: '2D Constant Velocity'
        ProcessNoise: [2x2 double]

    MeasurementModel: [2x4 double]
    MeasurementNoise: [2x2 double]

     MaxNumOOSMSteps: 0

     EnableSmoothing: 0

Show the state.

filter.State
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ans = 4×1

    10
     0
    20
     0

Show the state transition model.

filter.StateTransitionModel

ans = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

Initialize 3-D Constant-Velocity Linear Kalman Filter

Create and initialize a 3-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',eye(3), ...
    'SensorIndex', 1,'ObjectClassID',1,'ObjectAttributes',{'Green Car', 5});

Create the new filter from the detection report and display its properties.

filter = initcvkf(detection)

filter = 
  trackingKF with properties:

               State: [6x1 double]
     StateCovariance: [6x6 double]

         MotionModel: '3D Constant Velocity'
        ProcessNoise: [3x3 double]

    MeasurementModel: [3x6 double]
    MeasurementNoise: [3x3 double]

     MaxNumOOSMSteps: 0

     EnableSmoothing: 0

Show the state.

filter.State

ans = 6×1
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    10
     0
    20
     0
    -5
     0

Show the state transition model.

filter.StateTransitionModel

ans = 6×6

     1     1     0     0     0     0
     0     1     0     0     0     0
     0     0     1     1     0     0
     0     0     0     1     0     0
     0     0     0     0     1     1
     0     0     0     0     0     1

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a radarTracker

object.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcakf | initcaekf | initcaukf | initctekf | initctukf | initcvekf | initcvukf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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initcvukf
Create constant-velocity unscented Kalman filter from detection report

Syntax
filter = initcvukf(detection)

Description
filter = initcvukf(detection) creates and initializes a constant-velocity unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

The function initializes a constant velocity state with the same convention as constvel and cvmeas,
[x vx y vy z vz].

Examples

Initialize 3-D Constant-Velocity Unscented Kalman Filter

Create and initialize a 3-D constant-velocity unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,200,−5), of the object position.

detection = objectDetection(0,[10;200;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report and display the filter properties.

filter = initcvukf(detection)

filter = 
  trackingUKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0
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                EnableSmoothing: 0

Display the state.

filter.State

ans = 6×1

    10
     0
   200
     0
    -5
     0

Show the state covariance.

filter.StateCovariance

ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Create Constant Velocity UKF from Spherical Measurement

Initialize a constant-velocity unscented Kalman filter from an initial detection report made from an
initial measurement in spherical coordinates. Because the object lies in the x-y plane, no elevation
measurement is made. If you want to use spherical coordinates, then you must supply a measurement
parameter structure as part of the detection report with the Frame field set to 'spherical'. Set the
azimuth angle of the target to 45 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)

detection = 
  objectDetection with properties:
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                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvukf(detection);

Display filter state vector.

disp(filter.State)

  732.1068
   -2.8284
  667.1068
    2.1716
         0
         0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a radarTracker

object.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcakf | initcaekf | initcaukf | initctekf | initctukf | initcvkf | initcvekf

Objects
objectDetection | trackingKF | trackingEKF | trackingUKF | radarTracker
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cranerainpl
RF signal attenuation due to rainfall using Crane model

Syntax
L = cranerainpl(range,freq,rainrate)
L = cranerainpl(range,freq,rainrate,elev)
L = cranerainpl(range,freq,rainrate,elev,tau)

Description
L = cranerainpl(range,freq,rainrate) returns the signal attenuation, L, due to rain based on
the Crane rain model [1]. Signal attenuation is a function of the signal path length, range, the signal
frequency, freq, and the rain rate, rainrate. The rain rate is defined as the long-term statistical
rain rate. The attenuation model applies only for frequencies from 1 GHz to 1000 GHz and is valid for
ranges up to 22.5 km. The Crane model accounts for the cellular nature of rainstorms.

L = cranerainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
signal path.

L = cranerainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle,
tau, of the signal.

Examples

Compare Attenuation for Two Rain Rates Using Crane Model

Use the Crane rain model to compute the signal attenuation caused by rain for a 20 GHz signal sent
over a distance of 10 km. Use rain rates of 10.0 and 100.0 mm/hr.

First, set the rain rate to 10 mm/hr.

rr = 10.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 12.5988

Repeat the computation using a rain rate of 100.0 mm/hr.

rr = 100.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 73.1912
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Rain Attenuation as a Function of Frequency Using Crane Model

Plot the signal attenuation due to rain for signals in the frequency range from 1 to 1000 GHz. Use the
Crane model to compute the attenuation for a rain rate of 30.0 mm/hr and a signal path distance of
10 km.

rr = 30.0;
freq = [1:1000]*1e9;
L = cranerainpl(10e3,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Elevation Using Crane Model

Plot the signal attenuation due to rain as a function of elevation angle. Elevation angles vary from 0
to 90 degrees. Assume a path distance of 10 km and a signal frequency of 10 GHz. The rain rate is
100 mm/hr.

rr = 100.0;

Set the elevation angles, frequency, and path length.
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elev = [0:1:90];
freq = 10.0e9;
rng = 10e3*ones(size(elev));

Compute and plot the loss.

L = cranerainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Polarization Using Crane Model

Plot the signal attenuation due to rainfall as a function of the polarization tilt angle. Assume a path
distance of 10 km, a signal frequency of 10 GHz, and a path elevation angle of 0 degrees. Set the
rainfall rate to 70 mm/hour. Plot the signal attenuation against polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 10.0e9;
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rng = 10e3*ones(size(tau));
rr = 70.0;

Compute and plot the attenuation.

L = cranerainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
positive scalar | real-valued 1-by-M vector of positive values | real-valued M-by-1 vector of positive
values

Signal path length, specified as a positive scalar, a real-valued 1-by-M vector of positive values, or
real-valued M-by-1 vector of positive values. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive scalar | real-valued 1-by-N vector of positive values | real-valued N-by-1 vector of positive
values
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Signal frequency, specified as a positive scalar, a real-valued 1-by-N vector of positive values, or a
real-valued N-by-1 vector of positive values. Units are in Hz. Frequencies must lie in the range 1–
1000 GHz.
Example: [2.0:2:10.0]*1e9]

rainrate — Rain rate
nonnegative scalar

Rain rate, specified as a nonnegative scalar. Rain rate represents the long-term statistical rainfall rate
provided by Crane (see [1]). Units are in mm/hr.
Example: 100.5

elev — Signal path elevation angle
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Signal path elevation angle, specified as a real-valued scalar, or real-valued M-by-1 or real-valued 1-
by-M vector. Units are in degrees between –90° and 90°.

• If elev is a scalar, all propagation paths have the same elevation angle.
• If elev is a vector, its length must match the length of range and each element in elev

corresponds to a propagation range.

Example: [0,45]

tau — Tilt angle of signal polarization ellipse
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Tilt angle of the signal polarization ellipse, specified as a scalar, a real-valued 1-by-M vector, or a real-
valued M-by-1 vector. Tilt angle values are in the range –90° and 90°, inclusive. Units are in degrees.

• If tau is a scalar, all signals have the same tilt angle.
• If tau is a vector, its length must match the length of range. In that case, each element in tau

corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semimajor axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 10° corresponds to the same polarization state
as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.
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More About
Crane Rainfall Attenuation Model

The Crane model calculates the attenuation of signals that propagate through regions of rainfall. The
model was developed for use on Earth–space or terrestrial propagation paths and is a commonly-used
method for the calculation of rain attenuation. The model is based on observations of rain rate, rain
structure, and the vertical variation of temperature in the atmosphere. The Crane model (see
Electromagnetic Wave Propagation through Rain) is primarily applicable to North America. The
Crane model generally predicts losses greater than those of the ITU rain attenuation model used in
the function. However, the uncertainty of both models and the short-term variation of fade can be
large.

The ITU and Crane models are very similar but have some differences. The ITU and Crane rain
attenuation models both require statistical annual rainfall rates and utilize an effective path length
reduction factor to account for the cellular nature of storms. The 0.01% rainfall rate tables provided
by Crane and the ITU are different. The Crane rainfall zones are similar to the ITU zones but more
zones are defined in the US than in the ITU model. The ITU rainfall zones are discussed in ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. The Crane model is more
complex consisting of a piecewise combination of path profiles composed of exponential functions.

The Crane model utilizes two exponential functions to span the distance from 0 to 22.5 km.

• For δ < D < 22.5,

L = γ eyδ− 1
y − bαezδ

z + bαezD

z

• For 0 < D < δ,

L = γ eyD− 1
y

where

• L = path attenuation (dB)
• �� = propagation distance (km)
• R = statistical 0.01% rain rate (mm/hr)
• γ = specific attenuation identical to that calculated in rainpl.

γR = kRα,

The parameters k and α depend on the frequency, the polarization state, and the elevation angle of
the signal path. These coefficients, given by both Crane Electromagnetic Wave Propagation
through Rain and the ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods, are identical and are valid from 1 GHz to 1000 GHz. The specific attenuation model is
valid for frequencies from 1–1000 GHz. Rainfall specific attenuation is computed according to the
ITU rainfall model in ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods.

The remaining parameters are empirical constants defined as:

• b = 2.3R-0.17

1 Functions

1-626



• c = 0.026 - 0.03ln R
• δ = 3.8 - 0.6 ln R
• u = ln (becδ)/δ
• y = αu
• z = αc

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the propagation distance.

You can also apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Version History
Introduced in R2020a

References
[1] Crane, Robert K. Electromagnetic Wave Propagation through Rain. Wiley, 1996.

[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. P Series,
Radiowave Propagation 2005.

[3] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[4] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.837-7: Characteristics of precipitation for propagation modelling. 6/2017

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
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rainpl
RF signal attenuation due to rainfall

Syntax
L = rainpl(range,freq,rainrate)
L = rainpl(range,freq,rainrate,elev)
L = rainpl(range,freq,rainrate,elev,tau)
L = rainpl(range,freq,rainrate,elev,tau,pct)

Description
L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to rainfall. In this
syntax, attenuation is a function of signal path length, range, signal frequency, freq, and rain rate,
rainrate. The path elevation angle and polarization tilt angles are assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall attenuation
model to calculate path loss of signals propagating in a region of rainfall [1]. The function applies
when the signal path is contained entirely in a uniform rainfall environment. Rain rate does not vary
along the signal path. The attenuation model applies only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle, tau, of
the signal.

L = rainpl(range,freq,rainrate,elev,tau,pct) also specifies the specified percentage of
time, pct. pct is a scalar in the range of 0.001–1, inclusive. The attenuation, L, is computed from a
power law using the long-term statistical 0.01% rain rate (in mm/h).

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10 km in light
and heavy rain.

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;
L = rainpl(10000,20.0e9,rr)

L = 1.3009

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;
L = rainpl(10000,20.0e9,rr)
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L = 8.1584

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to a 20 mm/hr statistical rainfall for signals in the frequency range
from 1 to 1000 GHz. The path distance is 10 km.

rr = 20.0;
freq = [1:1000]*1e9;
L = rainpl(10000,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle. Elevation angles
vary from 0 to 90 degrees. Assume a path distance of 100 km and a signal frequency of 100 GHz.

Set the rain rate to 10 mm/hr.
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rr = 10.0;

Set the elevation angles, frequency, range.

elev = [0:1:90];
freq = 100.0e9;
rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization tilt angle.
Assume a path distance of 100 km, a signal frequency of 100 GHz, and a path elevation angle of 0
degrees. Set the rainfall rate to 10 mm/hour. Plot the signal attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;
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Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 100.0e9;
rng = 100e3*ones(size(tau));
rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector | nonnegative real-
valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-by-M vector.
Units are in meters.
Example: [13000.0,14000.0]
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freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector | nonnegative real-valued
1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or 1-by-N
vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Long-term statistical rain rate
nonnegative real-valued scalar

Long-term statistical rain rate, specified as a nonnegative real-valued scalar. The long-term statistical
rain rate is the rain rate that is exceeded 0.01% of the time. You can adjust the percent of time using
the pct argument. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by- M vector. Units
are in degrees between –90° and 90°. If elev is a scalar, all propagation paths have the same
elevation angle. If elev is a vector, its length must match the dimension of range and each element
in elev corresponds to a propagation range in range.
Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-by-1 or 1-by-
M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all signals have the same tilt
angle. If tau is a vector, its length must match the dimension of range. In that case, each element in
tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semi-major axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds to the same polarization
state as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

pct — Exceedance percentage of rainfall
0.01 (default) | positive scalar between 0.001 and 1

Exceedance percentage of rainfall, specified as a positive scalar between 0.001 and 1. The long-term
statistical rain rate is the rain rate that is exceeded pct of the time. Units are dimensionless.
Data Types: double

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix
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Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.
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[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[3] Recommendation ITU-R P.837-7: Characteristics of precipitation for propagation modelling

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
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fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or clouds. R
represents the signal path length. freq represents the signal carrier frequency, T is the ambient
temperature, and den specifies the liquid water density in the fog or cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and fog
attenuation model to calculate path loss of signals propagating through clouds and fog. See [1]. Fog
and clouds are the same atmospheric phenomenon, differing only by height above ground. Both
environments are parametrized by their liquid water density. Other model parameters include signal
frequency and temperature. This function applies to cases when the signal path is contained entirely
in a uniform fog or cloud environment. The liquid water density does not vary along the signal path.
The attenuation model applies only for frequencies at 10–1000 GHz.

Examples

Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at 1000 meters
altitude. Compute the attenuation for frequencies from 15 to 1000 GHz. A typical value for the cloud
liquid water density is 0.5 g/m3. Assume the atmospheric temperature at 1000 meters is 20∘C.

R = 1000.0;
freq = [15:5:1000]*1e9;
T = 20.0;
lwd = 0.5;
L = fogpl(R,freq,T,lwd);

Plot the specific attenuation as a function of frequency. Specific attenuation is the attenuation or loss
per kilometer.

loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')
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Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M nonnegative real-valued
vector

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative real-values.
Total attenuation is the specific attenuation multiplied by the path length. Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the range 10–1000 GHz.
Units are in Hz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in degrees Celsius.
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Example: -10.0

den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3. Typical values for
liquid water density in fog range from approximately 0.05 g/m3 for medium fog to approximately 0.5
g/m3 for thick fog. For medium fog, visibility is about 300 meters. For heavy fog, visibility is about 50
meters. Cumulus cloud liquid water density is typically 0.5 g/m3.
Example: 0.01

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.840-6: Attenuation due to clouds and fog. 2013.

 fogpl

1-637



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also

1 Functions
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DBSCAN Clusterer
Cluster detections
Library: Radar Toolbox

Description
Cluster data using the density-based spatial clustering of applications with noise (DBSCAN)
algorithm. The DBSCAN Clusterer block can cluster any type of data. The block can also solve for the
clustering threshold (epsilon) and can perform data disambiguation in two dimensions.

Ports
Input

X — Input data
N-by-P real-valued matrix

Input data, specified as a real-valued N-by-P matrix, where N is the number of data points to cluster.
P is the number of feature dimensions. The DBSCAN algorithm can cluster any type of data with
appropriate Minimum number of points in a cluster and Cluster threshold epsilon settings.
Data Types: double

Update — Enable automatic update of epsilon
false (default) | true

Enable automatic update of the epsilon estimate, specified as false or true.

• When true, the epsilon threshold is first estimated as the average of the knees of the k-NN search
curves. The estimate is then added to a buffer of size L, set by the Length of cluster threshold
epsilon history parameter. The final value of epsilon is calculated as the average of the L-length
epsilon history buffer. If Length of cluster threshold epsilon history is set to one, the estimate
is memory-less. Memory-less means that each epsilon estimate is immediately used and no
moving-average smoothing occurs.

• When false, a previous epsilon estimate is used. Estimating epsilon is computationally intensive
and not recommended for large data sets.

Dependencies

To enable this port, set the Source of cluster threshold epsilon parameter to Auto and set the
Maximum number of points for 'Auto' epsilon parameter.
Data Types: Boolean

AmbLims — Ambiguity limits
1-by-2 real-valued vector (default) | 2-by-2 real-valued matrix

Ambiguity limits, specified as a 1-by-2 real-valued vector or 2-by-2 real-valued matrix. For a single
ambiguity dimension, specify the limits as a 1-by-2 vector
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[MinAmbiguityLimitDimension1,MaxAmbiguityLimitDimension1]. For two ambiguity dimensions,
specify the limits as a 2-by-2 matrix [MinAmbiguityLimitDimension1, MaxAmbiguityLimitDimension1;
MinAmbiguityLimitDimension2,MaxAmbiguityLimitDimension2].

Clustering can occur across boundaries to ensure that ambiguous detections are appropriately
clustered for up to two dimensions. The ambiguous columns of the input port data X are defined using
the Indices of ambiguous dimensions parameter. The AmbLims parameter defines the minimum
and maximum ambiguity limits in the same units as used in the Indices of ambiguous dimensions
columns of the input data X.

Dependencies

To enable this port, select the Enable disambiguation of dimensions check box.
Data Types: double

Output

Idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, returned as an N-by-1 integer-valued column vector. Cluster IDs represent the
clustering results of the DBSCAN algorithm. A value equal to '-1' implies a DBSCAN noise point.
Positive Idx values correspond to clusters that satisfy the DBSCAN clustering criteria.

Dependencies

To enable this port, set the Define outputs for Simulink block parameter to Index or Index and
ID.
Data Types: double

Clusters — Alternative cluster IDs
1-by-N integer-valued row vector

Alternative cluster IDs, returned as a 1-by-N row vector of positive integers. Each value is a unique
identifier indicating a hypothetical target cluster. This argument contains unique positive cluster IDs
for all points including noise. In contrast, the Idx output argument labels noise points with '–1'. Use
this output as input to Phased Array System Toolbox™ blocks such as Range Estimator and Doppler
Estimator.

Dependencies

To enable this port, set the Define outputs for Simulink block parameter to Cluster ID or Index
and ID.
Data Types: double

Parameters
Define outputs for Simulink block — Type of cluster data output
Index and ID (default) | Cluster ID | Index

Type of cluster data output, specified as:.
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• Index and ID –- Enables the Idx and Clusters output ports.
• Cluster ID –- Enables the Clusters output port only.
• Index –- Enables the Idx output port only.

Source of cluster threshold epsilon — Epsilon source
Property (default) | Auto

Epsilon source for cluster threshold:

• Property — Epsilon is obtained from the Cluster threshold epsilon parameter.
• Auto — Epsilon is estimated automatically using a k-nearest neighbor (k-NN) search. The search

is calculated with k ranging from one less than the value of Minimum number of points in a
cluster to one less than the value of Maximum number of points for 'Auto' epsilon. The
subtraction of one is needed because the neighborhood of a point includes the point itself.

Cluster threshold epsilon — Cluster neighborhood size
10.0 (default) | positive scalar | positive real-valued 1-by-P row vector

Cluster neighborhood size for a search query, specified as a positive scalar or real-valued 1-by-P row
vector. P is the number of clustering dimensions in the input data X.

Epsilon defines the radius around a point inside which to count the number of detections. When
epsilon is a scalar, the same value applies to all clustering feature dimensions. You can specify
different epsilon values for different clustering dimensions by specifying a real-valued 1-by-P row
vector. Using a row vector creates a multi-dimensional ellipse search area, which is useful when the
data columns have different physical meanings such as range and Doppler.

Minimum number of points in a cluster — Minimum number of points required for
cluster
3 (default) | positive integer

Minimum number of points required for a cluster, specified as a positive integer. This parameter
defines the minimum number of points in a cluster when determining whether a point is a core point.

Maximum number of points for 'Auto' epsilon — Maximum number of points required
for cluster
10 (default) | positive integer

Maximum number of points in a cluster, specified as a positive integer. This property is used to
estimate epsilon when the object performs a k-NN search.

Dependencies

To enable this parameter, set the Source of cluster threshold epsilon parameter to Auto.

Length of cluster threshold epsilon history — Length of cluster threshold epsilon
history
10 (default) | positive integer
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Length of the stored cluster threshold epsilon history, specified as a positive integer. When set to one,
the history is memory-less. Then, each epsilon estimate is immediately used and no moving-average
smoothing occurs. When greater than one, the epsilon value is averaged over the history length
specified.
Example: 5
Data Types: double

Enable disambiguation of dimensions — Turn on disambiguation
off (default) | on

Check box to enable disambiguation of dimensions, specified as false or true. When checked,
clustering occurs across boundaries defined by the values in the input port AmbLims at execution.
Ambiguous detections are appropriately clustered. Use the Indices of ambiguous dimensions
parameter to specify those column indices of X in which ambiguities can occur. Up to two ambiguous
dimensions are permitted. Turning on disambiguation is not recommended for large data sets.
Data Types: Boolean

Indices of ambiguous dimensions — Indices of ambiguous dimensions
1 (default) | positive integer | 1-by-2 vector of positive integers

Indices of ambiguous dimensions, specified as a positive integer or 1-by-2 vector of positive integers.
This property specifies the column indices of the input port data X in which disambiguation can occur.
A positive integer corresponds to a single ambiguous dimension in the input data matrix X. A 1-by-2
length row vector of indices corresponds to two ambiguous dimensions. The size and order of Indices
of ambiguous dimensions must be consistent with the AmbLims input port value.
Example: [3 4]

Dependencies

To enable this parameter, select the Enable disambiguation of dimensions check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object™ in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster with generated code than in interpreted execution. You can run repeated
executions without recompiling, but if you change any block parameters, then the block automatically
recompiles before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.
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When the Simulink® model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon | clusterDBSCAN
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Backscatter Bicyclist
Backscatter signals from bicyclist
Library: Radar Toolbox

Description
The Backscatter Bicyclist block simulates backscattered radar signals reflected from a moving
bicyclist. The bicyclist consists of the bicycle and its rider. The object models the motion of the
bicyclist and computes the sum of all reflected signals from multiple discrete scatterers on the
bicyclist. The model ignores internal occlusions within the bicyclist. The reflected signals are
computed using a multi-scatterer model developed from a 77-GHz radar system.

Scatterers are located on five major bicyclist components:

• bicycle frame and rider
• bicycle pedals
• upper and lower legs of the rider
• front wheel
• back wheel

Excluding the wheels, there are 114 scatterers on the bicyclist. The wheels contain scatterers on the
rim and spokes. The number of scatterers on the wheels depends on the number of spokes per wheel,
which can be specified using the NumWheelSpokes property.

Ports
Input

X — Incident radar signals
complex-valued M-by-N matrix

Incident radar signals on each bicyclist scatterer, specified as a complex-valued M-by-N matrix. M is
the number of samples in the signal. N is the number of point scatterers on the bicyclist and is
determined partly from the number of spokes in each wheel, Nws. See “Bicyclist Scatterer Indices” on
page 2-12 for the column representing the incident signal at each scatterer.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

AngH — Bicyclist heading
0.0 | scalar
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Heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

Ang — Directions of incident signals
real-valued 2-by-N vector

Directions of incident signals on the scatterers, specified as a real-valued 2-by-N matrix. Each column
of Ang specifies the incident direction of the signal to the corresponding scatterer. Each column takes
the form of an [AzimuthAngle;ElevationAngle] pair. Units are in degrees. See “Bicyclist Scatterer
Indices” on page 2-12 for the column representing the incident arrival angle at each scatterer.
Data Types: double

Speed — Bicyclist speed
nonnegative scalar

Speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to 60 m/s.
Units are in meters per second.
Example: 8
Data Types: double

Coast — Bicyclist coasting state
false (default) | true

Bicyclist coasting state, specified as false or true. This property controls the coasting of the
bicyclist. If set to true, the bicyclist does not pedal but the wheels are still rotating (freewheeling). If
set to false, the bicyclist is pedaling and the Gear transmission ratio parameter determines
the ratio of wheel rotations to pedal rotations.

Tunable: Yes
Data Types: Boolean

Output

Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
number of samples in the input signal, X.
Data Types: double
Complex Number Support: Yes

Pos — Positions of scatterers
real-valued 3-by-N matrix

Positions of scatterers, returned as a real-valued 3-by-N matrix. N is the number of scatterers on the
bicyclist. Each column represents the Cartesian position, [x;y;z], of one of the scatterers. Units are in
meters. See “Bicyclist Scatterer Indices” on page 2-12 for the column representing the position of
each scatterer.
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Data Types: double

Vel — Velocity scatterers
real-valued 3-by-N matrix

Velocity of scatterers, returned as a real-valued 3-by-N matrix. N is the number of scatterers on the
bicyclist. Each column represents the Cartesian velocity, [vx;vy;vz], of one of the scatterers. Units are
in meters per second. See “Bicyclist Scatterer Indices” on page 2-12 for the column representing
the velocity of each scatterer.
Data Types: double

Ax — Orientation of scatterers
real-valued 3-by-3 matrix

Orientation axes of scatterers, returned as a real-valued 3-by-3 matrix.
Data Types: double

Parameters
Number of wheel spokes — Number of spokes per wheel
20 (default) | positive integer

Number of spokes per wheel of the bicycle, specified as a positive integer from 3 through 50,
inclusive. Units are dimensionless.
Data Types: double

Gear transmission ratio — Ratio of wheel rotations to pedal rotations
1.5 (default) | positive scalar

Ratio of wheel rotations to pedal rotations, specified as a positive scalar. The gear ratio must be in the
range 0.5 through 6. Units are dimensionless.
Data Types: double

Signal carrier frequency (Hz) — Carrier frequency
77e9 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Initial position (m) — Initial position of bicyclist
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the bicyclist, specified as a 3-by-1 real-valued vector in the form of [x;y;z]. Units are
in meters.
Data Types: double
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Initial heading direction (deg) — Initial heading of bicyclist
0 (default) | scalar

Initial heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-
axis towards y-axis. Units are in degrees.
Data Types: double

Initial bicyclist speed (m/s) — Initial speed of bicyclist
4 (default) | nonnegative scalar

Initial speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to a
maximum of 60 m/s (216 kph). Units are in meters per second.

Tunable: Yes
Data Types: double

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

RCS pattern — Source of RCS pattern
Auto (default) | Property

Source of the RCS pattern, specified as either Auto or Property. When you specify Auto, the
pattern is a 1-by-361 matrix containing values derived from radar measurements taken at 77 GHz.

Azimuth angles (deg) — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrix specified by the
Radar cross section pattern (square meters) parameter. Specify the azimuth angles as a length P
vector. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]

Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Elevation angles (deg) — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector
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Elevation angles used to define the angular coordinates of each row of the matrix specified by the
Radar cross section pattern (square meters) parameter. Specify the elevation angles as a length
Q vector. Q must be greater than two. Angle units are in degrees.

Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Radar cross section pattern (square meters) — Radar cross-section pattern
1-by-361 real-valued matrix (default) | Q-by-P real-valued matrix | 1-by-P real-valued vector

Radar cross-section (RCS) pattern as a function of elevation and azimuth angle, specified as a Q-by-P
real-valued matrix or a 1-by-P real-valued vector. Q is the length of the vector defined by the
ElevationAngles property. P is the length of the vector defined by the AzimuthAngles property.
Units are in square meters.

You can also specify the pattern as a 1-by-P real-valued vector of azimuth angles for one elevation.

The default value of this property is a 1-by-361 matrix containing values derived from radar
measurements taken at 77 GHz found in backscatterBicyclist.defaultRCSPattern.

Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
usually run faster as compiled code than interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

More About
Bicyclist Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
backscatterBicyclist | phased.BackscatterRadarTarget | phased.RadarTarget
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Blocks
Backscatter Radar Target | Radar Target | Backscatter Pedestrian
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Backscatter Pedestrian
Backscatter signals from pedestrian
Library: Radar Toolbox

Description
The Backscatter Pedestrian block models the monostatic reflection of non-polarized electromagnetic
signals from a walking pedestrian. The pedestrian walking model coordinates the motion of 16 body
segments to simulate natural motion. The model also simulates the radar reflectivity of each body
segment. From this model, you can obtain the position and velocity of each segment and the total
backscattered radiation as the body moves.

Ports
Input

X — Incident radar signals
complex-valued M-by-16 matrix

Incident radar signals on each body segment, specified as a complex-valued M-by-16 matrix. M is the
number of samples in the signal. See “Body Segment Indices” on page 2-17 for the column
representing the incident signal at each body segment.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

Ang — Incident signal directions
real-valued 2-by-16 matrix

Incident signal directions on the body segments, specified as a real-valued 2-by-16 matrix. Each
column of ANG specifies the incident direction of the signal to the corresponding body part. Each
column takes the form of an [AzimuthAngle;ElevationAngle] pair. Units are in degrees. See
“Body Segment Indices” on page 2-17 for the column representing the incident direction at each
body segment.
Data Types: double

AngH — Pedestrian heading
scalar

Heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
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Data Types: double

Output

Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
same number of samples as in the input signal, X.
Data Types: double
Complex Number Support: Yes

Pos — Positions of body segments
real-valued 3-by-16 matrix

Positions of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian position, [x;y;z], of one of 16 body segments. Units are in meters. See “Body Segment
Indices” on page 2-17 for the column representing the position of each body segment.
Data Types: double

Vel — Velocity of body segments
real-valued 3-by-16 matrix

Velocity of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian velocity, [vx;vy;vz], of one of 16 body segments. Units are in meters per second. See
“Body Segment Indices” on page 2-17 for the column representing the velocity of each body
segment.
Data Types: double

Ax — Orientation of body segments
real-valued 3-by-3-by-16 array

Orientation axes of body segments, returned as a real-valued 3-by-3-by-16 array. Each page
represents the 3-by-3 orientation axes of one of 16 body segments. Units are dimensionless. See
“Body Segment Indices” on page 2-17 for the page representing the orientation of each body
segment.
Data Types: double

Parameters
Height (m) — Height of pedestrian
1.65 (default) | positive scalar

Height of pedestrian, specified as a positive scalar. Units are in meters.
Data Types: double

Walking Speed (m/s) — Walking speed of pedestrian
1.4 times pedestrian height (default) | nonnegative scalar
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Walking speed of the pedestrian, specified as a nonnegative scalar. The motion model limits the
walking speed to 1.4 times the pedestrian height set in the Height (m) parameter. Units are in
meters per second.
Data Types: double

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

Operating Frequency (Hz) — Carrier frequency
300e6 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Initial Position (m) — Initial position of pedestrian
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the pedestrian, specified as a 3-by-1 real-valued vector in the form of [x;y;z].
Units are in meters.
Data Types: double

Initial Heading (deg) — Initial heading of pedestrian
0 (default) | scalar

Initial heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the
x-axis towards y-axis. Units are in degrees.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster than in interpreted execution. You can run repeated executions without recompiling, but if
you change any block parameters, then the block automatically recompiles before execution.
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This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

More About
Body Segment Indices

Body segment indices define which columns in the X, Ang, BPPOS, and BPVEL ports contain the
data for a specific body segment. Body segment indices define which page in the Ax port contains the
data for a specific body segments. For example, column 3 of X contains sample data for the left lower
leg. Column 3 of Ang contains the arrival angle of the signal at the left lower leg.
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Body Segment Index
Left foot 1
Right foot 2
Left lower leg 3
Right lower leg 4
Left upper leg 5
Right upper leg 6
Left hip 7
Right hip 8
Left lower arm 9
Right lower arm 10
Left upper arm 11
Right upper arm 12
Left shoulder 13
Right shoulder 14
Head 15
Torso 16

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
backscatterPedestrian | backscatterBicyclist | phased.BackscatterRadarTarget |
phased.RadarTarget

Blocks
Backscatter Radar Target | Radar Target | Backscatter Bicyclist

2 Blocks

2-18



Barrage Jammer
Barrage jammer interference source

Library
Radar Toolbox

Description
The Barrage Jammer block generates a wideband noise-like jamming signal.

Parameters
Effective radiated power (W)

Specify the effective radiated power (ERP) in watts of the jamming signal as a positive scalar.
Source of number of samples per frame

Specify the source for number of samples per frame as Property or Derive from reference
input port. When you choose Property, the block obtains the number of samples from the
Number of samples per frame parameter. When you choose Derive from reference
input port the block uses the number of samples from a reference signal passed into the Ref
input port.

Number of samples per frame
Specify the number of samples in the jamming signal output as a positive integer. The number of
samples must match the number of samples produced by a signal source. This parameter appears
only when Source of number of samples per frame is set to Property. As an example, if you
use the Rectangular Waveform block as a signal source and set its Output signal format to
Samples, the value of Number of samples per frame should match the Rectangular Waveform
block's Number of samples in output parameter. If you set the Output signal format to
Pulses, the Number of samples per frame should match the product of Sample rate and
Number of pulses in output divided by the Pulse repetition frequency.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.
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When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
Ref Reference signal input Double-precision floating point
Out Jammer output Double-precision floating point

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
barrageJammer
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Constant Gamma Clutter
Constant gamma clutter simulation
Library: Radar Toolbox

Description
The Constant Gamma Clutter block generates constant gamma clutter reflected from homogeneous
terrain for a monostatic radar transmitting a narrowband signal into free space. The radar is assumed
to be at constant altitude moving at constant speed.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4
Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

W — Element weights
length-N complex-valued vector

Weights applied to each element in array, specified as a length-N complex-valued vector. N is the
number of elements in the array selected in the Sensor array panel.
Dependencies

To enable this port, select the Enable weights input check box.
Data Types: double

WS — Subarray element weights
NE-by-NS complex-valued matrix

Weights applied to each element in a subarray, specified as an NE-by-NS complex-valued matrix.

• When you set Specify sensor array to Replicated Subarray, all subarrays have the same
dimensions. Then, you can specify the subarray element weights as a complex-valued NE-by-NS
matrix. NE is the number of elements in each subarray and NS is the number of subarrays. Each
column of WS specifies the weights for the corresponding subarray.
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• When you set Specify sensor array to Partitioned array, subarrays are not required to have
identical dimensions and sizes. You can specify subarray element weights as a complex-valued NE-
by-NS matrix, where NE now is the number of elements in the largest subarray. The first K entries
in each column are the element weights for the corresponding subarray where K is the number of
elements in the subarray.

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Custom.
Data Types: double

Steer — Steering angle input
scalar | 2-by-1 real-valued vector

Steering angle, specified as a scalar or a 2-by-1 real-valued vector. As a vector, the steering angle
takes the form of [AzimuthAngle; ElevationAngle]. As a scalar, the steering angle represents
the azimuth angle only. Then the elevation angle is assumed to be zero degrees. Units are in degrees

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Phase or Time.
Data Types: double

Output

Out — Simulated clutter
N-by-M complex-valued matrix

Simulated clutter, returned as an N-by-M complex-valued matrix.

N is the number of samples output from the block. When you set the Output signal format
parameter to Samples, specify N using the Number of samples in output parameter. When you set
the Output signal format parameter to Pulses, N is the total number of samples in the next P
pulses where P is specified in the Number of pulse in output parameter.

M is either

• the number of subarrays in the sensor array if sensor array contains subarrays.
• the number of radiating or collecting elements if the sensor array does not contain subarrays.

Data Types: double

Parameters
Main Tab

Terrain gamma value (dB) — Clutter model parameter
0 (default) | scalar
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Clutter model parameter, specified as a scalar. This parameter contains the γ value used in the
constant γ clutter model. The γ value depends on both terrain type and the operating frequency. Units
are in dB.
Example: -5.0
Data Types: double

Earth model — Earth shape
Flat (default) | Curved

Specify the earth model used in clutter simulation as Flat or Curved. When you set this parameter
to Flat, the earth is assumed to be a plane. When you set this parameter to Curved, the earth is
assumed to be spherical.

Minimum range of clutter region (m) — Minimum range of clutter region
0 | nonnegative scalar

Specify the minimum range for the clutter simulation as a positive scalar. The minimum range must
be nonnegative. Units are in meters.

Maximum range of clutter region (m) — Maximum range of clutter region
5000 | nonnegative scalar

Specify the maximum range for the clutter simulation as a positive scalar. The maximum range must
be greater than the value specified in the Radar height parameter. Units are in meters.

Azimuth center of clutter region (deg) — Azimuth center of clutter region
0 | scalar

The azimuth angle in the ground plane about which clutter patches are generated. Patches are
generated symmetrically about this angle. Units are in degrees.

Azimuth span of clutter region (deg) — Azimuth span of clutter region
60 (default) | positive scalar

Specify the azimuth span of each clutter patch as a positive scalar. Units are in degrees. Units are in
degrees.

Azimuth span of clutter patches (deg) — Azimuth span of clutter patches
1 (default) | positive scalar

Azimuth span of each clutter patch, specified as a positive scalar. Units are in degrees.
Data Types: double

Clutter coherence time (s) — Coherence time of clutter simulation
Inf (default) | positive scalar
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Coherence time for the clutter simulation, specified as a positive scalar. After the coherence time
elapses, the block updates the random numbers it uses for the clutter simulation at the next pulse.
When you use the default value of Inf, the random numbers are never updated. Units are in seconds.
Example: 4
Data Types: double

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Sample rate (Hz) — Clutter sample rate
1e6 (default) | positive scalar

Clutter sample rate, specified as a positive scalar. Units are in Hertz.
Example: 10e6
Data Types: double

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar | row vector of positive values

Pulse repetition frequency, PRF, specified as a positive scalar or a row vector of positive values. Units
are in Hertz.
Example: [1e4,2e4]
Data Types: double

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
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to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.

Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
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satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Radar Tab

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Effective transmitted power (W) — radar system effective transmitted power
5000 (default) | positive scalar

Effective radiated power (ERP) of the radar system, specified as a positive scalar. Units are in watts.
Example: 3500
Data Types: double

Radar height (m) — Height of radar above surface
0 (default) | nonnegative scalar

Height of radar above surface, specified as a nonnegative scalar. Units are in meters.
Example: 50
Data Types: double

Radar speed (m/s) — Radar platform speed
0 (default) | nonnegative scalar

Radar platform speed, specified as a nonnegative scalar. Units are in meters per second.
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Example: 5
Data Types: double

Radar motion direction (deg) — Direction of motion of radar platform
[90;0] (default) | 2-by-1 real vector

Specify the direction of radar platform motion as a 2-by-1 real vector in the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. Both azimuth and elevation angle are
measured in the local coordinate system of the radar antenna or antenna array. Azimuth angle must
be between –180° and 180°. Elevation angle must be between –90° and 90°.

The default value of this parameter indicates that the radar platform is moving perpendicular to the
radar antenna array broadside direction.
Example: [25;30]
Data Types: double

Sensor mounting angles sensor (deg) — Sensor mounting angles
[0 0 0] (default) | length-3 vector of positive values

Specify a 3-element vector that gives the intrinsic yaw, pitch, and roll of the sensor frame from the
inertial frame. The 3 elements define the rotations around the z, y, and x axes respectively, in that
order. The first rotation, rotates the body axes around the z-axis. Because these angles define
intrinsic rotations, the second rotation is performed around the y-axis in its new position resulting
from the previous rotation. The final rotation around the x-axis is performed around the x-axis as
rotated by the first two rotations in the intrinsic system.
Example: [0,-10,4]
Data Types: double

Enable weights input — Enable antenna element weights input port
unchecked (default) | checked

Check box to enable antenna element weights input port, W.

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object
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MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.
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Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector
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Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.
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• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.
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When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of
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• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers
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Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.
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Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom
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Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)
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Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix
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Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
constantGammaClutter | gpuConstantGammaClutter | GPU Constant Gamma Clutter
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GPU Constant Gamma Clutter
Constant gamma clutter simulation using gpu
Library: Radar Toolbox

Description
The GPU Constant Gamma Clutter block generates, using a graphical processing unit (GPU), constant
gamma clutter reflected from a homogeneous terrain for a monostatic radar transmitting a
narrowband signal into free space. The radar is assumed to be at a constant altitude moving at a
constant speed.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4

Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

W — Element weights
length-N complex-valued vector

Weights applied to each element in array, specified as a length-N complex-valued vector. N is the
number of elements in the array selected in the Sensor array panel.

Dependencies

To enable this port, select the Enable weights input check box.
Data Types: double

WS — Subarray element weights
NE-by-NS complex-valued matrix

Weights applied to each element in a subarray, specified as an NE-by-NS complex-valued matrix.

• When you set Specify sensor array to Replicated Subarray, all subarrays have the same
dimensions. Then, you can specify the subarray element weights as a complex-valued NE-by-NS
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matrix. NE is the number of elements in each subarray and NS is the number of subarrays. Each
column of WS specifies the weights for the corresponding subarray.

• When you set Specify sensor array to Partitioned array, subarrays are not required to have
identical dimensions and sizes. You can specify subarray element weights as a complex-valued NE-
by-NS matrix, where NE now is the number of elements in the largest subarray. The first K entries
in each column are the element weights for the corresponding subarray where K is the number of
elements in the subarray.

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Custom.
Data Types: double

Steer — Steering angle input
scalar | 2-by-1 real-valued vector

Steering angle, specified as a scalar or a 2-by-1 real-valued vector. As a vector, the steering angle
takes the form of [AzimuthAngle; ElevationAngle]. As a scalar, the steering angle represents
the azimuth angle only. Then the elevation angle is assumed to be zero degrees. Units are in degrees

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Phase or Time.
Data Types: double

Output

Out — Simulated clutter
N-by-M complex-valued matrix

Simulated clutter, returned as an N-by-M complex-valued matrix.

N is the number of samples output from the block. When you set the Output signal format
parameter to Samples, specify N using the Number of samples in output parameter. When you set
the Output signal format parameter to Pulses, N is the total number of samples in the next P
pulses where P is specified in the Number of pulse in output parameter.

M is either

• the number of subarrays in the sensor array if sensor array contains subarrays.
• the number of radiating or collecting elements if the sensor array does not contain subarrays.

Data Types: double

Parameters
Main Tab

Terrain gamma value (dB) — Clutter model parameter
0 (default) | scalar

 GPU Constant Gamma Clutter

2-41



Clutter model parameter, specified as a scalar. This parameter contains the γ value used in the
constant γ clutter model. The γ value depends on both terrain type and the operating frequency. Units
are in dB.
Example: -5.0
Data Types: double

Earth model — Earth shape
Flat (default) | Curved

Specify the earth model used in clutter simulation as Flat or Curved. When you set this parameter
to Flat, the earth is assumed to be a plane. When you set this parameter to Curved, the earth is
assumed to be spherical.

Minimum range of clutter region (m) — Minimum range of clutter region
0 | nonnegative scalar

Specify the minimum range for the clutter simulation as a positive scalar. The minimum range must
be nonnegative. Units are in meters.

Maximum range of clutter region (m) — Maximum range of clutter region
5000 | nonnegative scalar

Specify the maximum range for the clutter simulation as a positive scalar. The maximum range must
be greater than the value specified in the Radar height parameter. Units are in meters.

Azimuth center of clutter region (deg) — Azimuth center of clutter region
0 | scalar

The azimuth angle in the ground plane about which clutter patches are generated. Patches are
generated symmetrically about this angle. Units are in degrees.

Azimuth span of clutter region (deg) — Azimuth span of clutter region
60 (default) | positive scalar

Specify the azimuth span of each clutter patch as a positive scalar. Units are in degrees. Units are in
degrees.

Azimuth span of clutter patches (deg) — Azimuth span of clutter patches
1 (default) | positive scalar

Azimuth span of each clutter patch, specified as a positive scalar. Units are in degrees.
Data Types: double

Clutter coherence time (s) — Coherence time of clutter simulation
Inf (default) | positive scalar

2 Blocks

2-42



Coherence time for the clutter simulation, specified as a positive scalar. After the coherence time
elapses, the block updates the random numbers it uses for the clutter simulation at the next pulse.
When you use the default value of Inf, the random numbers are never updated. Units are in seconds.
Example: 4
Data Types: double

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Sample rate (Hz) — Clutter sample rate
1e6 (default) | positive scalar

Clutter sample rate, specified as a positive scalar. Units are in Hertz.
Example: 10e6
Data Types: double

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar | row vector of positive values

Pulse repetition frequency, PRF, specified as a positive scalar or a row vector of positive values. Units
are in Hertz.
Example: [1e4,2e4]
Data Types: double

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.
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If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Radar Tab

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Effective transmitted power (W) — radar system effective transmitted power
5000 (default) | positive scalar

Effective radiated power (ERP) of the radar system, specified as a positive scalar. Units are in watts.
Example: 3500
Data Types: double

Radar height (m) — Height of radar above surface
0 (default) | nonnegative scalar

Height of radar above surface, specified as a nonnegative scalar. Units are in meters.
Example: 50
Data Types: double

Radar speed (m/s) — Radar platform speed
0 (default) | nonnegative scalar

Radar platform speed, specified as a nonnegative scalar. Units are in meters per second.
Example: 5
Data Types: double

Radar motion direction (deg) — Direction of motion of radar platform
[90;0] (default) | 2-by-1 real vector

Specify the direction of radar platform motion as a 2-by-1 real vector in the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. Both azimuth and elevation angle are
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measured in the local coordinate system of the radar antenna or antenna array. Azimuth angle must
be between –180° and 180°. Elevation angle must be between –90° and 90°.

The default value of this parameter indicates that the radar platform is moving perpendicular to the
radar antenna array broadside direction.
Example: [25;30]
Data Types: double

Sensor mounting angles sensor (deg) — Sensor mounting angles
[0 0 0] (default) | length-3 vector of positive values

Specify a 3-element vector that gives the intrinsic yaw, pitch, and roll of the sensor frame from the
inertial frame. The 3 elements define the rotations around the z, y, and x axes respectively, in that
order. The first rotation, rotates the body axes around the z-axis. Because these angles define
intrinsic rotations, the second rotation is performed around the y-axis in its new position resulting
from the previous rotation. The final rotation around the x-axis is performed around the x-axis as
rotated by the first two rotations in the intrinsic system.
Example: [0,-10,4]
Data Types: double

Enable weights input — Enable antenna element weights input port
unchecked (default) | checked

Check box to enable antenna element weights input port, W.

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
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Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).
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• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2
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The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.
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For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.
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Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
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combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.
Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.
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Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
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the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gpuConstantGammaClutter | constantGammaClutter | Constant Gamma Clutter
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Detection Concatenation
Combine detection reports from different sensors
Library: Automated Driving Toolbox

Sensor Fusion and Tracking Toolbox / Utilities

Description
The Detection Concatenation block combines detection reports from multiple sensors onto a single
output bus. Concatenation is useful when detections from multiple sensor blocks are passed into a
tracker block such as the block. You can accommodate additional sensors by changing the Number
of input sensors to combine parameter to increase the number of input ports.

Ports
Input

In1, In2, ..., InN — Sensor detections to combine
Simulink buses containing MATLAB structures

Sensor detections to combine, where each detection is a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink) for more details.

The structure has the form:

Field Description Type
NumDetections Number of detections integer
Detections Object detections Array of object detection

structures. The first
NumDetections of these
detections are actual detections.

The fields of Detections are:

Field Description Type
Time Measurement time single or double
Measurement Object measurements single or double
MeasurementNoise Measurement noise covariance

matrix
single or double

SensorIndex Unique ID of the sensor single or double
ObjectClassID Object classification ID single or double
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Field Description Type
MeasurementParameters Parameters used by

initialization functions of
tracking filters

Simulink Bus

ObjectAttributes Additional information passed to
tracker

Simulink Bus

By default, the block includes two ports for input detections. To add more ports, use the Number of
input sensors to combine parameter.

Output

Out — Combined sensor detections
Simulink bus containing MATLAB structure

Combined sensor detections from all input buses, returned as a Simulink bus containing a MATLAB
structure. See “Create Nonvirtual Buses” (Simulink).

The structure has the form:

Field Description Type
NumDetections Number of detections integer
Detections Object detections Array of object detection

structures. The first
NumDetections of these
detections are actual detections.

The fields of Detections are:

Field Description Type
Time Measurement time single or double
Measurement Object measurements single or double
MeasurementNoise Measurement noise covariance

matrix
single or double

SensorIndex Unique ID of the sensor single or double
ObjectClassID Object classification ID single or double
MeasurementParameters Parameters used by

initialization functions of
tracking filters

Simulink Bus

ObjectAttributes Additional information passed to
tracker

Simulink Bus

The Maximum number of reported detections output is the sum of the Maximum number of
reported detections of all input ports. The number of actual detections is the sum of the number of
actual detections in each input port. The ObjectAttributes fields in the detection structure are the
union of the ObjectAttributes fields in each input port.
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Parameters
Number of input sensors to combine — Number of input sensor ports

2 (default) | positive integer

Number of input sensor ports, specified as a positive integer. Each input port is labeled In1, In2, …,
InN, where N is the value set by this parameter.
Data Types: double

Source of output bus name — Source of output bus name

Auto (default) | Property

Source of output bus name, specified as Auto or Property.

• If you select Auto, the block automatically generates a bus name.
• If you select Property, specify the bus name using the Specify an output bus name parameter.

Specify an output bus name — Name of output bus

no default

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Simulate using — Type of simulation to run

Interpreted execution (default) | Code generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C/C++ code. The first time you run a
simulation, Simulink generates C/C++ code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks

Topics
“Create Nonvirtual Buses” (Simulink)
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Pulse Compression Library
Library of pulse compression specifications
Library: Radar Toolbox

Description
The Pulse Compression Library block performs range processing using pulse compression. Pulse
compression techniques include matched filtering and stretch processing. The block lets you create a
library of different pulse compression specifications. The output is the filter response consisting of a
matrix or a three-dimensional array with rows representing range gates.

Ports
Input

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
Data Types: double

Idx — Index of processing specification
positive integer

Index of the processing specification in the pulse compression library, specified as a positive integer.
Data Types: double

Output

Y — Output signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Output signal, returned as a complex-valued M-by-L matrix, complex-valued M-by-N matrix, or a
complex-valued M-by-N-by-L array. M denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams. The number of
dimensions of Y matches the number of dimensions of X.

When matched filtering is performed, M is equal to the number of rows in X. When stretch processing
is performed and you specify a value for the RangeFFTLength name-value pair, M is set to the value
of RangeFFTLength. When you do not specify RangeFFTLength, M is equal to the number of rows
in X.
Data Types: double
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Range — Sample range
real-valued length-M vector

Sample ranges, returned as a real-valued length-M vector where M is the number of rows of Y.
Elements of this vector denote the ranges corresponding to the rows of Y.
Data Types: double

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Specification of each waveform in the library — Specification of pulse waveforms in
the library
{{'Rectangular','PRF',1e4,'PulseWidth',50e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform. Each waveform specification is also a cell array containing the parameters of the
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

This block supports four built-in waveforms and also lets you specify custom waveforms. Each built-in
waveform specifier consists of a waveform identifier followed by several name-value pairs that set the
properties of the waveform.

Built-in Waveforms

Waveform type Waveform identifier Waveform name-value pair
arguments

Linear FM 'LinearFM' See “Linear FM Waveform
Arguments” on page 4-414

Phase coded 'PhaseCoded' See “Phase-Coded Waveform
Arguments” on page 4-416

Rectangular 'Rectangular' See “Rectangular Waveform
Arguments” on page 4-417

Stepped FM 'SteppedFM' See “Stepped FM Waveform
Arguments” on page 4-434

You can create a custom waveform with a user-defined function. The first input argument of the
function must be the sample rate. Use a function handle instead of the waveform identifier in the first
cell of a waveform specification. The remaining cells contain all function input arguments except the
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sample rate. Specify all input arguments in the order they are passed into the function. The function
must have at least one output argument to return the samples of each pulse in a column vector. You
can only create custom waveforms when you set Simulate using to Interpreted Execution.

Pulse compression specifications — Specify type of pulse compression
{{'MatchedFilter','SpectrumWindow','None'},
{'StretchProcessor','RangeSpan',200,'ReferenceRange',5e3,'RangeWindow','None'
}} (default) | cell array

Waveform processing type and parameters, specified as a cell array of processing specifications. Each
processing specification is itself a cell array containing the processing type and processing
arguments.
{{Processing 1 Specification},{Processing 2 Specification},{Processing 3 Specification}, ...}

Each processing specification indicates which type of processing to apply to a waveform and the
arguments needed for processing.
{processtype,Name,Value,...}

The value of processtype is either 'MatchedFilter' or 'StretchProcessor'.

• 'MatchedFilter' – The name-value pair arguments are

• 'Coefficients',coeff – specifies the matched filter coefficients, coeff, as a column vector.
When not specified, the coefficients are calculated from the WaveformSpecification
property. For the Stepped FM waveform containing multiple pulses, coeff corresponds to
each pulse until the pulse index, idx changes.

• 'SpectrumWindow',sw – specifies the spectrum weighting window, sw, applied to the
waveform. Window values are one of 'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser',
and 'Taylor'. The default value is 'None'.

• 'SidelobeAttenuation',slb – specifies the sidelobe attenuation window, slb, of the
Chebyshev or Taylor window as a positive scalar. The default value is 30. This parameter
applies when you set 'SpectrumWindow' to 'Chebyshev' or 'Taylor'.

• 'Beta',beta – specifies the parameter, beta, that determines the Kaiser window sidelobe
attenuation as a nonnegative scalar. The default value is 0.5. This parameter applies when you
set 'SpectrumWindow' to 'Kaiser'.

• 'Nbar',nbar – specifies the number of nearly constant level sidelobes, nbar, adjacent to the
main lobe in a Taylor window as a positive integer. The default value is 4. This parameter
applies when you set 'SpectrumWindow' to 'Taylor'.

• 'SpectrumRange',sr – specifies the spectrum region, sr, on which the spectrum window is
applied as a 1-by-2 vector having the form [StartFrequency EndFrequency]. The default
value is [0 1.0e5]. This parameter applies when you set the 'SpectrumWindow' to any value
other than 'None'. Units are in Hz.

Both StartFrequency and EndFrequency are measured in the baseband region [-Fs/2 Fs/2].
Fs is the sample rate specified by the SampleRate property. StartFrequency cannot be
larger than EndFrequency.

• 'StretchProcessor' – The name-value pair arguments are

• 'ReferenceRange',refrng – specifies the center of ranges of interest, refrng, as a positive
scalar. The refrng must be within the unambiguous range of one pulse. The default value is
5000. Units are in meters.
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• 'RangeSpan',rngspan – specifies the span of the ranges of interest. rngspan, as a positive
scalar. The range span is centered at the range value specified in the 'ReferenceRange'
parameter. The default value is 500. Units are in meters.

• 'RangeFFTLength',len – specifies the FFT length in the range domain, len, as a positive
integer. If not specified, the default value is same as the input data length.

• 'RangeWindow',rw specifies the window used for range processing, rw, as one of 'None',
'Hamming', 'Chebyshev', 'Hann', 'Kaiser', and 'Taylor'. The default value is 'None'.

Data Types: cell

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
pulseCompressionLibrary | Pulse Compression Library
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Pulse Waveform Library
Library of pulse waveforms
Library: Radar Toolbox

Description
The Pulse Waveform Library generates different types of pulse waveforms from a library of
waveforms.

Ports
Input

Idx — Waveform index
positive integer

Index to select the waveform, specified as a positive integer. The index selects the waveform from the
set of waveforms defined by the Specification of each waveform in the library parameter.
Data Types: double

Output

Y — Pulse waveform samples
complex-valued column vector | complex-valued matrix

Pulse waveform samples, returned as a complex-valued vector or complex-valued matrix.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Specification of each waveform in the library — Pulse waveforms in the library
{{'Rectangular','PRF',1e4,'PulseWidth',50e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform. Each waveform is also a cell array containing the parameters of the waveform.
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{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

This block supports four built-in waveforms and also lets you specify custom waveforms. Each built-in
waveform specifier consists of a waveform identifier followed by several name-value pairs that set the
properties of the waveform.

Built-in Waveforms

Waveform type Waveform identifier Waveform name-value pair
arguments

Linear FM 'LinearFM' See “Linear FM Waveform
Arguments” on page 4-414

Phase coded 'PhaseCoded' See “Phase-Coded Waveform
Arguments” on page 4-416

Rectangular 'Rectangular' See “Rectangular Waveform
Arguments” on page 4-417

Stepped FM 'SteppedFM' See “Stepped FM Waveform
Arguments” on page 4-434

You can create a custom waveform with a user-defined function. The first input argument of the
function must be the sample rate. Use a function handle instead of the waveform identifier in the first
cell of a waveform specification. The remaining cells contain all function input arguments except the
sample rate. Specify all input arguments in the order they are passed into the function. The function
must have at least one output argument to return the samples of each pulse in a column vector. You
can only create custom waveforms when you set Simulate using to Interpreted Execution.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.

Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
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without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
pulseWaveformLibrary | pulseCompressionLibrary
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Radar Data Generator
Generate radar sensor detections and tracks
Library: Radar Toolbox

Description
The Radar Data Generator block reads target poses and time from a scenario reader and generates
detection and track reports of targets from a radar sensor model. Use this block to generate sensor
data from a scenario containing targets, sensors, and trajectories, which you can read from a
Scenario Reader block or Tracking Scenario Reader.

The Radar Data Generator block can generate clustered or unclustered detections with added
random noise and can also generate false alarm detections. You can also generate tracks from the
Radar Data Generator block. Use the Target reporting format parameter to specify whether targets
are output as clustered detections, unclustered detections, or tracks.

Ports
Input

Targets (Body Frame) — Target poses
Simulink bus containing MATLAB structure

Target poses in platform coordinates, specified as a Simulink bus containing a MATLAB structure.
The Targets input port can accept output from the Actors output port of the Scenario Reader block
in the Automated Driving Toolbox™ or from the Platforms output port of the Tracking Scenario
Reader in the Sensor Fusion and Tracking Toolbox.

The Scenario Reader block and the Tracking Scenario Reader block output pose data in different
formats. The Radar Data Generator reads data from either block. In each case, the data consists of
two data fields followed by an array of structures. These structures define the number of Platforms
or the number of Actors. Platforms and Actors are collectively called Targets.

Field Description Type
Input block Field name
Scenario
Reader

NumActors

Tracking
Scenario
Reader

NumPlatform
s

Number of valid target poses Nonnegative integer
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Field Description Type
Time Current simulation time

(optional). If missing, the
current Simulink simulation
time is used.

Real-valued scalar

Input block Field name
Scenario
Reader

Actors

Tracking
Scenario
Reader

Platforms

Valid target poses Array of target pose structures

The Actors structure is described in the output port of the Scenario Reader block and the
Platforms structure is described in the output port of the Tracking Scenario Reader block.

INS — Radar pose from INS
Simulink bus containing MATLAB structure

Radar pose information from an inertial navigation system (INS), specified as a Simulink bus
containing a single MATLAB structure. The structure includes pose information for the radar platform
that is provided by the INS. The INS information can then be used to estimate the target positions in
the NED frame. INS is a struct with the following fields:

Field Definition
Position Position in the scenario frame specified as a real-

valued 1-by-3 vector. Units are in meters.
Velocity Velocity in the scenario frame specified as a real-

valued 1-by-3 vector. Units are in m/s.
Orientation Orientation with respect to the scenario frame,

specified as a 3-by-3 real-valued rotation matrix.
The rotation is from the navigation frame to the
current INS body frame. This is also referred to
as a "parent to child" rotation.

Dependencies

To enable this port, select the Enable INS check box.

Time — Current simulation time
nonnegative scalar

Current simulation time, specified as a nonnegative scalar. The sensor only generates reports at
simulation times corresponding to integer multiples of the update interval, which is given by the
reciprocal of the Update rate (Hz) parameter. Units are in seconds.

Dependencies

To enable this port, set the Source of target truth time to Input port.

If this port is not enabled, then the time is taken from the time on the Target poses input bus. If
time is not on this bus, then the current Simulink simulation time is used.
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Data Types: double

Output

Clustered detections — Clustered object detections
Simulink bus containing MATLAB structure

Clustered object detections, returned as a Simulink bus containing a MATLAB structure. For more
details about buses, see “Create Nonvirtual Buses” (Simulink).

With clustered detections, the block outputs a single detection per target, where each detection is the
centroid of the unclustered detections for that target.

You can pass object detections from these sensors and other sensors to a tracker, such as the Global
Nearest Neighbor Multi Object Tracker block in the Sensor Fusion and Tracking Toolbox.

The structure contains these fields.

Field Description Type
NumDetections Number of valid detections Nonnegative integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum number of target
reports parameter. Only
NumDetections of these are
actual detections.

Each object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

• For rectangular coordinates, Measurement and MeasurementNoise are reported in the
rectangular coordinate system specified by the Coordinate system parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system, which is based on the sensor rectangular coordinate system.
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Measurement and MeasurementNoise

Coordinate System Measurement and MeasurementNoise
Coordinates

Scenario This table shows how coordinates are affected by
the Enable range rate measurements
parameter.

Enable range rate
measurements

Coordinates

on [x;y;z;vx;vy;vz]
off [x;y;z]

Body
Sensor rectangular

Sensor spherical This table shows how coordinates are affected by
the Enable elevation angle measurements and
Enable range rate measurements parameters.

Enable range
rate
measurement
s

Enable
elevation
angle
measurement
s

Coordinates

on on [az;el;rng;
rr]

on off [az;rng;rr]
off on [az;el;rng]
off off [az;rng]

For ObjectAttributes, this table describes the additional information used for tracking.
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ObjectAttributes

Attribute Definition
TargetIndex Identifier of the ActorID or PlatformID of the

target that generated the detection. For false
alarms, this value is negative.

SNR Signal-to-noise ratio of the detection. Units are in
dB.

BounceTargetIndex Identifier of the target generating the multipath
bounce that produced the ghost target report.
Only present when HasGhosts is true.

BouncePathIndex Index of the bounce path associated with the
target report. Only present when HasGhosts is
true.

Bounce-Path Index

BouncePathIndex Description
0 Direct-path target

report
1 First 2-bounce path

detection
2 Second 2-bounce path
3 3-bounce path

For MeasurementParameters, the measurements are relative to the parent frame. When you set the
Coordinate system parameter to Body, the parent frame is the platform body. When you set
Coordinate system to Sensor rectangular or Sensor spherical, the parent frame is the
sensor.

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set to
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from the
parent frame origin.

Orientation Orientation of the radar sensor coordinate system
with respect to the parent frame.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

HasElevation Indicates whether measurements contain
elevation components.
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Dependencies

To enable this port, select the Target reporting format pull-down menu as Clustered
detections.

Tracks — Object tracks
Simulink bus containing MATLAB structure

Object tracks, returned as a Simulink bus containing a MATLAB structure. See “Create Nonvirtual
Buses” (Simulink).

This table shows the structure fields.

Field Description
NumTracks Number of tracks
IsValidTime False when updates are requested at times that

are between block invocation intervals
Tracks Array of track structures of a length set by the

Maximum number of target reports
parameter. Only the first NumTracks of these are
actual tracks.

This table shows the fields of each track structure.

Field Definition
TrackID Unique track identifier used to distinguish

multiple tracks.
BranchID Unique track branch identifier used to distinguish

multiple track branches.
SourceIndex Unique source index used to distinguish tracking

sources in a multiple tracker environment.
UpdateTime Time at which the track is updated. Units are in

seconds.
Age Number of times the track was updated.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
ObjectClassID Integer value representing the object

classification. The value 0 represents an unknown
classification. Nonzero classifications apply only
to confirmed tracks.

TrackLogic Confirmation and deletion logic type. This value
is always 'History' for radar sensors, to
indicate history-based logic.

TrackLogicState Current state of the track logic type, returned as
a 1-by-K logical array. K is the number of latest
track logical states recorded. In the array, 1
denotes a hit and 0 denotes a miss.
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Field Definition
IsConfirmed Confirmation status. This field is true if the track

is confirmed to be a real target.
IsCoasted Coasting status. This field is true if the track is

updated without a new detection.
IsSelfReported Indicate if the track is reported by the tracker.

This field is used in a track fusion environment. It
is returned as true by default.

ObjectAttributes Additional information about the track.

For more details about these fields, see objectTrack.

The block outputs only confirmed tracks, which are tracks to which the block assigns at least M
detections during the first N updates after track initialization. To specify the values M and N, use the
M and N for the M-out-of-N confirmation parameter.

Dependencies

To enable this port, on the Parameters tab, set the Target reporting format parameter to Tracks.

Detections — Unclustered object detections
Simulink bus containing MATLAB structure

Unclustered object detections, returned as a Simulink bus containing a MATLAB structure. For more
details about buses, see “Create Nonvirtual Buses” (Simulink).

With unclustered detections, the block outputs all detections, and a target can have multiple
detections.

You can pass object detections from these sensors and other sensors to a tracker, such as a Multi-
Object Tracker block, and generate tracks.

The structure must contain these fields:

Field Description Type
NumDetections Number of valid detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals

Boolean

Detections Object detections Array of object detection
structures of length set by the
Maximum number of target
reports parameter. Only
NumDetections of these are
actual detections.

Each object detection structure contains these properties.
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Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

• For rectangular coordinates, Measurement and MeasurementNoise are reported in the
rectangular coordinate system specified by the Coordinate system parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the spherical
coordinate system, which is based on the sensor rectangular coordinate system.

Measurement and MeasurementNoise

Coordinate System Measurement and MeasurementNoise
Coordinates

Scenario This table shows how coordinates are affected by
the Enable range rate measurements
parameter.

Enable range rate
measurements

Coordinates

on [x;y;z;vx;vy;vz]
off [x;y;z]

Body
Sensor rectangular

Sensor spherical This table shows how coordinates are affected by
the Enable elevation angle measurements and
Enable range rate measurements parameters.

Enable range
rate
measurement
s

Enable
elevation
angle
measurement
s

Coordinates

on on [az;el;rng;
rr]

on off [az;rng;rr]
off on [az;el;rng]
off off [az;rng]

For ObjectAttributes, this table describes the additional information used for tracking.
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ObjectAttributes

Attribute Definition
TargetIndex Identifier of the ActorID or PlatformID of the

target that generated the detection. For false
alarms, this value is negative.

SNR Signal-to-noise ratio of the detection. Units are in
dB.

BounceTargetIndex Identifier of the target generating the multipath
bounce that produced the ghost target report.
Only present when HasGhosts is true.

BouncePathIndex Index of the bounce path associated with the
target report. Only present when HasGhosts is
true.

Bounce-Path Index

BouncePathIndex Description
0 Direct-path target

report
1 First 2-bounce path

detection
2 Second 2-bounce path
3 3-bounce path

For MeasurementParameters, the measurements are relative to the parent frame. When you set the
Coordinate system parameter to Body, the parent frame is the platform body. When you set
Coordinate system to Sensor rectangular or Sensor spherical, the parent frame is the
sensor.

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When Frame is set to
'rectangular', detections are reported in
Cartesian coordinates. When Frame is set to
'spherical', detections are reported in
spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from the
parent frame origin.

Orientation Orientation of the radar sensor coordinate system
with respect to the parent frame.

HasVelocity Indicates whether measurements contain velocity
or range rate components.

HasElevation Indicates whether measurements contain
elevation components.
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Dependencies

To enable this port, set the Target reporting format parameter to Detections.

Configuration — Current sensor configuration
Simulink bus containing MATLAB structure

Configuration, returned as a Simulink bus containing a MATLAB structure. This output can be used to
determine which objects fall within the radar beam during object execution. The structure fields are:

Field Description Type
NumConfigurations Number of valid configurations integer
Configurations Configuration structure Array of NumConfigurations

configuration structures

The configuration structure hast these fields:

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as true or false.

IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame. For details on
MeasurementParameters, see “Measurement
Parameters” on page 4-223.

Dependencies

To enable this port, select the Enable radar configuration output check box.
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Parameters
Parameters

Sensor Identification

Unique identifier of sensor — Unique sensor identifier

0 (default) | positive integer

Unique sensor identifier, specified as a positive integer. Use this parameter to distinguish between
detections or tracks that come from different sensors in a multisensor system. Specify a unique value
for each sensor. If you do not update Unique identifier of sensor from the default value of 0, then
the radar returns an error at the start of simulation.

Update rate (Hz) — Sensor update rate

10 (default) | positive real scalar

Update rate, specified as a positive real scalar. The radar generates new reports at intervals defined
by this reciprocal value. Any sensor update requested between update intervals contains no
detections or tracks. Units are in Hz.

Sensor Mounting

Translation [ X, Y, Z ] relative to ego origin (m) — Mounting location of radar on
platform

[3.4,0,0.2] (default) | 1-by-3 real-valued vector of form [x,y,z]

Sensor location on the radar on the platform, specified as a 1-by-3 real-valued vector of the form
[x,y,z]. This parameter defines the coordinates of the sensor along the x-axis, y-axis, and z-axis
relative to the platform origin. Units are in meters.

Rotation [Yaw,Pitch,Roll] relative to ego's frame (deg) — Mounting rotation
angles of radar

[0 0 0] (default) | 1-by-3 real-valued vector of form [zyaw ypitch xroll]

Mounting rotation angles of the radar, specified as a 1-by-3 real-valued vector of form [zyaw ypitch xroll].
This parameter defines the intrinsic Euler angle rotation of the sensor around the z-axis, y-axis, and x-
axis with respect to the platform frame, where:

• zyaw, or yaw angle, rotates the sensor around the z-axis of the platform frame.
• ypitch, or pitch angle, rotates the sensor around the y-axis of the platform frame. This rotation is

relative to the sensor position that results from the zyaw rotation.
• xroll, or roll angle, rotates the sensor about the x-axis of the platform frame. This rotation is

relative to the sensor position that results from the zyaw and ypitch rotations.

These angles are clockwise-positive when looking in the forward direction of the z-axis, y-axis, and x-
axis, respectively. Units are in degrees.
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Detection Reporting

Enable elevation angle measurements — Enable radar to measure target elevation
angles

off (default) | on

Select this check box to model a radar sensor that can estimate target elevation.

Enable range rate measurements — Enable radar to measure target range rates

on (default) | off

Select this check box to enable the radar to measure range rates from target detections.

Add noise to measurements — Enable addition of noise to radar sensor measurements

on (default) | off

Select this parameter to add noise to the radar measurements. Otherwise, the measurements have no
noise. Even if you clear this parameter, the measurement noise covariance matrix, which is reported
in the MeasurementNoise field of the generated detections output, represents the measurement
noise that is added when Add noise to measurements is selected.

Enable false reports — Enable creating false alarm radar detections

on (default) | off

Select this parameter to enable creating false alarm radar measurements. If you clear this parameter,
the radar reports only actual detections.

Enable occlusion — Enable line-of-sight occlusion

on (default) | off

Select this parameter to enable line-of-sight occlusion, where the radar generates detection only from
objects for which the radar has a direct line of sight. For example, with this parameter enabled, the
radar does not generate a detection for an object that is behind another object and blocked from
view.

Enable ghosts — Enable ghost targets

off (default) | on

Select this parameter to generate ghost targets for multipath propagation paths having up to three
reflections between transmission and reception of the radar signal.

Maximum number of target reports — Maximum number of detections or tracks

50 (default) | positive integer

Maximum number of detections or tracks that the sensor reports, specified as a positive integer. The
sensor reports detections in order of increasing distance from the sensor until reaching this
maximum number.
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Target reporting format — Format of generated target reports

Clustered detections (default) | Tracks | Detections

Format of generated target reports, specified as one of these options:

• Clustered detections — The block generates target reports as clustered detections, where each
target is reported as a single detection that is the centroid of the unclustered target detections.
The block returns clustered detections at the Clustered detections output port.

• Tracks — The block generates target reports as tracks, which are clustered detections that have
been processed by a tracking filter. The block returns clustered detections at the Tracks output
port.

• Detections — The block generates target reports as unclustered detections, where each target
can have multiple detections. The block returns clustered detections at the Detections output
port.

Coordinate system — Coordinate system of reported detections

Body (default) | Sensor rectangular | Sensor spherical | Scenario

Coordinate system of reported detections, specified as one of these options:

• Body — Detections are reported in the rectangular body system of the sensor platform.
• Sensor rectangular — Detections are reported in the sensor rectangular body coordinate

system.
• Sensor spherical — Detections are reported in a spherical coordinate system that is centered at

the radar sensor and aligned with the orientation of the radar on the platform.
• Scenario — Detections are reported in the rectangular scenario coordinate frame. The scenario

coordinate system is defined as the local navigation frame at simulation start time.

Port Settings

Source of target truth time — Source of target truth time

Auto (default) | Input port

Source of output truth time, specified as one of these options:

• Auto — The block uses the time provided on the target bus, or if not present, the current Simulink
simulation time.

• Input port — The block uses the time provided on the Time input port of the block.

Enable INS — Enable INS input port

off (default) | on

Select this parameter to allow input of INS data using the INS input port.

Source of output target report bus name — Source of output target report bus name

Auto (default) | Property

Source of output target report bus name, specified as one of these options:

2 Blocks

2-82



• Auto — The block automatically creates a bus name.
• Property — Specify the bus name by using the Specify an output target report bus name

parameter.

This bus contains Clustered detections, Tracks, or Detections output port data.

Specify an output target report bus name — Name of target report output bus

BusRadarDataGenerator (default) | valid bus name

Name of the target report bus to be returned in output port, specified as a valid bus name.

Dependencies

To enable this parameter, set the Source of output target report bus name parameter to
Property.

Enable radar configuration output — Enable radar configuration output

off (default) | on

Enable the Configuration output port.

Source of output config bus name — Source of output config bus name

Auto (default) | Property

Source of output config bus name, specified as one of these options:

• Auto — The block automatically creates a bus name.
• Property — Specify the bus name by using the Specify an output config bus name parameter.

Specify an output config bus name — Name of target report output bus

BusRadarDataGeneratorConfig (default) | valid bus name

Specify the name of the config bus returned in the output port.

Dependencies

To enable this parameter, set the Source of output config bus name parameter to Property.

Measurements

Resolution Settings

Azimuth resolution (deg) — Azimuth resolution of radar

4 (default) | positive real scalar

Azimuth resolution of the radar, specified as a positive scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish between two targets. The
azimuth resolution is typically the 3 dB downpoint of the azimuth angle beamwidth of the radar. Units
are in degrees.
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Elevation resolution (deg) — Elevation resolution of radar

5 (default) | positive real scalar

Elevation resolution of the radar, specified as a positive scalar. The elevation resolution defines the
minimum separation in elevation angle at which the radar can distinguish between two targets. The
elevation resolution is typically the 3 dB downpoint of the elevation angle beamwidth of the radar.
Units are in degrees.

Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

Range resolution (m) — Range resolution of radar

2.5 (default) | positive real scalar

Range resolution of the radar in meters, specified as a positive real scalar. The range resolution
defines the minimum separation in range at which the radar can distinguish between two targets.
Units are in meters.

Range rate resolution (m/s) — Range rate resolution of radar

0.5 (default) | positive real scalar

Range rate resolution of the radar, specified as a positive real scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between two
targets. Units are in meters per second.

Dependencies

To enable this parameter, on the Parameters tab, select the Enable range rate measurements
check box.

Bias Settings

Azimuth bias fraction — Azimuth bias fraction of radar

0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. Azimuth bias is expressed as a
fraction of the azimuth resolution specified in the Azimuth resolution (deg) parameter. This value
sets a lower bound on the azimuthal accuracy of the radar and is dimensionless.

Elevation bias fraction — Elevation bias fraction of radar

0.1 (default) | nonnegative scalar

Elevation bias fraction of the radar, specified as a nonnegative scalar. Elevation bias is expressed as a
fraction of the elevation resolution specified in the Elevation resolution (deg) parameter. This value
sets a lower bound on the elevation accuracy of the radar and is dimensionless.

Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

2 Blocks

2-84



Range bias fraction — Range bias fraction

0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is expressed as a
fraction of the range resolution specified by the Range resolution (m) property. This property sets a
lower bound on the range accuracy of the radar and is dimensionless.

Range rate bias fraction — Range rate bias fraction

0.05 (default) | nonnegative scalar

Range rate bias fraction of the radar, specified as a nonnegative scalar. Range rate bias is expressed
as a fraction of the range rate resolution specified by the Range rate resolution (m/s) parameter.
This property sets a lower bound on the range rate accuracy of the radar and is dimensionless.

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detector Settings

Total angular field of view [AZ, EL] (deg) — Angular field of view of radar

[20 5] (default) | 1-by-2 positive real-valued vector of form [azfov,elfov]

Angular field of view of the radar, specified as a 1-by-2 positive real-valued vector of the form [azfov
elfov]. The field of view defines the total angular extent spanned by the sensor. The azimuth field of
view, azfov, must lie in the interval (0, 360]. The elevation field of view, elfov, must lie in the
interval (0, 180]. Units are in degrees

Range limits [MIN, MAX] (m) — Minimum and maximum range of radar

[0 150] (default) | 1-by-2 nonnegative real-valued vector of form [min max]

Minimum and maximum range of the radar, specified as a 1-by-2 nonnegative real-valued vector of
the form [min max]. The radar does not detect targets that are outside this range. The maximum
range, max, must be greater than the minimum range, min. Units are in meters.

Range rate limits [MIN, MAX] (m/s) — Minimum and maximum range rate of radar
(m/s)

[-100 100] (default) | 1-by-2 real-valued vector of form [min max]

Minimum and maximum range rate of radar as a 1-by-2 real-valued vector of the form [min max].
The radar does not detect targets that are outside this range rate. The maximum range rate, max,
must be greater than the minimum range rate, min. Units are in meters per second.

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detection probability — Probability of detecting a target

0.9 (default) | scalar in range (0, 1]
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Probability of detecting a target as a scalar, specified as a scalar in the range (0, 1]. This quantity
defines the probability of detecting a target with a radar cross-section, with the radar cross-section
specified by the Reference target RCS (dBsm) parameter at the reference detection range
specified by the Reference target range (m) parameter. Units are dimensionless.

False alarm rate — False alarm report rate

1e-06 (default) | positive real scalar in range [10–7, 10–3]

False alarm report rate within each radar resolution cell, specified as a positive real scalar in the
range [10–7, 10–3]. The block determines resolution cells from the Azimuth resolution (deg) and
Range resolution (m) parameters and, when enabled, from the Elevation resolution (deg) and
Range rate resolution (m/s) parameters. Units are dimensionless.

Reference target range (m) — Reference range for given probability of detection

100 (default) | positive real scalar

Reference range for the given probability of detection and the given reference radar cross-section
(RCS) , specified as a positive real scalar. The reference range is the range at which a target having a
radar cross-section specified by the Reference target RCS (dBsm) parameter is detected with a
probability of detection specified by the Detection probability parameter. Units are in meters.

Reference target RCS (dBsm) — Reference radar cross-section for given probability of
detection

0 (default) | real scalar

Reference radar cross-section (RCS) for a given probability of detection and reference range,
specified as a real scalar. The reference RCS is the RCS value at which a target is detected with a
probability specified by the Detection probability parameter at the specified Reference target
range (m) parameter value. Values are expressed in dBsm.

Center frequency (Hz) — Center frequency of radar band

77e9 (default) | positive real scalar

Center frequency of the radar band, specified as a positive scalar. Units are in Hz.

Tracker Setting

Filter initialization function name — Kalman filter initialization function

initcvekf (default) | function handle

Kalman filter initialization function, specified as a character vector or string scalar of the name of a
valid Kalman filter initialization function.

The table shows the initialization functions that you can use to specify Filter initialization function
name.
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Initialization Function Function Definition
initcaabf Initialize constant-acceleration alpha-beta

Kalman filter
initcvabf Initialize constant-velocity alpha-beta Kalman

filter
initcakf Initialize constant-acceleration linear Kalman

filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initctekf Initialize constant-turnrate extended Kalman

filter.
initcvekf Initialize constant-velocity extended Kalman filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctukf Initialize constant-turnrate unscented Kalman

filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.

You can also write your own initialization function. The function must have the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by an objectDetection object.
The output of this function must be a tracking filter object, such as trackingKF, trackingEKF,
trackingUKF, or trackingABF.

To guide you in writing this function, you can examine the details of the supplied functions from
within MATLAB. For example:

type initcvekf

Dependencies

To enable this parameter, set the Target reporting format parameter to 'Tracks'.

M and N for the M-out-of-N confirmation — Threshold for track confirmation

[2 3] (default) | 1-by-2 vector of positive integers

Threshold for track confirmation, specified as a 1-by-2 vector of positive integers of the form [M N].
A track is confirmed if it receives at least M detections in the last N updates. M must be less than or
equal to N.

• When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.

• When setting N, consider the number of times you want the tracker to update before it makes a
confirmation decision. For example, if a tracker updates every 0.05 seconds, and you want to allow
0.5 seconds to make a confirmation decision, set N = 10.
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Dependencies

To enable this parameter, set the Target reporting format parameter to 'Tracks'.

P and R for the P-out-of-R deletion — Threshold for track deletion

[5 5] (default) | 1-by-2 vector of positive integers

Threshold for track deletion, specified as a 1-by-2 vector of positive integers of the form [P R]. If a
confirmed track is not assigned to any detection P times in the last R tracker updates, then the track
is deleted. P must be less than or equal to R.

• To reduce how long the radar maintains tracks, decrease R or increase P.
• To maintain tracks for a longer time, increase R or decrease P.

Dependencies

To enable this parameter, set the Target reporting format parameter to 'Tracks'.

Random Number Generator Settings

Random number generation — Method to specify random number generator seed

Repeatable (default) | Specify seed | Not repeatable

Method to set the random number generator seed as one of the options in the table.

Option Description
Repeatable The block generates a random initial seed for the

first simulation and reuses this seed for all
subsequent simulations. Select this parameter to
generate repeatable results from the statistical
sensor model. To change this initial seed, at the
MATLAB command prompt, enter: clear all.

Specify seed Specify your own random initial seed for
reproducible results by using the Initial seed
parameter.

Not repeatable The block generates a new random initial seed
after each simulation run. Select this parameter
to generate nonrepeatable results from the
statistical sensor model.

Initial seed — Random number generator seed

0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.

Dependencies

To enable this parameter, set the Random number generation parameter to Specify seed.
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Target Profiles

Target profiles definition — Method to specify target profiles

From Scenario Reader block (default) | MATLAB expression | Parameters

Method to specify target profiles, as one of Parameters, MATLAB expression, From Scenario
Reader block. Profiles are the physical and radar characteristics of targets in the scenario.

• Parameters — The block obtains the target profiles from these parameters:

• Unique target identifiers
• Target classification identifiers
• Length of target cuboids (m)
• Width of target cuboids (m)
• Height of target cuboids (m)
• Rotational center of target cuboids (m)
• Target signatures

• MATLAB expression — The block obtains the target profiles from the MATLAB expression
specified by the MATLAB expression for target profiles parameter.

• From Scenario Reader block — The block obtains the actor profiles from the scenario
specified by a scenario reader block such as Scenario Reader.

MATLAB expression for target profiles — MATLAB expression for target profiles

MATLAB structure | MATLAB structure array | valid MATLAB expression

Specify the MATLAB expression for target profiles, as a MATLAB structure, a MATLAB structure
array, or a valid MATLAB expression that produces such a structure or structure array.

If your Scenario Reader block reads data from a drivingScenario object, to obtain the actor
profiles directly from this object, set this expression to call the actorProfiles function on the
object. For example: actorProfiles(scenario).

The default target profile expression produces a MATLAB structure and has this form:

struct('ClassID',0,'Length',4.7,'Width',1.8,'Height',1.4, ...
'OriginOffset',[-1.35 0 0],'RCSPattern',[10 10;10 10], ...
'RCSAzimuthAngles',[-180 180],'RCSElevationAngles',[-90 90])

Dependencies

To enable this parameter, set the Target profiles definition parameter to MATLAB expression.

Unique target identifiers — Scenario-defined target identifier

[] (default) | positive integer | length-L vector of unique positive integers

Specify the scenario-defined target identifier as a positive integer or length-L vector of unique
positive integers. L must equal the number of targets input into the Targets (Body Frame) input
port. The vector elements must match TargetID values of the targets. You can specify Unique
target identifiers as []. In this case, the same target profile parameters apply to all targets.
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Example: [1 2]

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Target classification identifiers — User-defined classification identifier

0 (default) | integer | length-L vector of integers

Specify the user-defined classification identifier as an integer or length-L vector of integers. When
Unique target identifiers is a vector, this parameter is a vector of the same length with elements in
one-to-one correspondence to the targets in Unique target identifiers. When Unique target
identifiers is empty, [], you must specify this parameter as a single integer whose value applies to
all targets.
Example: 2

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Length of target cuboids (m) — Length of target cuboids

4.7 (default) | positive real scalar | length-L vector of positive values

Specify the length of target cuboids as a positive real scalar or length-L vector of positive values.
When Unique target identifiers is a vector, this parameter is a vector of the same length with
elements in one-to-one correspondence to the targets in Unique target identifiers. When Unique
target identifiers is empty, [], you must specify this parameter as a positive real scalar whose value
applies to all targets. Units are in meters.
Example: 6.3

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Width of target cuboids (m) — Width of target cuboids

1.8 (default) | positive real scalar | length-L vector of positive values

Specify the width of target cuboids as a positive real scalar or length-L vector of positive values.
When Unique target identifiers is a vector, this parameter is a vector of the same length with
elements in one-to-one correspondence to the targets in Unique target identifiers. When Unique
target identifiers is empty, [], you must specify this parameter as a positive real scalar whose value
applies to all targets. Units are in meters.
Example: 4.7

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Height of heights cuboids (m) — Height of actor cuboids

1.4 (default) | positive real scalar | length-L vector of positive values
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Specify the height of target cuboids as a positive real scalar or length-L vector of positive values.
When Unique target identifiers is a vector, this parameter is a vector of the same length with
elements in one-to-one correspondence to the targets in Unique target identifiers. When Unique
target identifiers is empty, [], you must specify this parameter as a positive real scalar whose value
applies to all targets. Units are in meters.
Example: 2.0

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Rotational center of target cuboids (m) — Rotational center of target cuboids

{[-1.35, 0, 0]} (default) | length-L cell array of real-valued 1-by-3 vectors

Specify the rotational center of target cuboids as a length-L cell array of real-valued 1-by-3 vectors.
Each vector represents the offset of the rotational center of an target cuboid from the bottom-center
of the target. When Unique target identifiers is a vector, this parameter is a cell array of vectors
with cells in one-to-one correspondence to the targets in Unique target identifiers. When Unique
target identifiers is empty, [], you must specify this parameter as a cell array of one element
containing an offset vector whose values apply to all targets. Units are in meters.
Example: {[-1.35, 0.2, 0.3]}

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Target signatures — Target signatures
cell array

Target signatures, specified as a cell array of rcsSignature objects, which specify the RCS
signature of the target.

Dependencies

Dependencies

To enable this parameter, set the Target profiles definition parameter to Parameters.

Version History
Introduced in R2021b

See Also
radarDataGenerator | objectDetection | objectTrack | rcsSignature | Scenario Reader |
Tracking Scenario Reader
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Two-Ray Channel
Two-ray channel environment

Library
Environment and Target

phasedenvlib

Description
The Two-Ray Channel block propagates narrowband signals from one point in space to multiple
points or from multiple points back to one point via both the direct path and the ground reflection
path. The block models propagation time, free-space propagation loss, and Doppler shift. The block
assumes that the propagation speed is much greater than the object's speed in which case the stop-
and-hop model is valid.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are degrees Celsius.
This parameter appears when you select the Specify atmospheric parameters check box. Units
are degrees Celsius.

Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are Pascals (Pa).
The value 101325 for this property corresponds to one standard atmosphere. This parameter
appears when you select the Specify atmospheric parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units are gm/m3. This
parameter appears when you select the Specify atmospheric parameters check box.
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Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar. Units are
gm/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog. This
parameter appears when you select the Specify atmospheric parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour. This parameter
appears when you select the Specify atmospheric parameters check box.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Ground reflection coefficient
Fraction of incident signal amplitude reflected towards receiver.

Combine two rays at output
Select this check box to coherently sum the direct-path and reflected-path signals at output. Clear
the check box to keep the two rays separate.

Maximum one-way propagation distance (m)
The maximum distance between the signal origin and the destination, specified as a positive
scalar. Units are in meters. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal. Double-precision floating point
Pos1 Signal source position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
Vel1 Signal source velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Propagated signal. Double-precision floating point

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
phased.FreeSpace | twoRayChannel | widebandTwoRayChannel | Wideband Two-Ray Channel
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Wideband Two-Ray Channel
Wideband two-ray channel environment
Library: Radar Toolbox

Description
The Wideband Two-Ray Channel block propagates wideband signals from one point in space to
multiple points or from multiple points back to one point via both the direct path and the ground
reflection path. The block propagates wideband signals by (1) decomposing them into subbands, (2)
propagating subbands independently, and (3) recombining the propagated subbands. The block
models propagation time, propagation loss, and Doppler shift. The block assumes that the
propagation speed is much greater than the object's speed in which case the stop-and-hop model is
valid.

Ports
Input

X — Wideband input signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix

• Wideband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. The quantity M is the number of samples in the signal and N is
the number of two-ray channels. Each channel corresponds to a source-destination pair. Each
column contains an identical signal that is propagated along the line-of-sight and reflected
paths.

• M-by-2N complex-valued matrix. The quantity M is the number of samples of the signal and N
is the number of two-ray channels. Each channel corresponds to a source-destination pair.
Each adjacent pair of columns represents a different channel. Within each pair, the first column
represents the signal propagated along the line-of-sight path and the second column
represents the signal propagated along the reflected path.

The quantity M is the number of samples of the signal and N is the number of two-ray channels. Each
channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

Pos1 — Position of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix
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Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If Pos1 is a column vector, it takes the
form [x;y;z]. If Pos1 is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Position units are in meters.

Pos1 and Pos2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector.
Example: [1000;100;500]
Data Types: double

Pos2 — Position of signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If Pos2 is a column vector, it takes the
form [x;y;z]. If Pos2 is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Position units are in meters.

Pos1 and Pos2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector.
Example: [-100;300;50]
Data Types: double

Vel1 — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of Vel1 must match the dimensions of Pos1. If Vel1 is a column vector, it takes the
form [Vx;Vy;Vz]. If Vel1 is a 3-by-N matrix, each column specifies a different origin velocity and
has the form [Vx;Vy;Vz]. Velocity units are in meters per second.
Example: [-10;3;5]
Data Types: double

Vel2 — Velocity of signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of Vel2 must match the dimensions of Pos2. If Vel2 is a column vector, it takes the
form [Vx;Vy;Vz]. If Vel2 is a 3-by-N matrix, each column specifies a different origin velocity and
has the form [Vx;Vy;Vz]. Velocity units are in meters per second.
Example: [-1000;300;550]
Data Types: double

Output

Out — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property to
true. Each matrix column contains the coherently combined signals from the line-of-sight path
and the reflected path.
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• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property to
false. Alternate columns of the matrix contain the signals from the line-of-sight path and the
reflected path.

The output Out contains signal samples arriving at the signal destination within the current input
time frame. Whenever it takes longer than the current time frame for the signal to propagate from
the origin to the destination, the output may not contain all contributions from the input of the
current time frame. The remaining output will appear in the next execution of the block.

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Signal carrier frequency (Hz) — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Data Types: double

Number of subbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128

Specify atmospheric parameters — Enable atmospheric attenuation model
off (default) | on

Select this parameter to enable to add signal attenuation caused by atmospheric gases, rain, fog, or
clouds. When you select this parameter, the Temperature (degrees Celsius), Dry air pressure
(Pa), Water vapour density (g/m^3), Liquid water density (g/m^3), and Rain rate (mm/hr)
parameters appear in the dialog box.
Data Types: Boolean

Temperature (degrees Celsius) — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
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Dependencies

To enable this parameter, select the Specify atmospheric parameters check box.
Data Types: double

Dry air pressure (Pa) — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this parameter corresponds to one standard atmosphere.

Dependencies

To enable this parameter, select the Specify atmospheric parameters check box.
Data Types: double

Water vapour density (g/m^3) — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.

Dependencies

To enable this parameter, select the Specify atmospheric parameters check box.
Data Types: double

Liquid water density (g/m^3) — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.

Dependencies

To enable this parameter, select the Specify atmospheric parameters check box.
Data Types: double

Rain rate (mm/hr) — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.

Dependencies

To enable this parameter, select the Specify atmospheric parameters check box.
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off
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Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Ground reflection coefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Coefficients have an absolute value less than or equal to one.
The quantity N is the number of two-ray channels. Units are dimensionless.
Example: -0.5

Combine two rays at output — Option to combine two rays at output
on (default) | off

Select this parameter to combine the two rays at channel output. Combining the two rays coherently
adds the line-of-sight propagated signal and the reflected path signal to form the output signal. You
can use this mode when you do not need to include the directional gain of an antenna or array in your
simulation.
Example: on

Maximum one-way propagation distance (m) — Maximum one-way propagation distance
10.0e3 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a real-valued positive scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000.0

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.
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Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
phased.FreeSpace | phased.LOSChannel | twoRayChannel | phased.WidebandFreeSpace |
phased.WidebandLOSChannel | widebandTwoRayChannel

Functions
fogpl | fspl | gaspl | rangeangle | rainpl

Blocks

Topics
Two-Ray Channel
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Radar Equation Calculator
Estimate maximum range, peak power, and SNR of a radar system

Description
The Radar Equation Calculator app solves the basic radar equation for monostatic or bistatic radar
systems. The radar equation relates target range, transmitted power, and received signal SNR. Using
this app, you can:

• Solve for maximum target range based on the transmit power of the radar and specified received
SNR

• Calculate required transmit power based on known target range and specified received SNR
• Calculate the received SNR value based on known range and transmit power

Open the Radar Equation Calculator App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter radarEquationCalculator.

Examples

Maximum Detection Range of a Monostatic Radar

This example shows how to compute the maximum detection range of a 10 GHz, 1 kW, monostatic
radar with a 40 dB antenna gain and a detection threshold of 10 dB.
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From the Calculation Type drop-down list, choose Target Range as the solution.

Choose Configuration as monostatic.

Enter 40 dB for the antenna Gain.

Set the Wavelength to 3 cm.

Set the SNR detection threshold parameter to 10 dB.

Assuming the target is a large airplane, set the Target Radar Cross Section value to 100 m2.

Specify the Peak Transmit Power as 1 kW

Specify the Pulse Width as 2 µs.

Assume a total of 5 dB System Losses.
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The maximum target detection range is 92 km.

Maximum Detection Range of a Monostatic Radar Using Multiple Pulses

This example shows how to use multiple pulses to reduce the transmitted power while maintaining
the same maximum target range.

Continue with the results from the previous example.

Click the arrows to the right of the SNR label.

The Detection Specifications for SNR menu opens.

Set Probability of Detection to 0.95.

Set Probability of False Alarm to 10–6.

Set Number of Pulses to 4.

Reduce Peak Transmit Power to 0.75 kW.

Assume a nonfluctuating target model, and set the Swerling Case Number to 0.
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The maximum detection range is approximately the same as in the previous example, but the
transmitted power is reduced by 25%.

Maximum Detection Range of Bistatic Radar System

This example shows how to solve for the geometric mean range of a target for a bistatic radar system.
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Specify the Calculation Type as Target Range.

Specify the Configuration as bistatic.

Provide a Transmitter Gain and a Receiver Gain parameter, instead of the single gain needed in
the monostatic case.

Alternatively, to achieve a particular probability of detection and probability of false alarm, open the
Detection Specifications for SNR menu.

Enter values for Probability of Detection and Probability of False Alarm, Number of Pulses,
and Swerling Case Number.
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Required Transmit Power for a Bistatic Radar

This example shows how to compute the required peak transmit power of a 10 GHz, bistatic X-band
radar for a 80 km total bistatic range, and 10 dB received SNR.

 Radar Equation Calculator
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The system has a 40 dB transmitter gain and a 20 dB receiver gain. The required receiver SNR is 10
dB.

From the Calculation Type drop-down list, choose Peak Transmit Power as the solution type.

Choose Configuration as bistatic.

From the system specifications, set Transmitter Gain to 40 dB and Receiver Gain to 20 dB.

Set the SNR detection threshold to 10 dB and the Wavelength to 0.3 m.

Assume the target is a fighter aircraft having a Target Radar Cross Section value of 2 m2.

Choose Range from Transmitter as 50 km, and Range from Receiver as 30 km.

Set the Pulse Width to 2 µs and the System Losses to 0 dB.

3 Apps

3-8



The required Peak Transmit Power is about 0.5 kW.

Receiver SNR for a Monostatic Radar

This example shows how to compute the received SNR for a monostatic radar with 1 kW peak
transmit power with a target at a range of 2 km.

Assume a 2 GHz radar frequency and 20 dB antenna gain.

From the Calculation Type drop-down list, choose SNR as the solution type and set the
Configuration as monostatic.

Set the Gain to 20, the Peak Transmit Power to 1 kW, and the Target Range to 2000 m.

Set the Wavelength to 15 cm.

Find the received SNR of a small boat having a Target Radar Cross Section value of 0.5 m2.

The Pulse Width is 1 µs and System Losses are 0 dB.
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• “Detection, Range and Doppler Estimation”

Parameters
Calculation Type — Type of calculation to perform
Target Range (default) | Peak Transmit Power | SNR

Target Range – solves for maximum target range based on transmit power of the radar and desired
received SNR.

Peak Transmit – Power computes power needed to transmit based on known target range and
desired received SNR.

SNR – calculates the received SNR value based on known range and transmit power.

Wavelength — Wavelength of radar operating frequency
0.3 m (default) | m | cm | mm
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Specify the wavelength of radar operating frequency in m, cm, or mm.

The wavelength is the ratio of the wave propagation speed to frequency. For electromagnetic waves,
the speed of propagation is the speed of light.

Denoting the speed of light by c and the frequency (in hertz) of the wave by f, the equation for
wavelength is λ = c/f.

Pulse Width — Single pulse duration
1 µs (default) | µs | ms | s

Specify the single pulse duration in µs, ms, or s.

System Losses — System loss in decibels (dB)
0 dB (default)

System Losses represents a general loss factor that comprises losses incurred in the system
components and in the propagation to and from the target.

Noise Temperature — System noise temperature in kelvins
290 K (default)

The system noise temperature is the product of the system temperature and the noise figure.

Target Radar Cross Section — Radar cross section (RCS)
1 m² (default) | m² | dBsm

Specify the target radar cross section in m², or dBsm.

The target radar cross section is nonfluctuating.

Configuration — Type of radar system
Monostatic (default) | Bistatic

Monostatic – Transmitter and receiver are co-located (monostatic radar).

Bistatic – Transmitter and receiver are not co-located (bistatic radar).

Gain — Transmitter and receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are co-located (monostatic radar), the transmit and receive gains
are equal.

This parameter is enabled only if the Configuration is set to Monostatic.

Peak Transmit Power — Transmitter peak power
1 kw (default) | kW | mW | W | dBW

Specify the transmitter peak power in kW, mW, W, or dBW.

This parameter is enabled only if the Calculation Type is set to Target Range or SNR.

SNR — Minimum output signal-to-noise ratio at the receiver in decibels
10 dB (default)
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Specify an SNR value, or calculate an SNR value using Detection Specifications for SNR.

You can calculate the SNR required to achieve a particular probability of detection and probability of
false alarm using Shnidman's equation. To calculate the SNR value:

1 Click the arrows to the right of the SNR label to open the Detection Specifications for SNR
menu.

2 Enter values for Probability of Detection, Probability of False Alarm, Number of Pulses, and
Swerling Case Number.

This parameter is enabled only if the Calculation Type is set to Target Range or Peak Transmit
Power.

Probability of Detection — Detection probability used to estimate SNR
0.81029 (default)

Specify the detection probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Probability of False Alarm — False alarm probability used to estimate SNR
0.001 (default)

Specify the false-alarm probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Number of Pulses — Number of pulses used to estimate SNR
1 (default)

Specify a single pulse, or the number of pulses used for noncoherent integration in Shnidman's
equation.

Use multiple pulses to reduce the transmitted power while maintaining the same maximum target
range.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Swerling Case Number — Swerling case number used to estimate SNR
0 (default) | 1 | 2 | 3 | 4

Specify the Swerling case number used to estimate SNR using Shnidman's equation:

• 0 – Nonfluctuating pulses.
• 1 – Scan-to-scan decorrelation. Rayleigh/exponential PDF–A number of randomly distributed

scatterers with no dominant scatterer.
• 2 – Pulse-to-pulse decorrelation. Rayleigh/exponential PDF– A number of randomly distributed

scatterers with no dominant scatterer.
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• 3 – Scan-to-scan decorrelation. Chi-square PDF with 4 degrees of freedom. A number of scatterers
with one dominant.

• 4 – Pulse-to-pulse decorrelation. Chi-square PDF with 4 degrees of freedom. A number of
scatterers with one dominant.

Swerling case numbers characterize the detection problem for fluctuating pulses in terms of:

• A decorrelation model for the received pulses.
• The distribution of scatterers affecting the probability density function (PDF) of the target radar

cross section (RCS).

The Swerling case numbers consider all combinations of two decorrelation models (scan-to-scan;
pulse-to-pulse) and two RCS PDFs (based on the presence or absence of a dominant scatterer).

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Target Range — Range to target
10 km (default) | km | m | mi | nmi

Specify target range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Monostatic.

Transmitter Gain — Transmitter gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not co-located (bistatic radar), specify the transmitter gain
separately from the receiver gain.

This parameter is enabled only if the Configuration is set to Bistatic.

Range from Transmitter — Range from the transmitter to the target
10 km (default) | km | m | mi | nmi

When the transmitter and receiver are not co-located (bistatic radar), specify the transmitter range
separately from the receiver range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Bistatic.

Receiver Gain — Receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not co-located (bistatic radar), specify the receiver gain
separately from the transmitter gain.

This parameter is enabled only if the Configuration is set to Bistatic.

Range from Receiver — Range from the target to the receiver
10 km (default) | km | m | mi | nmi
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When the transmitter and receiver are not co-located (bistatic radar), specify the receiver range
separately from the transmitter range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Bistatic.

Version History
Introduced in R2021a

See Also
Apps
Radar Designer | Pulse Waveform Analyzer | Sensor Array Analyzer

Functions
radareqpow | radareqrng | radareqsnr | shnidman

Topics
“Detection, Range and Doppler Estimation”
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Radar Designer
Model radar gains and losses and assess performance in different environments

Description
The Radar Designer app is an interactive tool that assists engineers and system analysts with high-
level design and assessment of radar systems at the early stage of radar development. Using the app,
you can:

• Assess and compare multiple radar designs in a single session
• Add smart radar, environment, and target “Radar Designer Configurations” on page 3-50 to

jump-start your analysis
• Incorporate environmental effects due to Earth's curvature, atmosphere, terrain, and precipitation
• Add custom target radar cross-sections, antenna/array models, and both range-independent and

range-dependent losses
• Export and save results, sessions, models, and plots to continue your analysis
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Open the Radar Designer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter radarDesigner.

Examples

Design Automotive Radar

Design a radar to install on top of a truck. Adjust the design parameters so the radar can work in
foggy conditions and still make the objective range. Export the design session to the MATLAB
Workspace.

Open Radar Designer. At the command line, type

radarDesigner

Start a radar design session. On the toolstrip, click New Session and select the Automotive Radar
option. The app specifies typical radar design, target, and environment parameters.

The radar you are designing must be set 3 meters above the ground. On the Radar tab, in the
Antenna and Scanning section, change the Antenna Height from 1 meter to 3 meters.

On the Environment tab, in the Precipitation section, specify the Precipitation Type as Fog
and set the Fog Density to Heavy.
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As the SNR vs Range plot and Metrics and Requirements table show, the radar satisfies the
threshold maximum range but falls short of the desired maximum range of 300 meters.

Increase the transmitted power to attain a higher maximum range. On the Radar tab, in the Main
section, increase the Peak Power to 4e-05 kW. The plot and table show that the radar satisfies the
requirement with the new power value.
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Export the radar design to the MATLAB Workspace. On the toolstrip, click Export and select
Generate Metrics Report to generate a formatted report of numeric metrics.

• “Radar Link Budget Analysis”

Parameters
Radar, Target, and Environment

Radar — Design parameters
tab

To enable the Radar parameters, click New Session on the app toolstrip to load one of the built-in
“Radar Designer Configurations” on page 3-50. Use the Radars section of the app toolstrip to add,
duplicate, or delete radar designs during a session.

• Use the Current Radar list to switch between different radar designs within a single session.
• Use the Name box to change the name of the currently selected radar.

Main — Pulse and carrier settings
tab section

Use these parameters to specify pulse and carrier settings, such as the carrier frequency and the
transmitted power.
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Parameter Description
Carrier wave Frequency (default) or
Wavelength

Carrier frequency or carrier wavelength,
specified as a scalar.

• Specify Frequency as a scalar in Hz, kHz,
MHz, or GHz.

• Specify Wavelength as a scalar in m, cm, or
mm.

Pulse Bandwidth Bandwidth of the transmitted pulse, specified as a
scalar in Hz, kHz, MHz, or GHz.

Average Power (default) or Peak Power Average transmitted power or peak transmitted
power, specified as a scalar.

• Specify Average Power as a scalar in W, kW,
MW, dBW, or dBm.

• Specify Peak Power as a scalar in W, kW, MW,
dBW, or dBm.

Pulse Width (default) or Duty Cycle Radar pulse width or radar duty cycle, specified
as a scalar.

• Specify Pulse Width, the duration of the
transmitted pulse, as a scalar in s, ms, or μs.

• Specify Duty Cycle, fraction of the time the
radar is transmitting, as a dimensionless
scalar from 0 to 1.

PRF (default) or PRI Pulse repetition frequency (PRF) or pulse
repetition interval (PRI), specified as a scalar.

• Specify PRF, the number of pulses transmitted
per second, as a scalar in Hz, kHz, or MHz.

• Specify PRI, the time between two
consecutive transmitted pulses, as a scalar in
s, ms, or μs.

Hardware — Noise settings
tab subsection

Use these parameters to specify noise settings, such as noise temperature or dynamic range.

Parameter Description
Noise Temperature or Noise Figure System noise temperature or noise figure,

specified as a scalar.

• Specify Noise Temperature as a scalar in K.
• Specify Noise Figure as a scalar in dB or in

linear units.
Reference Noise Temperature Reference noise temperature, specified as a

scalar in K.
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Parameter Description
Quantization Noise Select Quantization Noise to include

quantization noise.
Number of Bits Number of bits in the analog-to-digital (A/D)

converter, specified as a dimensionless scalar.

This parameter applies only if Quantization
Noise is selected.

Dynamic Range Dynamic range of the A/D converter, specified as
a scalar in dB or in linear units.

This parameter applies only if Quantization
Noise is selected.

Antenna and Scanning — Position, beamwidth, and gain settings
tab section

Use these parameters to specify position, beamwidth, and gain settings, such as antenna height,
antenna polarization, or azimuth beamwidth.

Parameter Description
Antenna Height Height of the antenna above the surface,

specified as a scalar in m, km, ft, or kft.

This parameter applies to both the transmit
antenna and the receive antenna.

Antenna Tilt Angle Angle between the electric axis of the antenna
and the ground plane, specified as a scalar in
deg, rad, or mrad.

This parameter applies to both the transmit
antenna and the receive antenna.

Antenna Polarization Specify the antenna polarization as Horizontal
or Vertical.

This parameter applies to both the transmit
antenna and the receive antenna.

Transmit Antenna Gain Input — Transmit antenna gain
tab subsection

Specify the Transmit Antenna Gain Input as one of these:

• Manual — Use the Gain box to enter a custom value for the transmit antenna in dBi.
• From Beamwidth — Compute the transmit antenna gain from the beamwidths assuming an ideal

Gaussian beam pattern with no sidelobes. You can set these parameters.

Parameter Description
Azimuth Beamwidth Azimuth beamwidth of the transmit antenna,

specified as a scalar in deg, rad, or mrad.
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Parameter Description
Elevation Beamwidth Elevation beamwidth of the transmit antenna,

specified as a scalar in deg, rad, or mrad.

Radar Designer computes and displays the receive antenna gain in dBi.

Receive Antenna Gain Input — Receive antenna gain if different from transmit antenna
tab subsection

Select Use Different Antenna for Receive to indicate that the receive and transmit antennas have
different gains. If you use a different antenna for receive, you can specify the Receive Antenna Gain
Input as one of these:

• Manual — Use the Gain box to enter a custom value for the receive antenna in dBi.
• From Beamwidth — Compute the receive antenna gain from the beamwidths assuming an ideal

Gaussian beam pattern with no sidelobes. You can set these parameters.

Parameter Description
Azimuth Beamwidth Azimuth beamwidth of the receive antenna,

specified as a scalar in deg, rad, or mrad.
Elevation Beamwidth Elevation beamwidth of the receive antenna,

specified as a scalar in deg, rad, or mrad.

Radar Designer computes and displays the receive antenna gain in dBi.

Scan Mode — Scan mode settings
tab subsection

Specify the scan mode for your design as one of these:

• None — The radar performs no scanning. Radar Designer does not incorporate scanning-related
losses into the analysis.

• Mechanical — The radar performs mechanical scanning. Radar Designer incorporates beam
shape loss and beam-dwell factor (range-dependent loss for rapidly scanning beam) into the
analysis.

• Electronic — The radar uses a phased array to perform electronic scanning. Radar Designer
incorporates beam shape loss and scan sector loss into the analysis.

If you specify Scan Mode as Mechanical or Electronic, you can set these parameters.

Parameter Description
Azimuth Scan Sector Size Azimuth span of the search volume, specified as a

scalar in deg, rad, or mrad.
Elevation Scan Limits Initial and final elevations of the scan volume,

specified as two scalars in deg, rad, or mrad.

Based on the chosen parameters, Radar Designer computes and displays these settings:

• Max Scan Rate, the maximum scan rate in degrees per second given the selected PRF, the
number of transmitted pulses, and the antenna beamwidth. This setting is displayed if Scan Mode
is specified as Mechanical.
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• Search Volume Size, the size of the solid angular search volume in steradians.
• Search Time, the time in seconds it takes to scan the search volume given the selected PRF, the

number of transmitted pulses, and the antenna beamwidth.

Detection and Tracking — Pfa, CPI, and M-of-N settings
tab section

Use these parameters to specify Pfa, CPI, and M-of-N settings, such as probability of false alarm or
track confirmation logic threshold.

Parameter Description
Probability of False Alarm Desired probability of false alarm (Pfa) at the

output of the detector, specified as a
dimensionless scalar. The default value is 10–6

(1e-06).
Number of Pulses Number of pulses within a coherent processing

interval (CPI), specified as a positive integer
scalar.

Pulse Integration Pulse integration, specified as Coherent or
Noncoherent.

Moving Target Indicator (MTI) — Moving target indicator
tab subsection

Select Moving Target Indicator (MTI) to include moving target indicator processing in your
design. If you enable moving target indicator processing, you can set these parameters.

Parameter Description
Canceler Canceler, specified as one of these:

• Two-pulse — First-order canceler
• Three-pulse — Second-order canceler
• Four-pulse — Third-order canceler

Null Velocity Clutter velocity to which the MTI filter is
adjusted, specified as a scalar in m/s, km/hr,
mi/hr, or kts.

Method Method to perform MTI processing, specified as
one of these:

• Sequential — Radar Designer processes
pulses sequentially.

• Batch — Radar Designer processes pulses
in batches.

Quadrature Processing Select Quadrature Processing to enable
quadrature-channel (vector) MTI processing for
your design. If this parameter is not selected,
Radar Designer performs single-channel MTI
processing.

This option is available if Pulse Integration is set to Noncoherent.
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Binary Pulse Integration — Binary pulse integration
tab subsection

Specify how to perform binary (M-of-N) pulse integration as one of these:

• None — Radar Designer does not apply binary integration.
• Automatic — Radar Designer applies binary integration and computes the optimal number of

detected pulses (M) out of the total number of pulses (N).
• Custom — Radar Designer applies binary integration with a manually specified number of

detected pulses. If you choose this option, specify the Number of Detected Pulses (M) out of the
total number of pulses (N) as a positive integer.

This option is available if Pulse Integration is set to Noncoherent.

Constant False Alarm Rate (CFAR) — Include constant false alarm rate detection
tab subsection

Select Constant False Alarm Rate (CFAR) to enable constant false alarm rate (CFAR) detection. If
you enable CFAR detection, you can set these parameters.

Parameter Description
Number of Reference Cells Total number of CFAR reference (training) cells,

specified as a positive integer scalar.
Method CFAR detection method, specified as one of these:

• Cell Averaging — Radar Designer sets
the detection threshold by computing the
average output of the surrounding range and
Doppler cells.

• Greatest-of Cell Averaging — Radar
Designer sets the detection threshold by
computing separate averages for leading and
lagging cells and choosing the greatest value.

Number of CPIs — Number of coherent processing intervals
tab subsection

Specify the number of coherent processing intervals (CPIs) as a positive integer scalar.

M-of-N CPI Integration — Enable M-of-N integration of CPIs
tab subsection

Select M-of-N CPI Integration to enable M-of-N integration of coherent processing intervals (CPIs).
If you enable M-of-N integration of CPIs, you can set this parameter.

Parameter Description
Number of CPIs with Detection Number of coherent processing intervals with a

declared detection (M) out of the total number of
CPIs (N), specified as a dimensionless scalar.

Sensitivity Time Control (STC) — Sensitivity time control
tab subsection
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Select Sensitivity Time Control to enable sensitivity time control in your design. If you enable
sensitivity time control, you can set these parameters.

Parameter Description
Cutoff Range Cutoff range beyond which the full receiver gain

is used, specified as a scalar in m, km, nmi, ft, or
kft. Default: 50 km.

Exponent Exponent selected to maintain target
detectability for ranges inside the cutoff range.
Default: 3.5.

Track Confirmation Logic — Track confirmation probabilities
tab subsection

Use the “Common Gate History Algorithm” on page 1-303 to compute track confirmation
probabilities. You can set these parameters.

Parameter Description
Confirmation Threshold Confirmation threshold, specified as two positive

integer scalars that represent an M-of-N or M/N
confirmation logic. Default: 2/3.

Update Rate or Update Time Update rate or update time:

• Specify Update Rate, the number of track
updates per second, as a scalar in Hz.

• Specify Update Time, the time interval
between two consecutive track updates, as a
scalar in seconds.

Default: 1 Hz or 1 s.

Loss Factors — Loss factors
tab section

Use these parameters to specify loss factors.

Parameter Description
Eclipsing Eclipsing loss, specified as None (default),

Range-Dependent Factor, or Statistical
Loss.

Custom Loss Custom loss, specified as a scalar in dB or
linear units. Default: 4 dB.

Target — Target characteristics
tab

To enable the Target parameters, add at least one radar to the app.
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Parameter Description
Radar Cross Section Radar cross section, specified as a scalar in m2 or

dBsm.
Swerling Model Swerling model, specified as Swerling 0/5,

Swerling 1, Swerling 2, Swerling 3, or
Swerling 4.

Height or Elevation Angle Height or elevation angle, specified as a scalar.

• Specify Height in m, km, nmi, ft, or kft.
• Specify Elevation Angle in deg, rad, or

mrad.
Max Acceleration Maximum acceleration, specified as a scalar in m2

or in units of g.

Environment — Landscape and precipitation
tab

Use the Environment tab to incorporate effects due to earth's curvature, atmosphere, terrain, and
precipitation.

Atmosphere and Surface — Atmosphere and surface characteristics
tab section

Specify atmosphere and surface characteristics to use seasonal latitude models, surface, and surface
clutter settings.

By default. Radar Designer has the Free Space parameter selected. This option corresponds to
propagation in a vacuum, and the only variable you can control is the Precipitation. To access
other options, clear the box.

Earth Model — Earth model
tab section

Specify the Earth Model as Curved or Flat. Using a curved Earth model gives access to more
atmosphere models and enables you to control the Effective Earth Radius.

Atmosphere Model — Type of atmosphere
tab section

Specify the type of atmosphere through which the radar signal propagates as No Atmosphere,
Uniform, Standard, Low Latitude, Mid Latitude, or High Latitude.

No Atmosphere — No atmosphere
tab subsection

Specify No Atmosphere to use a constant index of refraction of 1. This model does not incorporate
atmospheric gas loss or lens effect loss.

Uniform — Uniform atmosphere
tab subsection
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Specify Uniform for an atmosphere with uniform temperature, pressure, and water vapor density.
This model can incorporate atmospheric gas loss but not lens effect loss. You can set these
parameters.

Parameter Description
Ambient Temperature Temperature of uniform atmosphere, specified as

a scalar in C or K. Default: 15 °C.
Dry Air Pressure Dry air pressure of uniform atmosphere, specified

as a scalar in hPa, Pa, or mbar. Default: 1013
hPa.

Water Vapor Density Water vapor density of uniform atmosphere,
specified as a scalar in g/m3 or g/cm3. Default:
7.5 g/m3.

Include Atmospheric Gases Loss Select to incorporate the path loss due to
atmosphere gaseous absorption.

Standard — ITU Mean Annual Global Reference Atmosphere
tab subsection

Specify Standard to use the ITU Mean Annual Global Reference Atmosphere (MAGRA) recommended
in ITU-R P.835-6 [1]. This option applies only if Earth Model is specified as Curved. You can set
these parameters.

Parameter Description
Water Vapor Density Profile Water vapor density profile, specified as

Automatic or Custom. Use this parameter to
use the settings recommended in ITU-R P.835-6
or to use your own settings of water vapor
density and scale height.

Surface Water Vapor Density Surface water vapor density, specified as a scalar
in g/m3 or g/cm3.

This parameter applies only if Water Vapor
Density Profile is specified as Custom. The
recommended value is 7.5 g/m3.

Scale Height Scale height, specified as a scalar in m, km, nmi,
ft, or kft.

This parameter applies only if Water Vapor
Density Profile is specified as Custom. The
recommended value is 2 km for typical
atmospheric conditions and 6 km for dry
atmospheric conditions.

Include Atmospheric Gases Loss Select to incorporate the path loss due to
atmosphere gaseous absorption.

Include Lens Effect Loss Select to incorporate the lens effect loss due to
the changing index of refraction in the
atmosphere. This effect is significant only at small
grazing angles.
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Low Latitude — ITU atmosphere model for latitudes less than 22 degrees
tab subsection

Specify Low Latitude to use the ITU atmosphere model for latitudes less than 22° recommended in
ITU-R P.835-6 [1]. This option applies only if Earth Model is specified as Curved. You can set these
parameters.

Parameter Description
Include Atmospheric Gases Loss Select to incorporate the path loss due to

atmosphere gaseous absorption.
Include Lens Effect Loss Select to incorporate the lens effect loss due to

the changing index of refraction in the
atmosphere. This effect is significant only at small
grazing angles.

Mid Latitude — ITU atmosphere model for latitudes from 22 degrees to 45 degrees
tab subsection

Specify Mid Latitude to use the ITU atmosphere model for latitudes from 22° to 45° recommended
in ITU-R P.835-6 [1]. This option applies only if Earth Model is specified as Curved. You can set
these parameters.

Parameter Description
Season Season, specified as Summer or Winter.
Include Atmospheric Gases Loss Select to incorporate the path loss due to

atmosphere gaseous absorption.
Include Lens Effect Loss Select to incorporate the lens effect loss due to

the changing index of refraction in the
atmosphere. This effect is significant only at small
grazing angles.

High Latitude — ITU atmosphere model for latitudes greater than 45 degrees
tab subsection

Specify High Latitude to use the ITU atmosphere model for latitudes greater than 45°
recommended in ITU-R P.835-6 [1]. This option applies only if Earth Model is specified as Curved.
You can set these parameters.

Parameter Description
Season Season, specified as Summer or Winter.
Include Atmospheric Gases Loss Select to incorporate the path loss due to

atmosphere gaseous absorption.
Include Lens Effect Loss Select to incorporate the lens effect loss due to

the changing index of refraction in the
atmosphere. This effect is significant only at small
grazing angles.

Effective Earth Radius — Effective Earth radius
tab section
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Specify Effective Earth Radius as one of these:

• Automatic — Radar Designer computes the radius automatically based on the reference
atmosphere.

Atmosphere Model Effective Earth Radius
No Atmosphere 6371 km
Uniform 6371 km
Standard 8719 km
Low Latitude 9540 km
Mid Latitude 8262 km
High Latitude 8308 km

• Custom — This option is recommended for high-altitude geometries. Specify the effective radius
of the Earth as a scalar in m, km, nmi, ft, or kft. This parameter is often set to 4/3 of the Earth's
actual radius.

Surface Type — Type of surface
tab section

Specify the type of surface on which the radar signal propagates as Featureless, Sea, Land, or
Custom.

Featureless — Characteristics of perfectly smooth, perfectly reflective surface
tab subsection

If you specify the Surface Type as Featureless, you can set the Propagation Factor parameter,
which is available only if you set Earth Model to Curved. Propagation Factor is off by default.

Sea — Sea characteristics
tab subsection

If you specify the Surface Type as Sea, you can set these parameters.
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Parameter Description
Sea State Number Sea state number, specified as one of these:

• 0 - Glassy (Default) — Calm, glassy sea
surface. No waves.

• 1 - Ripples — Calm, rippled sea surface.
Wave heights from 0 to 0.1 m.

• 2 - Smooth — Smooth sea surface. Wave
heights from 0.1 m to 0.5 m.

• 3 - Slight — Slight waves. Wave heights
from 0.5 m to 1.25 m.

• 4 - Moderate — Moderate waves. Wave
heights from 1.25 m to 2.5 m.

• 5 - Rough — Rough waves. Wave heights
from 2.5 m to 4 m.

• 6 - Very Rough — Very rough waves. Wave
heights from 4 m to 6 m.

• 7 - High — High waves. Wave heights from
6 m to 9 m.

• 8 - Very High — Very high waves. Wave
heights from 9 m to 14 m.

Include Radar Propagation Factor The radar propagation factor is the ratio of the
magnitude of the actual magnetic field at a point
in space to the magnitude of the magnetic field at
the same point in free space.

This parameter is available only if you set Earth
Model to Curved. The parameter is off by
default.
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Parameter Description
Permittivity Model Permittivity model, specified as one of these:

• Blake's Model (Default) — Blake's model is
applicable in the frequency range from 100
MHz to 10 GHz.

• Sea Water — ITU seawater permittivity
model. Uses a temperature of 20 °C and a
salinity of 35 g/kg.

• Pure Water — ITU pure water permittivity
model. Uses a temperature of 20 °C.

• Wet Ice — ITU wet ice permittivity model.
Uses a liquid water fraction of 0.5.

• Dry Ice — ITU dry ice permittivity model.
Uses a temperature of –10 °C

• Custom — Specify a frequency-independent
custom sea surface permittivity.

This parameter applies only if Include Radar
Propagation Factor is selected.

Land — Land characteristics
tab subsection

If you specify the Surface Type as Land, you can set these parameters.

  
Land Type Land type, specified as one of these:

• Smooth — Vegetation Type set to None.
• Flatland (Default) — Vegetation Type set to

Thin Grass.
• Desert — Vegetation Type set to Thin

Grass.
• Farm — Vegetation Type set to Thin Grass.
• Rolling Hills — Vegetation Type set to

Dense Brush.
• Wooded Hills — Vegetation Type set to

Dense Trees.
• Urban — Vegetation Type set to None.
• Metropolitan — Vegetation Type set to

None.
• Mountains — Vegetation Type set to Dense

Trees.
• Rugged Mountains — Vegetation Type set

to Dense Trees.
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Include Radar Propagation Factor The radar propagation factor is the ratio of the

magnitude of the actual magnetic field at a point
in space to the magnitude of the magnetic field at
the same point in free space.

This parameter is available only if you set Earth
Model to Curved. The parameter is off by
default.

Vegetation Type Vegetation type, specified as one of these:

• None
• Thin Grass
• Dense Weeds
• Dense Brush
• Dense Trees

This parameter applies only if Include Radar
Propagation Factor is selected.
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Permittivity Model Permittivity model, specified as one of these:

• Sandy Loam (Default) — Uses a default
temperature of 20 °C and a water content of
0.5. Specify the temperature as a scalar in C
or K and the water content as a dimensionless
scalar.

• Loam — Uses a default temperature of 20 °C
and a water content of 0.5. Specify the
temperature as a scalar in C or K and the
water content as a dimensionless scalar.

• Silty Loam — Uses a default temperature of
20 °C and a water content of 0.5. Specify the
temperature as a scalar in C or K and the
water content as a dimensionless scalar.

• Silty Clay — Uses a temperature of 20 °C
and a water content of 0.5. Specify the
temperature as a scalar in C or K and the
water content as a dimensionless scalar.

• Custom Soil — Uses a default temperature
of 20 °C and a water content of 0.5, and
specifies these additional parameters:

• Temperature — Specify the temperature
as a scalar in C or K. Default: 20 °C.

• Sand Percentage — Specify the sand
percentage as a dimensionless scalar from
0 to 100. Default: 51.52.

• Clay Percentage — Specify the clay
percentage as a dimensionless scalar from
0 to 100. Default: 13.42.

• Specific Gravity — Specify the specific
gravity as a dimensionless scalar. Default:
2.66.

• Bulk Density Model — Specify
Automatic to use the value chosen by
Radar Designer or Custom to use your
own value.

• Bulk Density — Specify the bulk density
as a scalar in g/m3 or g/cm3. Default: 1.601
g/cm3.

This parameter applies only if Bulk Density
Model is specified as Custom.

• Vegetation — Uses a default temperature of
20 °C and a water content of 0.5. Specify the
temperature as a scalar in C or K and the
water content as a dimensionless scalar.
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• Custom — Uses a default permittivity of (28.5

– j11.5) F/m. Specify the permittivity as a
complex-valued scalar in F/m.

This parameter applies only if Include Radar
Propagation Factor is selected.

Custom — Custom surface
tab subsection

If you specify the Surface Type as Custom, you can set these parameters.

Parameter Description
Height Standard Deviation Surface height standard deviation, specified as a

scalar in m, km, nmi, ft, or kft.
Include Radar Propagation Factor The radar propagation factor is the ratio of the

magnitude of the actual magnetic field at a point
in space to the magnitude of the magnetic field at
the same point in free space.

This parameter is available only if you set Earth
Model to Curved. The parameter is off by
default.

Slope Surface slope, specified as a scalar in deg, rad,
or mrad. Default: 3.151°.

This parameter applies only if Include Radar
Propagation Factor is selected.

Permittivity Surface permittivity, specified as a complex-
valued scalar in F/m. Default: (28.5 – j11.5) F/m.

The properties of the Custom Surface Type have no dependence on frequency.

Clutter Properties — Clutter characteristics
tab section

You can specify these clutter properties.

Parameter Description
Gamma Surface gamma (γ) parameter, specified as a

scalar in dB or linear units.

The γ value for a system operating at a frequency
f is

γ = γ0 + 5 log10(f/f0),
where γ0 is the value of γ at f0 = 10 GHz and is
determined by measurement.

This parameter applies only if Surface Type is
specified as Custom.
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Parameter Description
Clutter Velocity Specification Clutter velocity, specified as one of these:

• Automatic — Radar Designer chooses
values for the other parameters in this table.

• Custom — You can specify the other
parameters in this table.

This parameter applies only if Surface Type is
specified as Sea.

Polarization Dependence Polarization dependence, specified as Dependent
or Independent.

This parameter applies only if Surface Type is
specified as Sea and Clutter Velocity
Specification is specified as Custom, or if
Surface Type is specified as Custom.

Clutter Velocity Clutter velocity, specified as a scalar in m/s,
km/hr, mi/hr, or kts.

This parameter applies only if Polarization
Dependence is specified as Independent.

H-pol Clutter Velocity Clutter velocity for horizontal polarization,
specified as a scalar in m/s, km/hr, mi/hr, or
kts.

This parameter applies only if Polarization
Dependence is specified as Dependent.

V-pol Clutter Velocity Clutter velocity for vertical polarization, specified
as a scalar in m/s, km/hr, mi/hr, or kts.

This parameter applies only if Polarization
Dependence is specified as Dependent.

Clutter Velocity Standard Deviation Clutter velocity standard deviation (clutter
velocity spread), specified as a scalar in m/s,
km/hr, mi/hr, or kts.

Precipitation — Precipitation characteristics
tab section

Specify the Precipitation Type during the propagation of the radar signal as None, Rain, Snow,
Fog, or Clouds to use rain, snow, fog, and cloud models with range settings.

Rain — Rain characteristics
tab subsection

If you specify the Precipitation Type as Rain, you can set these parameters.
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Parameter Description
Model Rain model, specified as one of these:

• ITU — Compute the path loss due to rain
using the model from ITU-R P.530-17.

• Crane — Compute the path loss due to rain
using the Crane rain model.

Precipitation Start Range Start range of the precipitation patch, specified
as a scalar in m, km, nmi, ft, or kft.

Precipitation Range Extent Range extent of the precipitation patch, specified
as a positive scalar in m, km, nmi, ft, or kft.

Rain Rate Long-term statistical rain rate, specified as a
scalar in mm/hr.

Statistical Percentage Statistical Percentage, specified as a
dimensionless scalar no smaller than 0.001 and
no larger than 1. This parameter returns the
attenuation for the specified percentage of time
and applies only if Model is specified as ITU.

Snow — Snow characteristics
tab subsection

If you specify the Precipitation Type as Snow, you can set these parameters.

Parameter Description
Precipitation Start Range Start range of the precipitation patch, specified

as a scalar in m, km, nmi, ft, or kft.
Precipitation Range Extent Range extent of the precipitation patch, specified

as a positive scalar in m, km, nmi, ft, or kft.
Snow Rate Snow rate, specified as:

• Light — Light snow with an equivalent liquid
water content of 0.5 mm/hr

• Moderate — Moderate snow with an
equivalent liquid water content of 2 mm/hr

• Heavy — Heavy snow with an equivalent
liquid water content of 3 mm/hr

• Custom — Your own equivalent liquid water
content

Liquid Water Content Liquid water content, specified as a scalar in
mm/hr. This parameter applies only if Snow Rate
is specified as Custom. A moderate snow rate is
from 1 mm/hr to 2.5 mm/hr.

Radar Designer uses the Gunn-East model [3] to compute snow loss.

Fog — Fog characteristics
tab subsection
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If you specify the Precipitation Type as Fog, you can set these parameters.

Parameter Description
Precipitation Start Range Start range of the precipitation patch, specified

as a scalar in m, km, nmi, ft, or kft.
Precipitation Range Extent Range extent of the precipitation patch, specified

as a positive scalar in m, km, nmi, ft, or kft.
Temperature Fog ambient temperature, specified as a scalar in

C or K.
Fog Density Fog liquid water density, specified one of these:

• Moderate — Moderate fog with a liquid water
density of 0.5 g/m3, corresponding to a
visibility of about 300 m

• Heavy — Heavy fog with a liquid water
density of 0.05 g/m3, corresponding to a
visibility of about 50 m

• Custom — Your own liquid water density
Liquid Water Density Liquid water density, specified as a scalar in g/m3

or g/cm3. This parameter applies only if Fog
Density is specified as Custom.

Radar Designer uses the ITU fog/cloud model from ITU-R P.840-6. The model is not recommended
for slant path propagation.

Clouds — Cloud characteristics
tab subsection

If you specify the Precipitation Type as Clouds, you can set these parameters.

Parameter Description
Precipitation Start Range Start range of the precipitation patch, specified

as a scalar in m, km, nmi, ft, or kft.
Precipitation Range Extent Range extent of the precipitation patch, specified

as a positive scalar in m, km, nmi, ft, or kft.
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Parameter Description
Cloud Type Type of clouds, specified as one of these:

• Cumulus (default) — Liquid water density of 1
g/m3 at an altitude of 3000 ft, with average
heights in the range from 1000 ft to 5000 ft

• Stratus — Liquid water density of 0.29 g/m3

at an altitude of 1000 ft, with average heights
in the range from 0 to 2000 ft

• Stratocumulus — Liquid water density of
0.15 g/m3 at an altitude of 2500 ft, with
average heights in the range from 1000 ft to
4000 ft

• Altostratus — Liquid water density of 0.41
g/m3 at an altitude of 15,000 ft, with average
heights in the range from 10,000 ft to 20,000
ft

• Nimbostratus — Liquid water density of
0.65 g/m3 at an altitude of 5000 ft, with
average heights in the range from 0 to 10,000
ft

• Cirrus — Liquid water density of 0.06405
g/m3 at an altitude of 30,000 ft, with average
heights in the range from 20,000 ft to 40,000
ft

• Custom — Liquid water density of 1 g/m3 and
a temperature of 9 °C

Liquid Water Density Liquid water density, specified as a scalar in g/m3
or g/cm3. This parameter applies only if Fog
Density is specified as Custom.

Radar Designer uses the ITU fog/cloud model from ITU-R P.840-6. The model is not recommended
for slant path propagation.

Performance Metrics

Metric — Radar equation solution and constraint
toolstrip section

Specify the quantity for which to solve the radar equation and the quantity to keep fixed when
solving.

•
Probability of Detection  — Compute probability of detection (Pd) and other metrics with a
maximum range constraint. Specify the maximum range as a scalar in m, km, nmi, ft, or kft.

•
Maximum Range  — Compute maximum range and other metrics with a probability-of-
detection (Pd) constraint. Specify the probability of detection as a scalar in decimal units.

The chosen constraint appears at the top of the table in the Metrics and Requirements tab.
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Metrics and Requirements — Radar design constraints
tab

Use the Metrics and Requirements tab to adjust and modify the metrics required for the tradeoff
analysis to obtain the desired performance and satisfy your radar design requirements. The tab uses
the same color coding as a “Stoplight Chart” on page 3-53 and shows the metrics in the table.

To generate a formatted report of numeric metrics, click Export on the toolstrip and select
Generate Metrics Report.

Metric Description
Probability of Detection Probability of detection, specified as a

dimensionless scalar. This is the first entry in the
table if you specify Metric as Probability of
Detection.

Given the maximum range Rmax specified in
Metric, the probability of detection is the value
Pd such that

SNRav(Rmax) = Dx(Pd,Pfa,N,SW),
where SNRav is the “Available Signal-to-Noise
Ratio” on page 3-52, Dx is the effective
“Detectability Factor” on page 3-52, Pfa is the
chosen probability of false alarm, N is the
number of received pulses, and SW is the
Swerling signal model.

Max Range Maximum range, specified as a scalar in m, km,
nmi, ft, or kft. This is the first entry in the table
if you specify Metric as Maximum Range.

Given the desired probability of detection Pd
specified in Metric, the radar maximum range is
the value Rmax such that

SNRav(Rmax) = Dx(Pd,Pfa,N,SW),
where SNRav is the “Available Signal-to-Noise
Ratio” on page 3-52, Dx is the effective
“Detectability Factor” on page 3-52, Pfa is the
chosen probability of false alarm, N is the
number of received pulses, and SW is the
Swerling signal model.

Min Detectable Signal Minimum detectable signal, specified as a scalar
in W, kW, MW, dBW, or dBm.

The minimum detectable signal is computed
using

MDS = kTsBDx,
where k is Boltzmann's constant, Ts is the system
noise temperature, B is the bandwidth, and Dx is
the detectability factor.
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Metric Description
Min Range Minimum range, specified as a scalar in m, km,

nmi, ft, or kft.

The minimum range is computed using
Rmin = cτ/2,

where c is the speed of light and τ is the pulse
duration.

Unambiguous Range Unambiguous range, specified as a scalar in m,
km, nmi, ft, or kft.

The unambiguous range is computed using
Rua = c × PRI/2 = c/(2 × PRF),

where c is the speed of light, PRI is the pulse
repetition interval, and PRF is the pulse
repetition frequency.

Range Resolution Range resolution, specified as a scalar in m or ft.

The range resolution is computed using
δR = c/(2 × B),

where c is the speed of light and B is the pulse
bandwidth.

First Blind Speed First blind speed, specified as a scalar in m/s.

The maximum unambiguous radial velocity
(unambiguous Doppler) is computed using

Vr
max = λ × PRF/4,

where λ is the radar wavelength and PRF is the
pulse repetition frequency.

Range Rate Resolution Range rate resolution, specified as a scalar in
m/s.

The range rate resolution is computed using
δVr = λ × PRF/(2N),

where λ is the radar wavelength, PRF is the pulse
repetition frequency, and N is the number of
received pulses.

Range Accuracy Range accuracy, specified as a scalar in m or ft.

The range accuracy for a linear frequency
modulated (LFM) pulse is computed using

er = 3c2

8π2 × SNR × B2 + br
2,

where c is the speed of light, SNR is the available
signal-to-noise ratio, B is the pulse bandwidth,
and br

2 is the range bias.

 Radar Designer

3-39



Metric Description
Azimuth Accuracy Azimuth accuracy, specified as a scalar in deg,

rad, or mrad.

The azimuth accuracy for an M-element uniform
linear array (ULA) is computed using

eθ =
6θe

2

4π2 × SNR × Mk2 + bθ
2,

where θe is the azimuth beamwidth, SNR is the
available signal-to-noise ratio, k is the beamwidth
factor (k = 0.89 for a ULA), and bθ is the azimuth
bias.

Elevation Accuracy Elevation accuracy, specified as a scalar in deg,
rad, or mrad.

The elevation accuracy for an M-element uniform
linear array (ULA) is computed using

eθ =
6θe

2

4π2 × SNR × Mk2 + bθ
2,

where θe is the elevation beamwidth, SNR is the
available signal-to-noise ratio, k is the beamwidth
factor (k = 0.89 for a ULA), and bθ is the
elevation bias.

Range Rate Accuracy Range rate accuracy, specified as a scalar in m/s.

The range rate accuracy for N pulses coherently
processed during a coherent processing interval
is computed using

err = 6 × PRF2 × λ2

4π2 × SNR × 4N3 + brr
2 ,

where PRF is the pulse repetition frequency, λ is
the radar wavelength, SNR is the available
signal-to-noise ratio, B is the pulse bandwidth,
and brr is the range rate bias.

Probability of True Track Probability of true track, specified as a
dimensionless scalar.

The probability of true track is computed using
the common gate history algorithm. For more
details, see toccgh.
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Metric Description
Probability of False Track Probability of false track, specified as a

dimensionless scalar.

The probability of false track is computed using
the common gate history algorithm. For more
details, see toccgh.

Effective Isotropic Radiated Power Effective isotropic radiated power, specified as a
scalar in W, kW, MW, dBW, or dBm.

The effective radiated power is computed using
ERP = PtGtx,

where Pt is the peak transmitted power and Gtx is
the transmitter antenna gain.

Power-Aperture Product Power-aperture product, specified as a scalar in
W·m2, kW·m2, or MW·m2.

Visualization

SNR vs Range — Available signal-to-noise ratio visualization
plot tab

For every radar design session, Radar Designer displays the “Available Signal-to-Noise Ratio” on
page 3-52 (SNR) at the receiver input as a function of the target range. The plot shows the
maximum range requirements and a “Stoplight Chart” on page 3-53 based on the detectability
factor (required SNR) values.

This plot shows the signal-to-noise ratio plot for one airborne radar with the default settings. For
more information, see “Radar Designer Configurations” on page 3-50.
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To generate a script to recreate the signal-to-noise ratio plot for the currently selected radar, click
Export on the toolstrip and select Export SNR vs Range MATLAB Script.

Scenario Geometry — Geometric and environmental visualization
plot tab

For every radar design session, Radar Designer displays a Scenario Geometry tab that shows this
information:

• Environment (curved Earth, flat Earth, free space)
• Radar antenna height
• Target height and position at various ranges (constant elevation or constant height)
• Radar antenna pattern demonstrating the applied tilt angle

This plot shows the scenario geometry plot for one weather radar with the default settings on a
curved Earth. For more information, see “Radar Designer Configurations” on page 3-50.
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Analysis — Range/Doppler, detectability, and other plots
toolstrip button

Specify the plots to use to visualize and analyze your radar design.

•
CNR vs Range  — View clutter-to-noise ratio versus range for all designs

To visualize the clutter-to-noise ratio (CNR) as a function of range for your radar designs, click
CNR vs Range on the toolstrip.

Radar Designer displays the CNR in dB and shows the horizon range.

This plot shows the clutter-to-noise ratio plot for one airborne radar with the default settings. For
more information, see “Radar Designer Configurations” on page 3-50.
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•
Link Budget  — Inspect gains and losses of the currently selected radar

To visualize the gains and losses for your radar designs, click Link Budget on the toolstrip.

Radar Designer models several components of the radar signal processing chain that affect the
resulting “Detectability Factor” on page 3-52. The app displays a waterfall chart that shows the
individual losses and gains that contribute to increasing the required signal energy. This chart is
called the radar link budget.

• The losses, represented in red, increase the required SNR threshold.
• The gains, represented in green, decrease the required SNR threshold.

Scan the plot left to right to see how the detectability factor changes as these components are
added:

• Steady-target single-pulse detectability
• Integration gain
• Fluctuation loss
• Binary integration loss
• CFAR loss
• Eclipsing loss
• MTI loss
• Beam shape loss
• Scan sector loss
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This plot shows the link budget plot for one airport radar with the default settings. For more
information, see “Radar Designer Configurations” on page 3-50.

•
Environmental Losses  — View environmental losses for the currently selected radar

To visualize the range-dependent loss components for your radar designs in their operation
environments, click Environmental Losses on the toolstrip.

Radar Designer displays four range-dependent loss components that correspond to different
atmospheric and propagation effects:

• Precipitation loss
• Atmospheric gas loss
• Lens-effect loss
• Radar propagation factor

This plot shows the environmental losses plot for one airport radar with the default settings using
a high-latitude atmosphere model. For more information, see “Radar Designer Configurations” on
page 3-50.
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•
Pd vs Range  — Show probability of detection (Pd) versus range for all designs

To visualize the probability of detection as a function of range for your radar designs, click Pd vs
Range on the toolstrip.

Radar Designer displays the probability of detection at the output of the receiver (effective Pd) as
a function of the target range. The plot shows the maximum range requirements and a “Stoplight
Chart” on page 3-53 based on the desired Pd values.

This plot shows the probability of detection versus range plot for one tracking radar with the
default settings. For more information, see “Radar Designer Configurations” on page 3-50.
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•
Pd vs SNR  — Show probability of detection (Pd) versus SNR for all designs.

To visualize the probability of detection as a function of SNR for your radar designs, click Pd vs
SNR on the toolstrip.

Radar Designer displays the probability of detection at the output of the receiver (effective Pd) as
a function of the received SNR. The plot shows the Pd requirements and a “Stoplight Chart” on
page 3-53 based on the desired Pd values.
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•
Range/Doppler Coverage  — Explore range/Doppler space for the currently selected radar

To visualize the ambiguity-free range/Doppler coverage regions for your radar designs, click
Range/Doppler Coverage on the toolstrip.

Radar Designer displays a log-log plot of first blind speed as a function of unambiguous range
(lower x-axis) and PRF (upper x-axis). Each solid line on the plot represents a radar design.
Designs with different carrier frequencies appear as parallel lines.

This plot shows the range/Doppler coverage plot for one automotive radar with the default
settings. For more information, see “Radar Designer Configurations” on page 3-50.
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•
Vertical Coverage  — Plot Blake chart for the currently selected radar

To visualize the range-height-angle relationships for your radar designs, click Vertical Coverage
on the toolstrip.

Radar Designer displays a vertical coverage diagram of the selected radar. Vertical coverage
diagrams, also known as range-height-angle charts or Blake charts, show the relationship between
the range to a target, the height of the target, and the initial elevation angle of the transmitted
rays for the sensor.

This plot shows the vertical coverage diagram for one airport radar with the default settings. For
more information, see “Radar Designer Configurations” on page 3-50.
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To generate a script to recreate the vertical coverage plot for the currently selected radar, click
Export on the toolstrip and select Export Vertical Coverage MATLAB Script.

Programmatic Use
radarDesigner opens the Radar Designer app for designing radars, targets, and environment.

radarDesigner(sessionFileName) opens the Radar Designer app and loads the specified radar
file that was previously saved from the app.

More About
Radar Designer Configurations

Radar Designer includes radar configurations that enable you to switch between radar designs,
duplicate radars, and delete radars.

This table shows the default parameter values for the built-in configurations.
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Category Property Radar
Airborne
Radar

Airport
Radar

Automotive
Radar

Tracking
Radar

Weather
Radar

General Icon

Description Long-range
airborne
surveillance
radar

Terminal
airport
surveillance

Automotive
radar for use
in
applications
such as
automatic
cruise
control

Ground-
based, cued
tracking
radar system

Clear air
weather
radar

Inspired By Airborne
scenario
presented in
[5]

ASR-9 Bosch LRR3,
TI Radars

COBRA
DANE

NEXRAD
(VCP 32)

Main Frequency 450 MHz 2.8 GHz 77 GHz 1.25 GHz 2.8 GHz
Frequency
band

UHF S W L S

Bandwidth 4 MHz 1.5 MHz 300 MHz 20 MHz 0.5 MHz
Peak power 200 kW 1.1 MW 30 mW 15 MW 500 kW
Pulse width 200 μs 1 μs 50 μs 1 ms 1.5 μs
PRF 300 Hz 1 kHz 20 kHz 1 kHz 320 Hz

Hardware Noise
temperature

1500 K (8 dB
noise figure
with
reference
temperature
of 290K)

950 K 8000 K 800 K 450 K

Antenna and
scanning

Antenna
height

6096 m
(20,000 ft)

10 m 1 m 75 m 20 m

Antenna tilt –1° 0.5° 0 10° 0.5°
Polarization Horizontal Horizontal Horizontal Horizontal Horizontal
Gain From

beamwidth
From
beamwidth

From
beamwidth

From
beamwidth

Manual

Azimuth: 8° Azimuth:
1.5°

Azimuth: 30° Azimuth: 1° 45 dB

Elevation:
90°

Elevation: 5° Elevation:
10°

Elevation: 1°

Scan mode Electronic Mechanical N/A N/A Mechanical
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Category Property Radar
Airborne
Radar

Airport
Radar

Automotive
Radar

Tracking
Radar

Weather
Radar

Azimuth
±30°

Full 360° Volume scan:
Azimuth:
Full 360°.
Elevation:
0.5° to 5°

Scan time 0.05 s 5 s N/A N/A 10 minutes
Detection Probability

of false
alarm

10–6 10–6 10–6 10–6 10–3

Number of
pulses in CPI

18 20 256 1 64

Number of
CPIs

1 1 1 1 1

Losses and
other inputs

Custom loss 4 dB 8 dB 2 dB 2 dB 2 dB
Other inputs STC 'on'

with default
parameters

CFAR 'on'
with default
parameters

N/A N/A N/A

CFAR 'on'
with default
parameters
MTI 'on'
with default
parameters

MTI 'on'
with default
parameters

Receive
gain: 10 dB

Available Signal-to-Noise Ratio

The available signal-to-noise ratio at a range R, SNRav(R), is the SNR at the input to the radar
receiver after the transmitted radar signal has traveled through the medium, bounced off the target,
and traveled back to the radar.

The available SNR is range-dependent and can be computed from the radar equation. The available
SNR depends on radar operating frequency, transmitter power, pulse width, antenna gain, system
noise temperature, and also on propagation losses and factors including atmospheric losses, eclipsing
effects, and so on. The available SNR tells how much energy there is available for signal detection at
the receiver.

Detectability Factor

The detectability factor or required SNR, Dx(Pd,Pfa), is the signal-to-noise ratio needed to detect a
target with the desired probabilities of detection and false alarm.

The detectability factor is impacted by signal processing and scanning losses. Detection with the
desired Pd and Pfa is possible when the available SNR is higher than the detectability factor. Plotting
the available SNR and the detectability factor as a function of the range creates a clear image of the
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radar detection performance and shows the ranges in which detection is possible and those in which
it is not.

Stoplight Chart

A radar system must meet a set of performance requirements that depend on the environment and
scenarios in which the system is intended to operate. A number of such requirements can be fairly
large and a design that satisfies all of them might be impractical. In this case a tradeoff analysis is
applied. A subset of the requirements is satisfied at the expense of accepting lower values for the rest
of the metrics. Such tradeoff analysis can be facilitated by specifying multiple requirement values for
a single metric.

The requirement for each metric is specified as a pair of values:

• Objective — The desired level of the performance metric
• Threshold — The value of the metric below which the system's performance is considered

unsatisfactory

The region between the Threshold and the Objective values is the trade-space. It defines a margin by
which a metric can be below the Objective value while the system is still considered to have a
satisfactory performance.

A stoplight chart color-codes the status of the performance metric for a radar system based on the
specified requirements. The plot is divided into three zones:

• A Pass zone, colored green — At the ranges where the curve is in the Pass zone, the system
performance satisfies the Objective value of the requirement.

• A Warn zone, colored yellow — At the ranges where the curve passes through the Warn zone, the
system performance violates the Objective value of the specified requirement but still satisfies the
Threshold value.

• A Fail zone, colored red — At the ranges where the curve passes through the Fail zone, the system
performance violates the Threshold value of the specified requirement.

Tips
• Use Ctrl+Z to undo a modification. Use Ctrl+Y to redo an undone modification.

Version History
Introduced in R2021a
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See Also
Apps
Radar Equation Calculator | Pulse Waveform Analyzer | Sensor Array Analyzer

Functions
radareqpow | radareqrng | radareqsnr | radarmetricplot | radarbudgetplot

Topics
“Radar Link Budget Analysis”
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Platform
Platform object belonging to radar scenario

Description
Platform defines a platform object belonging to a radar scenario.

Creation
You can create Platform objects using the platform function of the radarScenario object.

Properties
PlatformID — Scenario-defined platform identifier
positive integer

This property is read-only.

Scenario-defined platform identifier, specified as a positive integer. The scenario automatically
assigns PlatformID values to each platform, starting with 1 for the first platform and incrementing
by 1 for each new platform.
Data Types: double

ClassID — Platform classification identifier
0 (default) | nonnegative integer

Platform classification identifier, specified as a nonnegative integer. You can define your own platform
classification scheme and assign ClassID values to platforms according to the scheme. The value of
0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double | single

Position — Current position of platform
three-element numeric vector

This property is read-only.

Current position of the platform, specified as a three-element numeric vector.

• When the IsEarthCentered property of the scenario is set to false, the position is expressed
as Cartesian coordinates [x, y, z] in meters.

• When the IsEarthCentered property of the scenario is set to true, the position is expressed as
geodetic coordinates [latitude, longitude, altitude], where latitude and longitude are
in degrees and altitude is in meters.

The position is determined by the platform trajectory defined in the Trajectory property.
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Data Types: double

Orientation — Current orientation of platform
three-element numeric vector

This property is read-only.

Current orientation of the platform, specified as a three-element numeric vector in degrees. The
orientation is expressed as [yaw, pitch, roll] rotation angles from the local reference frame to the
body frame of the platform. The orientation is determined by the platform trajectory defined in the
Trajectory property.
Data Types: double

Dimensions — Platform dimensions and origin offset
structure

Platform dimensions and origin offset, specified as a structure. The structure contains the Length,
Width, Height, and OriginOffset of a cuboid that approximates the dimensions of the platform.
The OriginOffset is the position vector from the center of the cuboid to the origin of the platform
coordinate frame. The OriginOffset is expressed in the platform coordinate system. For example, if
the platform origin is at the center of the cuboid rear face as shown in the figure, then set
OriginOffset as [-L/2, 0, 0]. The default value for Dimensions is a structure with all fields
set to zero, which corresponds to a point model.

Fields of Dimensions

Fields Description Default
Length Dimension of a cuboid along the

x direction
0

Width Dimension of a cuboid along the
y direction

0

Height Dimension of a cuboid along the
z direction

0

OriginOffset Position of the platform
coordinate frame origin with
respect to the cuboid center

[0 0 0 ]

Example: struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[-2.5 0 0])
Data Types: struct

Trajectory — Platform motion
kinematicTrajectory object | waypointTrajectory object | geoTrajectory object
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Platform motion, specified as a kinematicTrajectory object, a waypointTrajectory object, or a
geoTrajectory object. The trajectory object defines the time evolution of the position and velocity
of the platform frame origin, as well as the orientation of the platform frame relative to the scenario
frame.

• When the IsEarthCentered property of the scenario is set to false, use the
kinematicTrajectory or the waypointTrajectory object. By default, the platform uses a
stationary kinematicTrajectory object.

• When the IsEarthCentered property of the scenario is set to true, use the geoTrajectory
object. By default, the platform uses a stationary geoTrajectory object.

Signatures — Platform signatures
cell array of signature objects | {}

Platform signatures, specified as a cell array of signature objects or an empty cell array ({}). The
default value is a cell array containing an rcsSignature object with default property values. If you
have Sensor Fusion and Tracking Toolbox, then the cell array can also include irSignature and
tsSignature objects. The cell array contains at most one instance of each type of signature object.
A signature represents the reflection or emission pattern of a platform, such as its radar cross-
section, target strength, or IR intensity.

PoseEstimator — Platform pose estimator
insSensor object (default) | pose estimator object

Platform pose estimator, specified as a pose-estimator object such as an insSensor object. The pose
estimator determines the platform pose with respect to the local NED scenario coordinates. The
interface of any pose estimator must match the interface of the insSensor object. By default, the
pose-estimator accuracy properties are zero.

Emitters — Emitters mounted on platform
cell array of emitter objects

Emitters mounted on the platform, specified as a cell array of emitter objects such as radarEmitter
objects. If you have Sensor Fusion and Tracking Toolbox, then the cell array can also include
sonarEmitter objects.

Sensors — Sensors mounted on platform
cell array of sensor objects

Sensors mounted on the platform, specified as a cell array of sensor objects such as
radarDataGenerator objects.

Object Functions
detect Collect detections from all sensors mounted on platform
emit Collect emissions from all emitters mounted on platform
pose Update pose for platform
receive Receive IQ signal from radars mounted on platform
targetPoses Target positions and orientations as seen from platform

Examples
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Create Radar Scenario with Two Platforms

Create a radar scenario with two platforms that follow different trajectories.

sc = radarScenario('UpdateRate',100,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by placing
waypoints in a circular shape, ensuring that the first and last waypoint are the same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1,time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

    {1x1 radar.scenario.Platform}    {1x1 radar.scenario.Platform}

Run the simulation and plot the current position of each platform using an animated line.

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));

while advance(sc)
    p1 = pose(platfm1);
    p2 = pose(platfm2);
    addpoints(line1,p1.Position(1),p1.Position(2));
    addpoints(line2,p2.Position(2),p2.Position(2));
    pause(0.1)
end
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Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off
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Create Cuboid Platforms with Circular Trajectory

Create a radar scenario.

rs = radarScenario;

Create a cuboid platform for a truck with dimensions 5 m by 2.5 m by 3.5 m.

dim1 = struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[0 0 0]);
truck = platform(rs,'Dimension',dim1);

Specify the trajectory of the truck as a circle with radius 20 m.

truck.Trajectory = waypointTrajectory('Waypoints', ...
    [20*cos(2*pi*(0:10)'/10) 20*sin(2*pi*(0:10)'/10) -1.75*ones(11,1)], ...
    'TimeOfArrival',linspace(0,50,11)');

Create the platform for a small quadcopter with dimensions 0.3 m by 0.3 m by 0.1 m.

dim2 = struct('Length',.3,'Width',.3,'Height',.1,'OriginOffset',[0 0 0]);
quad = platform(rs,'Dimension',dim2);

Specify the trajectory of the quadcopter as a circle 10 m above the truck with a small angular delay.
Note that the negative z coordinates correspond to positive elevation.

 Platform
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quad.Trajectory = waypointTrajectory('Waypoints', ...
    [20*cos(2*pi*((0:10)'-.6)/10) 20*sin(2*pi*((0:10)'-.6)/10) -11.80*ones(11,1)], ...
    'TimeOfArrival',linspace(0,50,11)');

Visualize the results using theaterPlot.

tp = theaterPlot('XLim',[-30 30],'YLim',[-30 30],'Zlim',[-12 5]);
pp1 = platformPlotter(tp,'DisplayName','truck','Marker','s');
pp2 = platformPlotter(tp,'DisplayName','quadcopter','Marker','o');

Specify a view direction and run the simulation.

view(-28,37);
set(gca,'Zdir','reverse');

while advance(rs)
    poses = platformPoses(rs);
    plotPlatform(pp1,poses(1).Position,truck.Dimensions,poses(1).Orientation);
    plotPlatform(pp2,poses(2).Position,quad.Dimensions,poses(2).Orientation);
end

Version History
Introduced in R2021a
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See Also
Classes
rcsSignature

Objects
waypointTrajectory | kinematicTrajectory | geoTrajectory | insSensor | radarEmitter
| radarDataGenerator
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detect
Package: radar.scenario

Collect detections from all sensors mounted on platform

Syntax
detections = detect(plat,time)
detections = detect(plat,signals,time)
detections = detect(plat,signals,emitterConfigs,time)
[detections,numDets] = detect( ___ )
[detections,numDets,sensorConfigs] = detect( ___ )

Description
detections = detect(plat,time) reports the detections from all sensors mounted on the
platform, plat, at the specified time. Use this syntax when none of the sensors require information
on signals present in the scenario.

detections = detect(plat,signals,time) also specifies any signals, signals, present in the
scenario. Use this syntax when sensors require information on the signals.

detections = detect(plat,signals,emitterConfigs,time) also specifies emitter
configurations, emitterConfigs. Use this syntax when sensors require information on the
configurations of emitters generating signals in the scenario.

[detections,numDets] = detect( ___ ) also returns the number of detections, numDets. This
output argument can be used with any of the previous syntaxes.

[detections,numDets,sensorConfigs] = detect( ___ ) also returns all sensor
configurations, sensorConfigs. This output argument can be used with any of the previous
syntaxes.

Input Arguments
plat — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform function.

time — Simulation time
0 (default) | positive scalar

Simulation time, specified as a positive scalar.
Example: 1.5
Data Types: single | double

signals — Signal emissions
cell array of signal emission objects
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Signal emissions, specified as a cell array of signal emission objects such as radarEmission objects.

emitterConfigs — Emitter configurations
array of emitter configuration structures

Emitter configurations, specified as an array of emitter configuration structures. Each structure has
these fields.

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Output Arguments
detections — Sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects.

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.
Data Types: double

sensorConfigs — Sensor configurations
array of sensor configuration structures

Sensor configurations, returned as an array of sensor configuration structures. Each structure has
these fields.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
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IsValidTime Valid detection time, returned as true or false.
IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Version History
Introduced in R2021a

See Also
Platform | platform | objectDetection | radarDataGenerator | pose | emit
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emit
Package: radar.scenario

Collect emissions from all emitters mounted on platform

Syntax
emissions = emit(plat,time)
[emissions,emitterConfigs] = emit(plat)

Description
emissions = emit(plat,time) reports signals emitted from all emitters mounted on the
platform, plat, at the specified emission time, time.

[emissions,emitterConfigs] = emit(plat) also returns the configurations of all emitters at
the emission time.

Input Arguments
plat — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform function.

time — Simulation time
0 (default) | positive scalar

Simulation time, specified as a positive scalar.
Example: 1.5
Data Types: single | double

Output Arguments
emissions — Emissions of all emitters
cell array of emission objects

Emissions of all emitters mounted on the platform, returned as a cell array of emission objects such
as radarEmission objects.

emitterConfigs — Emitter configurations
array of sensor configuration structures

Emitter configurations, returned as an array of emitter configuration structures. Each structure has
these fields.

Field Description
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EmitterIndex Unique emitter index, returned as a positive
integer.

IsValidTime Valid emission time, returned as 0 or 1.
IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Version History
Introduced in R2021a

See Also
Platform | platform | pose | detect | radarEmitter
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pose
Package: radar.scenario

Update pose for platform

Syntax
p = pose(plat)
p = pose(plat,type)
p = pose( ___ ,'CoordinateSystem',coordinateSystem)

Description
p = pose(plat) returns the estimated pose, p, of the platform plat, in scenario coordinates. The
platform must already exist in the radar scenario. Add platforms to a scenario using the platform
function. The pose is estimated by a pose estimator specified in the PoseEstimator property of the
platform.

p = pose(plat,type) specifies the source of the platform pose information, type, as
'estimated' or 'true'.

p = pose( ___ ,'CoordinateSystem',coordinateSystem) specifies the coordinate system of
the pose. You can use this syntax only when the IsEarthCentered property of the radar scenario is
set to true.

Examples

Get Pose of Platform

Create a radar scenario.

rs = radarScenario;

Add a platform to the scenario.

plat = platform(rs);
plat.Trajectory.Position = [1 1 0];
plat.Trajectory.Orientation = quaternion([90 0 0],'eulerd','ZYX','frame');

Extract the pose of the platform.

p = pose(plat)

p = struct with fields:
        Orientation: [1x1 quaternion]
           Position: [1 1 0]
           Velocity: [0 0 0]
       Acceleration: [0 0 0]
    AngularVelocity: [0 0 0]
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Input Arguments
plat — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform function.

type — Source of platform pose information
'estimated' (default) | 'true'

Source of the platform pose information, specified as one of these values:

• 'estimated' — Estimate poses using the pose estimator specified in the PoseEstimator
property of the radar scenario.

• 'true' — Return the true pose of the platform.

Data Types: char

coordinateSystem — Coordinate system to report pose
'Cartesian' (default) | 'Geodetic'

Coordinate system to report pose, specified as one of these values:

• 'Cartesian' — Report poses using Cartesian coordinates in the Earth-Centered-Earth-Fixed
coordinate frame.

• 'Geodetic' — Report poses using geodetic coordinates (latitude, longitude, and altitude). Report
orientation, velocity, and acceleration in the local reference frame (North-East-Down by default)
corresponding to the current waypoint.

Specify this argument only when the IsEarthCentered property of the radar scenario is set to
true.

Output Arguments
p — Pose of platform
structure

Pose of the platform, returned as a structure. Pose consists of the position, velocity, orientation, and
angular velocity of the platform with respect to the radar scenario coordinates. The structure has
these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.
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Field Description
Position Position of target in scenario coordinates,

specified as a real-valued 1-by-3 row vector.

• If the coordinateSystem argument is
specified as 'Cartesian', then Position is
a three-element vector of Cartesian position
coordinates in meters.

• If the coordinateSystem argument is
specified as 'Geodetic', then Position is a
three-element vector of geodetic coordinates:
latitude in degrees, longitude in degrees, and
altitude in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. Units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are degrees per second.
The default value is [0 0 0].

Version History
Introduced in R2021a

See Also
Platform | platform | insSensor | platformPoses
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receive
Package: radar.scenario

Receive IQ signal from radars mounted on platform

Syntax
sig = receive(plat,t)
[sig,info] = receive(plat,t)

Description
sig = receive(plat,t) returns the target echo, sig, received at radars mounted on the
platform, plat, at time t.

[sig,info] = receive(plat,t) also returns the configuration information, info, of each radar
when the signal is received.

Input Arguments
plat — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform function.

t — Detection time
nonnegative scalar

Detection time, specified as a nonnegative scalar in seconds.

Output Arguments
sig — Signal received at radar receiver
vector | array

Signal received at the radar receiver, returned as one of these values:

• NS-by-NRE-by-N array –– If the radar uses a regular antenna array for receiving, then the
dimension of sig is NS-by-NRE-by-N, where NRE is the number of antenna elements in the
receive antenna array of the radar, NS is the number of samples in each transmitted pulse or
sweep, and N is the number of transmitted pulses or sweeps. In this case, N is the value of the
NumRepetition property.

• NS-by-NRS-by-N array –– If the radar uses a subarray for receiving, then the dimension of sig is
NS-by-NRS-by-N, where NRS is the number of subarrays in the receive antenna array of the radar.
When multiple pulses or sweeps are simulated, the function assumes that targets move according
to a constant velocity trajectory.

Data Types: double
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info — Simulation metadata
structure

Simulation metadata, returned as a structure containing the following fields:

• IsScanDone –– Whether one period of mechanical scan is done
• MechanicalAngle –– Current antenna pointing angle due to mechanical scan
• Origin –– Radar location in the platform coordinate system
• Orientation –– Radar orientation axes in the platform coordinate system

Data Types: struct

Version History
Introduced in R2021a

See Also
radarTransceiver
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targetPoses
Package: radar.scenario

Target positions and orientations as seen from platform

Syntax
poses = targetPoses(plat)
poses = targetPoses(plat,format)

Description
poses = targetPoses(plat) returns the poses of all targets in a scenario with respect to the
observing platform, plat. Targets are defined as platforms as seen by plat. Pose represents the
position, velocity, and orientation of a target with respect to the coordinate system of plat. The
targets must already exist in the radar scenario. Add targets to a scenario using the platform
function.

poses = targetPoses(plat,format) also specifies the format of the returned platform
orientation as 'quaternion' or 'rotmat'.

Input Arguments
plat — Observing platform
Platform object

Observing platform, specified as a Platform object. To create platforms, use the platform function.

format — Pose orientation format
'quaternion' (default) | 'rotmat'

Pose orientation format, specified as 'quaternion' or 'rotmat'. When specified as
'quaternion', the Orientation field of the platform pose structure is a quaternion. When
specified as 'rotmat', the Orientation field is a rotation matrix.
Data Types: char | string

Output Arguments
poses — Poses of all targets
structure | array of structures

Poses for all targets, returned as a structure or an array of structures. The pose of the observing
platform, plat, is not included. Pose consists of the position, velocity, orientation, and signature of a
target in platform coordinates. Each structure has these fields.
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Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. 0 is
reserved for unclassified platform types and is
the default value.

Position Position of the target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of the target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Acceleration Acceleration of the target in platform coordinates
specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Version History
Introduced in R2021a

See Also
Platform | platform | pose | detect | platformPoses
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radarTransceiver
Monostatic radar transceiver

Description
The radarTransceiver System object creates a monostatic radar object that generates samples of
the received target echo at the radar.

To generate samples of the received target echo:

1 Create the radarTransceiver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
radarTrans = radarTransceiver
radarTrans = radarTransceiver(Name,Value)

Description

radarTrans = radarTransceiver creates a monostatic radar object. This object generates
samples of the received target echo at the radar.

radarTrans = radarTransceiver(Name,Value) creates a monostatic radar transceiver object
with each specified property set to the specified value. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Waveform — Radar waveform
phased.RectangularWaveform (default) | phased.LinearFMWaveform | ...

Radar waveform used in the radar system, specified as one of the following objects:

• phased.RectangularWaveform
• phased.LinearFMWaveform
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• phased.PhaseCodedWaveform
• phased.SteppedFMWaveform
• phased.FMCWWaveform
• phased.MFSKWaveform

Transmitter — Radar transmitter
phased.Transmitter (default)

Radar system's transmitter, specified as a phased.Transmitter object.

TransmitAntenna — Radar transmit antenna
phased.Radiator (default) | phased.WidebandRadiator

Radar transmit antenna, specified as either a phased.Radiator object or
phased.WidebandRadiator object.

ReceiveAntenna — Radar receive antenna
phased.Collector (default) | phased.WidebandCollector

Radar receive antenna, specified as either a phased.Collector object or
phased.WidebandCollector.

Receiver — Radar receiver
phased.ReceiverPreamp (default)

Radar receiver, specified as a phased.ReceiverPreamp object.

MechanicalScanMode — Radar mechanical scan mode
'None' (default) | 'Circular' | 'Sector'

Radar mechanical scan mode, specified as one of the following:

• 'Circular' –– The radar scans counter-clockwise in the azimuth plane. The azimuth plane is
defined in the xy plane.

• 'Sector' –– The radar scans back and forth within a sector in the azimuth plane, first in counter-
clockwise direction, then in clockwise direction, and so on.

• 'None'

InitialMechanicalScanAngle — Initial mechanical scan angle
0 (default) | scalar

Initial mechanical scan angle measured in degrees, and specified as scalar.
Dependencies

This property applies only when you set the MechanicalScanMode property to 'Circular' or
'Sector'.
Data Types: double

MechanicalScanLimits — Mechanical azimuth coverage for sector scanning
[-60 60] | two-element row vector

Mechanical azimuth coverage for sector scanning measured in degrees, and specified as a two-
element row vector.
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Dependencies

This property applies only when you set the MechanicalScanMode property to 'Sector'.
Data Types: double

MechanicalScanRate — Mechanical azimuth scanning rate
10 (default) | positive scalar

Azimuth scanning rate for the mechanical scan measured in degrees per second, and specified as a
positive scalar.

Dependencies

This property applies only when you set the MechanicalScanMode property to 'Circular' or
'Sector'.
Data Types: double

ElectronicScanMode — Radar electronic scan mode
'None' (default) | 'Sector' | 'Custom'

Radar electronic scan mode, specified as one of the following:

• 'Sector' –– The radar scans back and forth within a sector in the azimuth plane, first in counter-
clockwise direction, then in clockwise direction, and so on.

• 'Custom'
• 'None'

ElectronicScanLimits — Electronic azimuth coverage for section scanning
[-60 60; 0 0] (default) | 2-by-2 matrix

Coverage measured in degrees for electronic sector scanning, specified as a 2-by-2 matrix. The first
row specifies the scan coverage in the azimuth direction, and the second row specifies the scan
coverage in the elevation direction.

Dependencies

To enable this property, set the ElectronicScanMode property to 'Sector'.
Data Types: double

ElectronicScanRate — Electronic scanning rate
[10;0] (default) | two-element column vector

Scanning rate measured in degrees per second for the electronic scan, specified as a two-element
column vector. The first row specifies the scan rate in the azimuth direction, and the second row
specifies the scan rate in the elevation direction.

Dependencies

To enable this property, set the ElectronicScanMode property to 'Sector'.
Data Types: double

MountingLocation — Radar location on mounting platform (m)
[0 0 0] (default) | 1-by-3 vector
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Offset of the radar's origin from the origin of its mounting platform, specified as a 1-by-3 vector in the
form [x, y, z] and measured in meters.
Data Types: double

MountingAngles — Radar mounting angles (deg)
[0 0 0] (default) | 1-by-3 vector

Angles at which the radar is mounted relative to the platform's orientation, specified as a 1-by-3
vector in Euler angles around [z, y, x] axes. These angles are also referred to as [yaw, pitch, roll]
angles.

Assume the platform's orientation is defined by the axes Xp, Yp, and Zp. The roll angle specifies the
counterclockwise rotation around Xp, the pitch angle specifies the counterclockwise rotation around
Yp, and the yaw angle specifies the counterclockwise rotation around Zp. To obtain the radar's
orientation axes Xr, Yr, and Zr from the platform's orientation axes, perform the intrinsic rotation of
the platform's orientation axes [Xp, Yp, Zp] in the order of roll, pitch, and yaw.
Data Types: double

NumRepetitionsSource — Source of number of pulses or sweeps in the signal
'Property' (default) | 'Input port'

Source of number of pulses or sweeps in the signal, specified as one of the following:

• 'Property' –– The number of pulses or sweeps in the signal is specified by the
NumRepetitions property.

• 'Input port' –– The number of pulses or sweeps in the signal is specified through an input.

NumRepetitions — Number of pulses or sweeps in signal
1 (default) | positive integer

Number of pulses or sweeps in the signal, specified as a positive integer.

Dependencies

To enable this property, set the NumRepetitionsSource property to 'Property'.
Data Types: double

Usage

Syntax
y = radarTrans(tgt,t)
y = radarTrans(proppaths,t)
y = radarTrans( ___ ,N)
y = radarTrans( ___ ,PRFIDX)
y = radarTrans( ___ ,wt)
y = radarTrans( ___ ,steert)
y = radarTrans( ___ ,wst)
y = radarTrans( ___ ,wr)
y = radarTrans( ___ ,steerr)
y = radarTrans( ___ ,wsr)
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[y,info] = radarTrans( ___ )

Description

y = radarTrans(tgt,t) returns the target echo received at the radar y, at time t seconds due to
targets in tgt.

To use this syntax, set the NumRepetitionSource to 'Property'.

y = radarTrans(proppaths,t) returns the target echo received at the radar y at time t (in
seconds) due to the propagation paths specified in proppaths.

This syntax applies when you set the NumRepetitionSource to 'Property'.

y = radarTrans( ___ ,N) specifies the number of pulses/sweeps N in the signal as a positive
integer.

This syntax applies when you set the NumRepetitionSource to 'Input port'.

y = radarTrans( ___ ,PRFIDX) specifies the PRF index of the radar waveform as a positive
integer.

This syntax applies when you set the PRFSelectionInputPort property to true in the radar's
Waveform property.

y = radarTrans( ___ ,wt) specifies the transmit weights of the radar system as a column vector.

This syntax applies when you set the ElectronicScanMode property to 'Custom' and the
WeightsInputPort property to true in the radar's TransmitAntenna property.

y = radarTrans( ___ ,steert) specifies the transmit steering angle (in degrees) as a 2-by-1
vector in the form [azimuth; elevation].

This syntax applies when you set the ElectronicScanMode property to 'Custom'. Use a subarray
in the transmit antenna and set its SubarraySteering property to 'Phase' or 'Time'.

y = radarTrans( ___ ,wst) specifies the transmit weights applied to each element as either a
matrix or a cell array.

This syntax applies when you set the ElectronicScanMode property to 'Custom'. Use a subarray
in the transmit antenna and set its SubarraySteering property to 'Custom'.

y = radarTrans( ___ ,wr) specifies the receive weights of the radar system as a column vector.

This syntax applies when you set the ElectronicScanMode property to 'Custom' and the
WeightsInputPort property to true in the radar's ReceiveAntenna property.

y = radarTrans( ___ ,steerr) specifies the receive steering angle (in degrees) as a 2-by-1 vector
in the form [azimuth; elevation].

This syntax applies when you set the ElectronicScanMode property to 'Custom', use a subarray
in the receive antenna, and set its SubarraySteering property to 'Phase' or 'Time'.

y = radarTrans( ___ ,wsr) specifies the receive weights applied to each element as either a
matrix or a cell array.
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This syntax applies when you set the ElectronicScanMode to 'Custom', use a subarray in the
receive antenna, and set its SubarraySteering property to 'Custom'.

[y,info] = radarTrans( ___ ) also returns additional simulation metadata in the structure info.

You can combine optional input arguments when you set the properties to enable them. Optional
inputs must be listed in the same order as the enabled properties.
Example: [y,info] = radarTrans(TGT,T,N,PRFIDX,WT,STEERT,WR,STEERR);[y,info] =
radarTrans(TGT,T,N,PRFIDX,WT,WST,WR,WSR);

Input Arguments

tgt — Radar target
array of structures

Radar target that reflects the signal, specified as an array of structures. Each structure describes a
point target and contains the following fields:

• Position –– Specify the position of the target as a 1-by-3 vector (in meters) in the form of [x y z].
The position is specified in the radar mounting platform's coordinate system.

This is a required field and there is no default value.
• Velocity –– Specify the velocity of the target as a 1-by-3 vector (in meters) in the form of [x y z].

The velocity is specified in the radar mounting platform's coordinate system. The default value is
[0 0 0].

• Orientation –– Specify the target orientation as a scalar quaternion or a 3-by-3 real-valued
orthonormal frame rotation matrix, which rotates the axes of the radar mounting platform into
alignment with the axes of the target's frame. The default value is quaternion(1,0,0,0).

• Signatures –– Specify the target radar cross section (RCS) signature as a struct or an
rcsSignature object.

If Signatures is a struct, it must have the following fields:

• Azimuth –– Specify the azimuth angles (in degrees) at which the RCS pattern is sampled as a
length-Q vector. The default is [-180 180].

• Elevation –– Specify the elevation angles (in degrees) at which the RCS pattern is sampled as
a length-P vector. The default is [-90; 90].

• Frequency –– Specify the frequencies (in Hz) at which the RCS pattern is sampled as a length-
K vector. The default is [0 1e20].

• Pattern –– Specify the target's RCS pattern (in dBm) as either a P-by-Q matrix or a P-by-Q-by-
K array. If defined as a P-by-Q-by-K array, each entry in the array specifies the RCS at the
corresponding frequency and the corresponding (azimuth, elevation) direction. If defined as a
P-by-Q matrix, then the pattern applies to all frequencies. The default is [0 0;0 0].

Example: tgt1 = struct('Position',[0 5e3 0],'Velocity',[0 0 0]);tgt2 =
struct('Position',[10e3 0 0],'Velocity',[0 0 0]);tgt = [tgt1 tgt2];

Data Types: struct

proppaths — Propagation path between transmitter and receiver
array of structures
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Propagation path between transmitter and receiver, specified as an array of structures. Each
structure describes a propagation path between the transmitter and the receiver, and contains the
following required fields:

• PathLength –– Specify the length of a propagation path as a positive scalar (in meters).
• PathLoss –– Specify the propagation loss along the path as a scalar (in dB).
• ReflectionCoefficient –– Specify the cumulative reflection coefficients for all reflections

along the path as a scalar. This include the effects like reflections from a scatterer or a target.
• AngleOfDeparture –– Specify the path's angle of departure (in degrees) as a two-column vector

in the form [azimuth; elevation] angles. The angle is measured in the transmit antenna's
coordinate system.

• AngleOfArrival –– Specify the path's angle of arrival (in degrees) as a two-column vector in the
form [azimuth; elevation] angles. The angle is measured in the receive antenna's coordinate
system.

• DopplerShift –– Specify the cumulative Doppler shift along path as a scalar (in Hz).

Data Types: struct

t — Current time in seconds
nonnegative scalar value

Current time at which the radar receives the target echo, specified as a nonnegative scalar in
seconds.
Data Types: double

N — Number of pulses/sweeps
positive integer

Number of pulses/sweeps in the signal, specified as a positive integer.

You can specify this input only when the NumRepetitionSource property is set to 'Input port'.
Data Types: double

PRFIDX — PRF index of radar waveform
positive integer

PRF index of the radar waveform, specified as a positive integer.

You can specify this input only when you set the PRFSelectionInputPort property to true in the
radar's Waveform property.
Data Types: double

wt — Transmit weights of radar system
column vector

Transmit weights of the radar system, specified as a column vector.

If a regular antenna array is used to transmit, wt is of length NTE where NTE is the number of
antenna elements in the radar's transmit antenna array.

If a subarray is used to transmit, wt is of length NTS where NTS is the number of subarrays in the
radar's transmit antenna array.
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You can specify this input only when you set the ElectronicScanMode property to 'Custom' and
the WeightsInputPort property to true in the radar's TransmitAntenna property.
Data Types: double

steert — Transmit steering angle
2-by-1 vector

Transmit steering angle (in degrees), specified as a 2-by-1 vector in the form of [azimuth; elevation].

You can specify this input only when you set the ElectronicScanMode property to 'Custom'. Use a
subarray in the transmit antenna, and set its SubarraySteering property to 'Phase' or 'Time'.
Data Types: double

wst — Transmit weights applied to each element
matrix | cell array

Transmit weights applied to each element, specified as either a matrix or a cell array.

If the transmit antenna uses a:

• phased.ReplicatedSubarray, wst must be an NTE-by-NTS matrix where NTE is the number of
elements in each individual subarray and NTS is the number of subarrays. Each column in wst
specifies the weights for the elements in the corresponding subarray.

• phased.PartitionedArray and its individual subarrays have the same number of elements,
wst must be an NTE-by-NTS matrix where NTE is the number of elements in each individual
subarray and NTS is the number of subarrays. Each column in wst specifies the weights for the
elements in the corresponding subarray.

• phased.PartitionedArray and its subarrays can have different number of elements, wst can
be one of the following:

• NTE-by-NTS matrix, where NTE indicates the number of elements in the largest subarray and
NTS is the number of subarrays.

If wst is a matrix, the first KT entries in each column, where KT is the number of elements in
the corresponding subarray, specify the weights for the elements in the corresponding
subarray.

• 1-by-NTS cell array, where NTS is the number of subarrays and each cell contains a column
vector whose length is the same as the number of elements of the corresponding subarray.

You can specify this input only when you set the ElectronicScanMode property to 'Custom'. Use a
subarray in the transmit antenna, and set its SubarraySteering property to 'Custom'.
Data Types: double

wr — Receive weights of radar system
column vector

Receive weights of the radar system, specified as a column vector. If a regular antenna array is used
to receive, wr is of length NRE, where NRE is the number of antenna elements in the radar's receive
antenna array. If a subarray is used to receive, wr is of length NRS where NRS is the number of
subarrays in the radar's receive antenna array.

You can specify this input only when you set the ElectronicScanMode property to 'Custom' and
the WeightsInputPort property to true in the radar's ReceiveAntenna property.
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Data Types: double

steerr — Receive steering angle in degrees
2-by-1 vector

Receive steering angle in degrees, specified as a 2-by-1 vector in the form of [azimuth; elevation].

You can specify this input only when you set the ElectronicScanMode property to 'Custom', use a
subarray in the receive antenna, and set its SubarraySteering property to 'Phase' or 'Time'.
Data Types: double

wsr — Receive weights applied to each element
matrix | cell array

Receive weights applied to each element, specified as either a matrix or a cell array.

If the receive antenna uses a:

• phased.ReplicatedSubarray object, wsr must be an NRE-by-NRS matrix where NRE is the
number of elements in each individual subarray and NRS is the number of subarrays. Each column
in wsr specifies the weights for the elements in the corresponding subarray.

• phased.PartitionedArray object, and its individual subarrays have same number of elements,
wsr must be an NRE-by-NRS matrix where NRE is the number of elements in each individual
subarray and NRS is the number of subarrays. Each column in wsr specifies the weights for the
elements in the corresponding subarray.

• phased.PartitionedArray object, and its subarrays can have different number of elements,
wsr can be one of the following:

• NRE-by-NRS matrix, whereNRE indicates the number of elements in the largest subarray and
NRS is the number of subarrays.

If wsr is a matrix, the first KR entries in each column, where KR is the number of elements in
the corresponding subarray, specify the weights for the elements in the corresponding
subarray.

• 1-by-NRS cell array, where NRS is the number of subarrays and each cell contains a column
vector whose length is the same as the number of elements of the corresponding subarray.

You can specify this input only when you set the ElectronicScanMode to 'Custom', use a subarray
in the receive antenna, and set its SubarraySteering property to 'Custom'.
Data Types: double

Output Arguments

y — Signal received at radar receiver
vector | array

Signal received at the radar receiver, returned as a one of the following:

• NS-by-NRE-by-N array –– If the radar uses a regular antenna array for receiving, the dimension of
y is NS-by-NRE-by-N, where NRE is the number of antenna elements in the radar's receive
antenna array, NS is the number of samples in each transmitted pulse/sweep, and N is the number
of transmitted pulses/sweeps.
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In this syntax, N is specified by the value of the NumRepetition property.
• NS-by-NRS-by-N array –– If the radar uses a subarray for receiving, the dimension of y is NS-by-

NRS-by-N, where NRS is the number of subarrays in the radar's receive antenna array. When
multiple pulses/sweeps are simulated, the targets are assumed to move according to a constant
velocity trajectory.

Data Types: double

info — Simulation metadata
structure

Simulation metadata, returned as a structure containing the following fields:

• IsScanDone –– Whether one period of mechanical scan is done.
• MechanicalAngle –– Current antenna pointing angle due to mechanical scan.
• Origin –– Radar location in the platform coordinate system.
• Orientation –– Radar orientation axes in the platform coordinate system.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Model Target Echo Received by Monostatic Radar

Model the target echo received by a monostatic radar using the radarTransceiver object.

Create the radar targets as an array of two structures with a specified position and velocity.

tgt1 = struct( ...
    'Position', [0 5e3 0], ...
    'Velocity', [0 0 0]);
tgt2 = struct( ...
    'Position', [10e3 0 0], ...
    'Velocity', [0 0 0]);

Create a surveillance radar 15 meters above the ground. Specify rpm to determine the scan rate (in
deg/s). For the specified scanrate and beamwidth, determine the update rate.
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rpm = 12.5;
scanrate = rpm*360/60;       % deg/s
beamw = 1;                   % beamwidth
updaterate = scanrate/beamw; % update at each beam
radarht = 15.0;              % radar height

Create a phased.CustomAntennaElement object that acts as a transmit antenna element and a
receive antenna element in the radarTransceiver object.

az = -180:0.5:180;
el = -90:0.5:90;
pat = zeros(numel(el),numel(az));
pat(-0.5 <= el & el <= 0.5,-0.5 <= az & az <= 0.5) = 1;
ant = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',mag2db(abs(pat)),...
    'PhasePattern',zeros(size(pat)));

Create a radarTransceiver object. Specify a rectangular waveform for the radar using the
phased.RectangularWaveform object. Specify the transmit antenna and the receive antenna. The
mechanical scan mode is set to 'Circular' with a defined scan rate.

wav = phased.RectangularWaveform('PulseWidth',1e-5);
sensor = radarTransceiver( ...
    'Waveform',wav, ...
    'TransmitAntenna',phased.Radiator('Sensor',ant), ...
    'ReceiveAntenna',phased.Collector('Sensor',ant), ...
    'MechanicalScanMode','Circular', ...
    'MechanicalScanRate',scanrate, ...
    'MountingLocation',[0,0,radarht]);

Generate detections from a full scan of the radar.

simTime = 0;
sigi = 0;
while true
    [sig, info] = sensor([tgt1 tgt2], simTime);
    sigi = sigi + abs(sig);

    % Is full scan complete?
    if info.IsScanDone
        break % yes
    end
    simTime = simTime + 1/updaterate;
end
r = (0:size(sigi,1)-1)/sensor.Waveform.SampleRate* ...
    sensor.TransmitAntenna.PropagationSpeed/2;
plot(r,sigi)
hold on
plot([5e3 5e3],ylim,'r--',[10e3 10e3],ylim,'r--')
xlabel('Range (m)')
ylabel('Magnitude')
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarDataGenerator | radarScenario | radarTracker | radarEmitter | radarEmission |
rcsSignature | radarChannel
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radarScenario
Create radar scenario

Description
radarScenario creates a radar scenario object. A radar scenario simulates a 3-D environment
containing multiple platforms. Platforms represent objects that you want to simulate, such as aircraft,
ground vehicles, or ships. Some platforms carry sensors, such as radar, sonar, or infrared. Other
platforms act as the source of signals or reflector of signals.

Populate a radar scenario by calling the platform function for each platform you want to add. You
can model platforms as points or cuboids by specifying the 'Dimension' property when calling the
platform function. Platforms have signatures with properties that are specific to the type of sensor,
such as radar cross-section for radar sensors. You can create trajectories for any platform using the
kinematicTrajectory, waypointTrajectory, or geoTrajectory System object.

After you add all desired platforms, you can simulate the scenario in incremental time steps by using
the advance function in a loop. You can run the simulation all at once using the record function.

Creation
Syntax
scene = radarScenario
scene = radarScenario('IsEarthCentered',true)
scene = radarScenario(Name,Value)

Description

scene = radarScenario creates an empty radar scenario scene with default property values. You
can specify platform trajectories in the scenario as Cartesian states using the
kinematicTrajectory or waypointTrajectory System object.

scene = radarScenario('IsEarthCentered',true) creates an empty Earth-centered radar
scenario and sets the IsEarthCentered on page 4-0  property as true. You can specify platform
trajectories in the scenario as geodetic states using the geoTrajectory System object.

scene = radarScenario(Name,Value) configures the properties on page 4-34 of a
radarScenario object using one or more name-value arguments. Name is a property name and
Value is the corresponding value. You can specify several name-value arguments in any order. Any
unspecified properties take default values.

Properties
IsEarthCentered — Enable Earth-centered reference frame and trajectories
false or 0 (default) | true or 1

Enable Earth-centered reference frame and trajectories, specified as a logical 0 (false) or 1 (true).
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• If specified as 0 (false), then you must define the trajectories of platforms as Cartesian states
using the kinematicTrajectory or waypointTrajectory System object.

• If specified as 1 (true), then you must define the trajectories of platforms as geodetic states using
the geoTrajectory System object.

You can specify the IsEarthCentered property only when creating the radar scenario.
Data Types: logical

UpdateRate — Frequency of simulation updates
10 (default) | nonnegative scalar

Frequency of simulation updates, specified as a nonnegative scalar in hertz.

• When specified as a positive scalar, the scenario advances with the time step of 1/F, where F is the
value of the UpdateRate property.

• When specified as 0, the simulation advances to the next scheduled sampling time of any mounted
sensors or emitters. For example, if a scenario has two sensors with update rates of 2 Hz and 5
Hz, then the first seven simulation updates are at 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 seconds,
respectively.

Example: 2.0
Data Types: double

SimulationTime — Current time of simulation
0 (default) | positive scalar

This property is read-only.

Current time of the simulation, specified as a positive scalar in seconds. To reset the simulation time
to zero and restart the simulation, call the restart function.
Data Types: double

StopTime — Stop time of simulation
Inf (default) | positive scalar

Stop time of the simulation, specified as a positive scalar in seconds. The simulation stops when
either of these conditions is met:

• The stop time is reached
• Any platform reaches the end of its trajectory and you have specified the platform Motion

property with waypoints using the waypointTrajectory System object

Example: 60.0
Data Types: double

SimulationStatus — Simulation status
NotStarted | InProgress | Completed

This property is read-only.

Simulation status, specified as one of these values.
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• NotStarted — When the advance function has not been used on the radar scenario.
• InProgress — When the advance function has been used on the radar scenario at least once

and the scenario has not reached the Completed status.
• Completed — When the scenario reaches the stop time specified by the StopTime property or

any Platform object in the scenario reaches the end of its trajectory.

You can restart a scenario simulation by using the restart object function.
Data Types: enumeration

Platforms — Platforms in scenario
cell array

This property is read-only.

Platforms in the scenario, returned as a cell array of Platform objects. The number of elements in
the cell array is equal to the number of platforms in the scenario. To add a platform to the scenario,
use the platform function.

InitialAdvance — Initial advance when calling advance function
Zero (default) | UpdateInterval

Initial advance when calling the advance function, specified as one of these values.

• Zero — The scenario simulation starts at time 0 in the first call to the advance function.
• UpdateInterval — The scenario simulation starts at time 1/F, where F is the value of a nonzero

UpdateRate property. If the UpdateRate property is specified as 0, then the scenario simulation
ignores the InitialAdvance property and starts at time 0.

Data Types: enumeration

SurfaceManager — Surface manager
surfaceManager object

This property contains the SurfaceManager object associated with the scenario.

Object Functions
platform Add platform to radar scenario
landSurface Add land surface to radar scenario
seaSurface Add sea surface to radar scenario
advance Advance radar scenario simulation by one time step
atmosphere Add atmosphere model object to radar scenario
restart Restart simulation of radar scenario
record Record simulation of radar scenario
emit Collect emissions from all emitters in radar scenario
propagate Propagate emissions in radar scenario
detect Collect detections from all sensors in radar scenario
receive Receive IQ signal from radars in the scenario
clutterGenerator Add clutter generator for radar
platformProfiles Profiles of radar scenario platforms
platformPoses Position information for each platform in radar scenario
coverageConfig Sensor and emitter coverage configuration
perturb Apply perturbations to radar scenario
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clone Create copy of radar scenario

Examples

Create Radar Scenario with Two Platforms

Create a radar scenario with two platforms that follow different trajectories.

sc = radarScenario('UpdateRate',100,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by placing
waypoints in a circular shape, ensuring that the first and last waypoint are the same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1,time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

    {1x1 radar.scenario.Platform}    {1x1 radar.scenario.Platform}

Run the simulation and plot the current position of each platform using an animated line.

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));

while advance(sc)
    p1 = pose(platfm1);
    p2 = pose(platfm2);
    addpoints(line1,p1.Position(1),p1.Position(2));
    addpoints(line2,p2.Position(2),p2.Position(2));
    pause(0.1)
end
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Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off
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Create Earth-Centered Radar Scenario

Create an Earth-centered radar scenario and specify the update rate.

scene = radarScenario('IsEarthCentered',true,'UpdateRate',0.01);

Add a platform to the scenario that represents an airplane. The trajectory of the airplane changes in
longitude and altitude. Specify the trajectory using geodetic coordinates.

geoTraj = geoTrajectory([42.300,-71.351,10600;42.300,-124.411,0],[0 21600]);
plane = platform(scene,'Trajectory',geoTraj);

Advance the radar scenario and record the geodetic and Cartesian positions of the plane target.

positions = [];
while advance(scene)
    poseLLA = pose(plane,'CoordinateSystem','Geodetic');
    poseXYZ = pose(plane,'CoordinateSystem','Cartesian');
    positions = [positions;poseXYZ.Position];%#ok<AGROW> Allow the buffer to grow.
end

Convert the distance units from meters to kilometers.

km = 1000;
positions = positions/km;
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Visualize the start position, end position, and trajectory in the ECEF frame.

hold on
plot3(positions(1,1),positions(1,2),positions(1,3),'b*')
plot3(positions(end,1),positions(end,2),positions(end,3),'bo')
plot3(positions(:,1),positions(:,2),positions(:,3),'b')

Plot the Earth radial lines of the start position and end position.

plot3([0 positions(1,1)],[0 positions(1,2)],[0 positions(1,3)],'k:')
plot3([0 positions(end,1)],[0 positions(end,2)],[0 positions(end,3)],'k:')
xlabel('x (km)')
ylabel('y (km)')
zlabel('z (km)')
legend('Start position','End position','Trajectory')
view(3)

Version History
Introduced in R2021a

See Also
kinematicTrajectory | geoTrajectory | waypointTrajectory | Platform |
radarScenarioRecording | SurfaceManager
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Topics
“Radar Scenario Tutorial”

 radarScenario
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advance
Advance radar scenario simulation by one time step

Syntax
isRunning = advance(scenario)

Description
isRunning = advance(scenario) advances the simulation of the radar scenario scenario by
one time step, and returns the running status of the scenario. Set up the advance behavior using the
UpdateRate and InitialAdvance properties of the radarScenario object.

• When the UpdateRate property is a positive scalar F, the simulation advances in the time step of
1/F. Moreover, if the InitialAdvance property is 'Zero', then the simulation starts at time 0. If
the InitialAdvance property is specified as 'UpdateInterval', then the simulation starts at
time 1/F.

• When the UpdateRate property is 0, the simulation advances to the next scheduled sampling
time of any mounted sensors or emitters. For example, if a scenario has two sensors with update
rates of 2 Hz and 5 Hz, then the first seven simulation updates are at 0, 0.2, 0.4, 0.5, 0.6, 0.8 and
1.0 seconds, respectively.

In this case, the initial time is always time 0. Also, you must trigger the running of the sensors or
emitters by using at least one of the these options between calls to the advance function:

• Directly running the sensors or emitters
• Using the emit or detect function of the radar scenario to run sensors or emitters in the

scenario
• Using the emit or detect function of the platform with corresponding sensors or emitters

Examples

Advance Radar Scenario

Create a new radar scenario.

rs = radarScenario;

Create a platform that follows a circular path of radius 10 m for one second. This is accomplished by
placing waypoints in a circular shape, ensuring that the first and last waypoint are the same.

plat = platform(rs);
wpts = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time = [0; 0.25; .5; .75; 1.0];
plat.Trajectory = waypointTrajectory(wpts,time);

Perform the simulation, advancing one time step at a time. Display the simulation time and the
position and velocity of the platform at each time step.
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while advance(rs)
    p = pose(plat);
    disp(strcat("Time = ",num2str(rs.SimulationTime)))
    disp(strcat("  Position = [",num2str(p.Position),"]"))
    disp(strcat("  Velocity = [",num2str(p.Velocity),"]"))
end

Time = 0

  Position = [0  10   0]

  Velocity = [62.8318 -1.88403e-05            0]

Time = 0.1

  Position = [5.8779      8.0902           0]

  Velocity = [50.832     -36.9316            0]

Time = 0.2

  Position = [9.5106      3.0902           0]

  Velocity = [19.4161     -59.7566            0]

Time = 0.3

  Position = [9.5106     -3.0902           0]

  Velocity = [-19.4161     -59.7567            0]

Time = 0.4

  Position = [5.8779     -8.0902           0]

  Velocity = [-50.832     -36.9316            0]

Time = 0.5

  Position = [0 -10   0]

  Velocity = [-62.8319  1.88181e-05            0]

Time = 0.6

  Position = [-5.8779     -8.0902           0]

  Velocity = [-50.832      36.9316            0]

Time = 0.7

  Position = [-9.5106     -3.0902           0]

  Velocity = [-19.4161      59.7566            0]

Time = 0.8

  Position = [-9.5106      3.0902           0]

  Velocity = [19.4161      59.7566            0]

Time = 0.9
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  Position = [-5.8779      8.0902           0]

  Velocity = [50.832      36.9316            0]

Time = 1

  Position = [-7.10543e-15           10            0]

  Velocity = [62.8319 -1.88404e-05            0]

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Output Arguments
isRunning — Run-state of simulation
0 | 1

Run-state of the simulation, returned as a logical 0 or 1. If isRunning is 1, then the simulation is
running. If isRunning is 0, then the simulation has stopped. A simulation stops when either of these
conditions is met:

• The stop time is reached.
• Any platform reaches the end of its trajectory and you have specified the platform Motion

property with waypoints using the waypointTrajectory System object.

Data Types: logical

Version History
Introduced in R2021a

See Also
radarScenario | restart | record | detect | waypointTrajectory | kinematicTrajectory
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atmosphere
Add atmosphere model object to radar scenario

Syntax
atmos = atmosphere(scenario,model)
atmos = atmosphere( ___ ,Name,Value)

Description
atmos = atmosphere(scenario,model) creates an atmosphere object atmos that belongs to a
radar scenario object. The atmosphere is defined by the atmospheric refraction model. To enable
this object method, set the IsEarthCentered property of the radarScenario object scenario to
true. Use this object only in a scenario that uses a radarTransceiver object.

After creating the atmosphere, you can use the effearthradius object function to compute the
effective earth radius and the effective earth radius factor.

atmos = atmosphere( ___ ,Name,Value) sets the atmosphere object with additional properties
specified by one or more name-value arguments.

Examples

Create Atmosphere with 4/3 Effective Earth Radius

Create an atmosphere using the effective earth radius model. Assume the effective earth radius is 4/3
of the actual earth radius. Using the model requires that the IsEarthCentered property of
radarScenario be true.

scenario  = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'EffectiveEarth')

atmos = 
  AtmosphereEffectiveEarth with properties:

             InputFormat: 'Radius'
    EffectiveEarthRadius: 8.4774e+06

Compare Effective Earth Factors in Radar Scenario

Compare the effective Earth factors calculated from the CRPL and 4/3 Earth models. Assume the
slant range is 100 km, the antenna heights range from 1 to 10 km, and the target altitude is at the
surface.

 SR = 100e3;
 ha = linspace(1,10,50).*1e3;
 ht = 0;

 atmosphere
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Create a radar scenario and a CRPL atmosphere.

scenario = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'CRPL');
[~,kCRPL] = effearthradius(atmos,SR,ha,ht);

Plot the computed k-factor and a vertical 4/3 line.

semilogy(kCRPL,ha*1e-3)
hold on
xline(4/3,'-.r')
xline(1,'--k')
xlim([0.99 1.37])
grid on
legend('CRPL','4/3 Earth','True Earth')
xlabel('Effective Earth Radius Factor k')
ylabel('Altitude (km)')
hold off

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.
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model — Atmospheric model
FreeSpace (default) | EffectiveEarth | RefractivityGradient | CRPL

Atmospheric model, specified as 'FreeSpace', 'EffectiveEarth', 'RefractivityGradient',
or 'CRPL'.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

No additional name-value pairs are required when the model argument is set to FreeSpace.
Example: InputFormat='k Factor'

EffectiveEarth model

InputFormat — Input format
'Radius' (default) | 'k Factor'

Input format, specified as 'Radius' or 'k Factor'. Setting the InputFormat property to
'Radius' enables the EffectiveEarthRadius property. Setting the InputFormat property to 'k
Factor' enables the EffectiveEarthK property.

Dependencies
Data Types: char | string

EffectiveEarthRadius — Effective earth radius
4/3 Re (default) | positive scalar

Effective earth radius, specified as a positive scalar. The default earth radius of 4/3 Re is equivalent
to a refractivity gradient of -39e-9. Re is the radius of the earth and is obtained from
physconst('EarthRadius'). Units are in meters.

.
Example: 11/7 Re

Dependencies

To enable this property, set the model argument to 'EffectiveEarth' and set the InputFormat
property to 'Radius'.
Data Types: double

EffectiveEarthK — Effective Earth k factor
4/3 (default) | nonnegative scalar

Effective earth k-factor, specified as a nonnegative scalar. The effective Earth radius Re in this case is
calculated as: Re = k*Rearth, where Rearth is the Earth radius as output by
physconst('EarthRadius').
Example: 11/7

 atmosphere

4-47



Dependencies

To enable this property, set the model argument to 'EffectiveEarth' and set the InputFormat
property to 'k Factor'.
Data Types: double

RefractivityGradient model

RefractivityGradient — Refractivity gradient
-39e-9 (default) | scalar

Refractivity gradient, specified as a scalar. The refractivity gradient is used to calculate the effective
Earth radius.

Dependencies

To enable this property, set the model argument to 'RefractivityGradient'.
Data Types: double

CRPL

SurfaceRefractivity — Surface refractivity
313 (default) | nonnegative scalar

Surface refractivity, specified as a non-negative scalar. Units are N-units.

Dependencies

To enable this property, set the model argument to 'CRPL'.
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | nonnegative scalar

Refraction exponent factor for the CRPL exponential reference atmosphere model, specified as a non-
negative scalar. Units are 1/km.

Dependencies

To enable this property, set the model argument to 'CRPL'.
Data Types: double

MaxNumIterations — Maximum number of iterations
10 (default) | non-negative integer

Maximum number of iterations for the CRPL method, specified as a non-negative, scalar integer. This
input acts as a safeguard to prevent endless iterative calculations.
Example: 20

Dependencies

To enable this property, set the model argument to 'CRPL'.
Data Types: double
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Tolerance — Tolerance which the iterative process is terminated
1e-2 (default) | positive scalar

Specifies the absolute tolerance for the CRPL method, specified as a positive scalar. This is the
tolerance which the iterative process is terminated.
Example: 0.1

Dependencies

To enable this property, set the model argument to 'CRPL'.
Data Types: double

Output Arguments
atmos — Atmosphere
Atmosphere object

Atmosphere, returned as an Atmosphere object.

More About
Curved Earth Model

The fact that the index of refraction of air depends on height can be treated approximately by using
an effective Earth's radius larger than the actual value.

Given the effective Earth's radius R0, the antenna height ha, and the initial elevation angle θ0, the
model relates the target height hT and the slant range RT by

R0 + hT
2 = R0 + ha

2 + RT
2 + 2RT R0 + ha sinθ0,

so knowing one of those magnitudes enables you to compute the other. In particular,

hT = R0 + ha
2 + RT

2 + 2RT R0 + ha sinθ0− R0 .

The actual range R is equal to the slant range. The true elevation angle θT is equal to the initial
elevation angle.

To compute the ground range G, use

G = R0ϕ = R0arcsin
RTcosθ0
R0 + hT

.
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A standard propagation model uses an effective Earth's radius that is 4/3 times the actual value. This
model has two major limitations:

1 The model implies a value for the index of refraction near the Earth's surface that is valid only for
certain areas and at certain times of the year. To mitigate this limitation, use an effective Earth's
radius based on the near-surface refractivity value.

2 The model implies a value for the gradient of the index of refraction that is unrealistically low at
heights of around 8 km. To partially mitigate this limitation, use an effective Earth's radius based
on the platform altitudes.

For more information, see effearthradius.

CRPL Exponential Reference Atmosphere Model

Atmospheric refraction evidences itself as a deviation in an electromagnetic ray from a straight line
due to variation in air density as a function of height. The Central Radio Propagation Laboratory
(CRPL) exponential reference atmosphere model treats refraction effects by assuming that the index
of refraction n(h) and the refractivity N decay exponentially with height. The model defines

N = n h − 1 × 106 = Nse
−Rexph,

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is the
decay constant, and h is the height above the surface in kilometers. Thus

n(h) = 1 + Ns × 10−6 e−Rexph .

The default value of Ns is 313 N-units and can be modified using the SurfaceRefractivity name-
value argument in functions that accept it. The default value of Rexp is 0.143859 km–1 and can be
modified using the RefractionExponent name-value argument in functions that accept it.
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CRPL Model Geometry

When the refractivity of air is incorporated into the curved Earth model, the ray paths do not follow a
straight line but curve downward. (This statement assumes standard atmospheric propagation and
nonnegative elevation angles.) The true elevation angle  is different from the initial . The actual
range , which is the distance along the curved path , is different from the slant range .

Given the Earth's radius , the antenna height , the initial elevation angle , and the height-
dependent index of refraction  with value  at , the modified model relates the target
height  and the actual range  by

When Method is specified as "CRPL", the integral is solved using  from “CRPL Exponential
Reference Atmosphere Model” on page 4-50.

To compute the ground range , use
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N-units

N-units are a convenient way to express the index of refraction. Because the index of refraction is
very close to unity, N-units express just the deviation from unity. The refractivity N in N-units is
related to the index of refraction n by

N = (n− 1) × 106.

For example, an index of refraction of 1.000313 becomes 313 in N-units. N-units are dimensionless.

Version History
Introduced in R2022b

References
[1] Bradford R. Bean, G. D. Thayer. CRPL Exponential Reference Atmosphere, U.S. Department of

Commerce, National Bureau of Standards, 1959.

[2] Blake, L. V. "A Note on Selection of an Atmospheric Refractivity Model for Radar Range-Height-
Angle Charts." NRL Report 5626, Apr. 24, 1961

[3] Blake, L.V. "Ray Height Computation for a Continuous Nonlinear Atmospheric Refractive-Index
Profile." RADIO SCIENCE, Vol. 3 (New Series), No. 1, Jan. 1968, pp. 85-92.
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[4] Doerry, A. W. "Correcting Radar Range Measurements for Atmospheric Propagation Effects."
edited by Kenneth I. Ranney and Armin Doerry, 90771K. Baltimore, Maryland, USA, 2014.
https://doi.org/10.1117/12.2048977.

[5] Doerry, A. W. "Earth Curvature and Atmospheric Refraction Effects on Radar Signal Propagation."
Sandia National Laboratories, SAND2012-10690, Jan. 2013.

[6] Robertshaw, G. "Effective Earth Radius for Refraction of Radio Waves at Altitudes above 1 Km."
IEEE Transactions on Antennas and Propagation 34, no. 9 (September 1986): 1099-1105.
https://doi.org/10.1109/TAP.1986.1143948.

[7] Sweezy, W. B. , and B. R. Bean. "Correction of Atmospheric Refraction Errors In Radio Height
Finding." Journal of Research of the National Bureau of Standards, D. Radio Propagation,
67D, no. 2 (March - April 1963).

See Also
radarTransceiver | effearthradius | radarScenario | refractionexp | slant2range |
landSurface | seaSurface | clutterGenerator

Topics
“Simulating Radar Signals with Atmospheric Refraction Effects”
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effearthradius
Effective earth radius

Syntax
Re = effearthradius(atmos)
Re = effearthradius(atmos,slr,ha,ht)
[Re,k] = effearthradius( ___ )

Description
Re = effearthradius(atmos) returns the effective radius Re of a spherical earth where atmos is
an atmosphere of a radarScenario object. The effective radius is computed using the
atmosphere and its associated properties. This syntax generally applies for altitudes less than 2 km.
For more information about the computation, see “Effective Earth Radius from Refractivity Gradient”
on page 1-53.

Re = effearthradius(atmos,slr,ha,ht) returns the effective Earth radius, Re, using the
average radius of curvature method (see[1]). slr is the line-of-sight range to the target. ha is the
radar altitude above mean sea level (MSL). ht is the target altitude above MSL.

[Re,k] = effearthradius( ___ ) also outputs the effective earth radius factor, k. Use this option
with any of the syntaxes described above. See “Effective Earth Radius” on page 1-52.

Examples

Compute Effective Earth Radius in Radar Scenario

Define an atmosphere in a radar scenario using an effective Earth radius model with a default 4/3
Earth radius.

scenario = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'EffectiveEarth');
Re = effearthradius(atmos)

Re = 8.4774e+06

Compare Effective Earth Factors in Radar Scenario

Compare the effective Earth factors calculated from the CRPL and 4/3 Earth models. Assume the
slant range is 100 km, the antenna heights range from 1 to 10 km, and the target altitude is at the
surface.

 SR = 100e3;
 ha = linspace(1,10,50).*1e3;
 ht = 0;

Create a radar scenario and a CRPL atmosphere.
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scenario = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'CRPL');
[~,kCRPL] = effearthradius(atmos,SR,ha,ht);

Plot the computed k-factor and a vertical 4/3 line.

semilogy(kCRPL,ha*1e-3)
hold on
xline(4/3,'-.r')
xline(1,'--k')
xlim([0.99 1.37])
grid on
legend('CRPL','4/3 Earth','True Earth')
xlabel('Effective Earth Radius Factor k')
ylabel('Altitude (km)')
hold off

Input Arguments
atmos — Atmosphere
-39e-9 (default) | scalar

Atmosphere belonging to a radarScenario object.
Data Types: double
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slr — Line-of-sight range to target
positive scalar | 1-by-M vector of positive values

Line-of-sight range to the target from the radar, specified as a positive scalar or a 1-by-M vector of
positive values. M must be the same for slr, ha, and ht. However, if one of slr, ha, and ht is a
scalar and another is a 1-by-M vector, the scalar is expanded into a 1-by-M vector. Units are in
meters.
Data Types: double

ha — Radar altitude above mean sea level
scalar | 1-by-M vector

Radar altitude above mean sea level, specified as a scalar or a 1-by-M vector. M must be the same for
slr, ha, and ht. However, if one of slr, ha, and ht is a scalar and another is a 1-by-M vector, the
scalar is expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ht — Target altitude above mean sea level
scalar | M-length vector

Target altitude above mean sea level, specified as a scalar or an M-length vector. M must be the same
slr, ha, and ht. However, if one of slr, ha, and ht is a scalar and another is a 1-by-M vector, the
scalar is expanded into a 1-by-M vector. Units are in meters.
Data Types: double

Output Arguments
Re — Effective earth radius
4/3 actual earth radius (default) | positive scalar

Effective earth radius, returned as a positive scalar. Units are in meters.

k — Effective earth radius factor
4/3 (default) | positive scalar

Effective earth radius factor, returned as a positive scalar. The effective earth radius factor is the
ratio of the effective earth radius to the physical earth radius. Units are dimensionless.
Data Types: double

More About
Effective Earth Radius

The effective earth radius method is an approximation used for modelling refraction effects in the
troposphere. Changing the radius of the earth can account for refraction effects. The effective radius
method ignores other types of propagation phenomena such as ducting. A related quantity, the
effective earth radius factor, is the ratio of the effective earth radius to the actual earth radius.

k =
Re
r
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where r is the actual earth radius and Re is the effective earth radius. Commonly, the effective earth
radius factor, k, is chosen as 4/3. However, at long ranges and with shallow angles, k can deviate
greatly from the 4/3. (With no atmospheric refraction, k = 1. An infinite value for k represents a flat
Earth). The effective Earth radius is based on the radarScenario atmosphere. All atmosphere types
output an effective Earth radius. There are four ways to specify it. It can be free space, effective
Earth radius (k or effective radius), refractivity gradient, or the CRPL atmosphere.

Effective Earth Radius from Refractivity Gradient

An estimate of the effective earth radius factor, k, can be derived from the refractivity gradient using

k = 1
1 + r ⋅ refgrad

where r is the actual earth radius in meters. refgrad is the gradient of the index of refraction
specified by the refgrad argument. The index of refraction for a given altitude is the ratio of the
free-space propagation speed of electromagnetic waves to the propagation speed in air at that
altitude. The gradient is the rate of change of the index of refraction with altitude. The value of 4/3
corresponds to an index of refraction gradient of −39 × 10−9 m−1.

Refractivity Measure and N-Units

The refractivity measure, N, is related to the index of refraction, n by:

n = 1 + 10−6N

10-6N represents the deviation of the index of refraction from the index of refraction of free space. N
is expressed in N-units.

Version History
Introduced in R2022b

References
[1] Doerry, Armin. W. "Earth Curvature and Atmospheric Refraction Effects on Radar Signal

Propagation", Sandia National Laboratories, SAND2012-10690, January 2013.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 2nd Ed. Artech House, 2001.

[3] Mahafza, Bassem R. Radar Signal Analysis and Processing Using MATLAB, CRC Press, 2009.

[4] Skolnik, Merrill I. Introduction to Radar Systems, Third edition, McGraw-Hill, 2001.

[5] Ward, James. "Space-Time Adaptive Processing for Airborne Radar", Lincoln Lab Technical Report,
1994.

See Also
atmosphere | depressionang | grazingang

Topics
“Radar Vertical Coverage over Terrain”
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clone
Create copy of radar scenario

Syntax
newScenario = clone(scenario)

Description
newScenario = clone(scenario) creates a copy of the radar scenario, scenario.

Examples

Copy Radar Scenario

Create a radar scenario.

scene = radarScenario;

Add a platform with a specified position to the scene.

platform(scene,'Position',[10 10 0]);

Create a copy of the scenario. The copy of the scenario, newScene, includes the platform.

newScene = clone(scene)

newScene = 
  radarScenario with properties:

      IsEarthCentered: 0
           UpdateRate: 10
       SimulationTime: 0
             StopTime: Inf
     SimulationStatus: NotStarted
            Platforms: {[1x1 radar.scenario.Platform]}
       SurfaceManager: [1x1 radar.scenario.SurfaceManager]
    AtmosphereManager: [1x1 radar.scenario.AtmosphereManager]

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.
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Output Arguments
newScenario — Copy of radar scenario
radarScenario object

Copy of radar scenario, returned as a radarScenario object.

Version History
Introduced in R2021a

See Also
radarScenario
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detect
Collect detections from all sensors in radar scenario

Syntax
detections = detect(scenario)
detections = detect(scenario,signals)
detections = detect(scenario,signals,emitterConfigs)
[detections,sensorConfigs] = detect( ___ )
[ ___ ,sensorConfigPIDs] = detect( ___ )

Description
detections = detect(scenario) reports the detections from all sensors mounted on every
platform in the radar scenario, scenario. Use this syntax only when none of the sensors require
information on the signals present in the scenario.

detections = detect(scenario,signals) reports the detections from all sensors when at least
one sensor requires information on the signals present in the scenario.

detections = detect(scenario,signals,emitterConfigs) reports the detections from all
sensors when at least one sensor also requires information on the emitter configurations in the
scenario.

[detections,sensorConfigs] = detect( ___ ) also returns the configurations of each sensor
at the detection time. This output argument can be used with any of the previous syntaxes.

[ ___ ,sensorConfigPIDs] = detect( ___ ) also returns all platform IDs corresponding to the
sensor configurations, sensorConfigs. This output argument can be used with any of the previous
syntaxes.

Examples

Obtain Detections from Two Platforms in Radar Scenario

Set the seed of the random number generator for reproducible results.

s = rng('default');

Create a radar scenario.

rs = radarScenario('UpdateRate',1);

Create the first platform and mount one emitter and one sensor on it.

plat1 = platform(rs);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);
sensor1 = radarSensor(1,'DetectionMode','Monostatic','EmitterIndex',1,'RangeResolution',1);
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plat1.Emitters = emitter1;
plat1.Sensors = sensor1;

Create the second platform and mount one emitter and one sensor on it.

plat2 = platform(rs);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
sensor2 = radarSensor(2,'DetectionMode','Monostatic','EmitterIndex',2,'RangeResolution',1);
plat2.Emitters = emitter2;
plat2.Sensors = sensor2;

Advance the radar scenario by one time step.

advance(rs);

Transmit and propagate the emissions.

[emtx,emitterConfs,emitterConfPIDs] = emit(rs);
emprop = propagate(rs,emtx,'HasOcclusion',true);

Collect the signals.

[dets,sensorConfs,sensorConfPIDs] = detect(rs,emprop,emitterConfs);

Display the detection results. The sensor on platform 1 detects the second platform.

detection = dets{1}

detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {[1x1 struct]}

detectedPlatform = detection.ObjectAttributes{1}

detectedPlatform = struct with fields:
     TargetIndex: 2
    EmitterIndex: 1
             SNR: 82.0123

Return the random number generator to its previous state.

rng(s)

Input Arguments
scenario — Radar scenario
radarScenario object
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Radar scenario, specified as a radarScenario object.

signals — Signal emissions
cell array of signal emission object

Signal emissions, specified as a cell array of signal emission objects, such as radarEmission
objects.

emitterConfigs — Emitter configurations
array of emitter configuration structures

Emitter configurations, specified as an array of emitter configuration structures. Each structure
contains these fields.

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Output Arguments
detections — Detections
cell array of objectDetection objects

Detections, returned as a cell array of objectDetection objects.

sensorConfigs — Sensor configurations
array of sensor configuration structures

Sensor configurations, returned as an array of sensor configuration structures. Each structure
contains these fields.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
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IsValidTime Valid detection time, returned as true or false.
IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

sensorConfigPIDs — Platform IDs for sensor configurations
array of positive integers

Platform IDs for sensor configurations in the sensorConfigs output argument, returned as an array
of positive integers.

Version History
Introduced in R2021a

See Also
radarScenario | detect | emit | propagate | radarEmission
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emit
Collect emissions from all emitters in radar scenario

Syntax
emissions = emit(scenario)
[emissions,emitterConfigs] = emit(scenario)
[emissions,emitterConfigs,emitterConfigPIDs] = emit(scenario)

Description
emissions = emit(scenario) reports signals emitted from all emitters mounted on platforms in
the radar scenario, scenario.

[emissions,emitterConfigs] = emit(scenario) also returns the configurations of all
emitters at the emission time.

[emissions,emitterConfigs,emitterConfigPIDs] = emit(scenario) also returns the IDs
of platforms on which the emitters are mounted.

Examples

Collect Emissions in Radar Scenario

Create a radar scenario and add two platforms. Set the position of each platform and add an emitter
to each platform.

rs = radarScenario('UpdateRate',1);
plat1 = platform(rs);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);
plat1.Emitters = emitter1;
plat2 = platform(rs);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
plat2.Emitters = emitter2;

Advance the radar scenario by one time step. Collect the emissions of all emitters in the scenario.

advance(rs);
[emissions,configs,sensorConfigPIDs] = emit(rs);

Confirm that there are two emissions, one from each emitter.

disp("There are " + numel(emissions) + " emissions.");

There are 2 emissions.

Display the properties of both emitters after the first time step.
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disp("The first emission is:"); ...
disp(emissions{1});

The first emission is:

  radarEmission with properties:

              PlatformID: 1
            EmitterIndex: 1
          OriginPosition: [0 0 0]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [1 5]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 100
                     RCS: 0

disp("The second emission is:"); ...
disp(emissions{2});

The second emission is:

  radarEmission with properties:

              PlatformID: 2
            EmitterIndex: 2
          OriginPosition: [100 0 0]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [1 5]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 100
                     RCS: 0

Display the configuration of both emitters after the first time step.

disp("The emitter configuration associated with the first emission is:"); ...
disp(configs(1));

The emitter configuration associated with the first emission is:

             EmitterIndex: 1
              IsValidTime: 1
               IsScanDone: 0
              FieldOfView: [1 5]
              RangeLimits: [0 Inf]
          RangeRateLimits: [0 Inf]
    MeasurementParameters: [1x1 struct]
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disp("The emitter configuration associated with the second emission is:"); ...
disp(configs(2));

The emitter configuration associated with the second emission is:

             EmitterIndex: 2
              IsValidTime: 1
               IsScanDone: 0
              FieldOfView: [1 5]
              RangeLimits: [0 Inf]
          RangeRateLimits: [0 Inf]
    MeasurementParameters: [1x1 struct]

Display the platform IDs for the emitter configurations.

disp("The emitter configurations are connected with platform IDs: "); ...
disp(sensorConfigPIDs');

The emitter configurations are connected with platform IDs: 

     1     2

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Output Arguments
emissions — Emissions of all emitters
cell array of emission objects

Emissions of all emitters in the radar scenario, returned as a cell array of emission objects such as
radarEmission objects.

emitterConfigs — Emitter configurations
array of sensor configuration structures

Emitter configurations, returned as an array of emitter configuration structures. Each structure
contains these fields.

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.
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IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

emitterConfigPIDs — Platform IDs for emitter configurations
array of positive integers

Platform IDs for emitter configurations in the emitterConfigs output argument, returned as an
array of positive integers.

Version History
Introduced in R2021a

See Also
radarScenario | emit | propagate | detect
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perturb
Apply perturbations to radar scenario

Syntax
offsets = perturb(scenario)

Description
offsets = perturb(scenario) perturbs the baseline radar scenario, scenario, and returns
offset values. Use the perturbations function to define the perturbations on objects, such as
trajectories, sensors, and platforms, in the scenario.

Examples

Radar Scenario Perturbation

Create a radar scenario and add a platform.

scenario = radarScenario;
p = platform(scenario); 

Add a trajectory to the platform.

p.Trajectory = waypointTrajectory('Waypoints',...
    [30 -40 -3; 30 -20 -3; 20 -10 -3; 0 -10 -3; -10 -10 -3]*1e3, ...
    'TimeOfArrival', [0; 100; 150; 350; 450], ... 
    'Course', [90;90;180;180;180]); 

Plot the trajectory.

tp = theaterPlot("XLimits",[-20 35]*1e3,"YLimits",[-45 -5]*1e3);
trajPlotter1 = trajectoryPlotter(tp,'DisplayName','Original','Color','b');
plotTrajectory(trajPlotter1,{p.Trajectory.Waypoints});

Define perturbations for the waypoints. The following defines perturbations on the first and last
waypoints as uniform distributions.

perturbations(p.Trajectory, "Waypoints", "Uniform",...
    [-2000 -2000 0; 0 0 0; 0 0 0; 0 0 0; -2000 -2000 0],...
    [+2000 +2000 0; 0 0 0; 0 0 0; 0 0 0; +2000 +2000 0]);

Perturb the scenario and observe the changed waypoints of the platform.

perturb(scenario);
trajPlotter2 = trajectoryPlotter(tp,'DisplayName','Perturbed','Color','g');
plotTrajectory(trajPlotter2,{p.Trajectory.Waypoints})
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Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Output Arguments
offsets — Property offsets
array of structures

Property offsets, returned as an array of structures. Each structure contains these fields.

Field Name Description
PlatformID ID of the platform
PerturbedObject Perturbed object mounted on the platform
Property Name of the perturbed property
Offset Offset values applied in the perturbation
PerturbedValue Property values after the perturbation
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Version History
Introduced in R2021a

See Also
perturbations
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platform
Add platform to radar scenario

Syntax
plat = platform(scenario)
plat = platform(scenario,Name,Value)

Description
plat = platform(scenario) creates a new Platform object, plat, and adds the platform to the
radar scenario, scenario.

plat = platform(scenario,Name,Value) creates a new Platform object with additional
properties specified by one or more name-value arguments.

Examples

Create Platform with Circular Trajectory

Create a radar scenario.

rs = radarScenario;

Create a platform with default property values and add it to the scenario.

plat = platform(rs);

Specify the trajectory of the platform as a circular path of radius 10 m for one second. This is
accomplished by placing waypoints in a circular shape, ensuring that the first and last waypoint are
the same.

wpts = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
times = [0; 0.25; .5; .75; 1.0];
plat.Trajectory = waypointTrajectory(wpts,times);

Display the properties of the platform object.

plat

plat = 
  Platform with properties:

       PlatformID: 1
          ClassID: 0
         Position: [0 10 0]
      Orientation: [-1.7180e-05 0 0]
       Dimensions: [1x1 struct]
       Trajectory: [1x1 waypointTrajectory]
    PoseEstimator: [1x1 insSensor]
         Emitters: {}
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          Sensors: {}
       Signatures: {[1x1 rcsSignature]}

Perform the simulation, advancing one time step at a time. Display the simulation time and the
position and velocity of the platform at each time step.

while advance(rs)  
    p = pose(plat);
    disp(strcat("Time = ",num2str(rs.SimulationTime)))
    disp(strcat("  Position = [",num2str(p.Position),"]"))
    disp(strcat("  Velocity = [",num2str(p.Velocity),"]"))
end

Time = 0

  Position = [0  10   0]

  Velocity = [62.8318 -1.88403e-05            0]

Time = 0.1

  Position = [5.8779      8.0902           0]

  Velocity = [50.832     -36.9316            0]

Time = 0.2

  Position = [9.5106      3.0902           0]

  Velocity = [19.4161     -59.7566            0]

Time = 0.3

  Position = [9.5106     -3.0902           0]

  Velocity = [-19.4161     -59.7567            0]

Time = 0.4

  Position = [5.8779     -8.0902           0]

  Velocity = [-50.832     -36.9316            0]

Time = 0.5

  Position = [0 -10   0]

  Velocity = [-62.8319  1.88181e-05            0]

Time = 0.6

  Position = [-5.8779     -8.0902           0]

  Velocity = [-50.832      36.9316            0]

Time = 0.7

  Position = [-9.5106     -3.0902           0]

  Velocity = [-19.4161      59.7566            0]

Time = 0.8
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  Position = [-9.5106      3.0902           0]

  Velocity = [19.4161      59.7566            0]

Time = 0.9

  Position = [-5.8779      8.0902           0]

  Velocity = [50.832      36.9316            0]

Time = 1

  Position = [-7.10543e-15           10            0]

  Velocity = [62.8319 -1.88404e-05            0]

Create Cuboid Platforms with Circular Trajectory

Create a radar scenario.

rs = radarScenario;

Create a cuboid platform for a truck with dimensions 5 m by 2.5 m by 3.5 m.

dim1 = struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[0 0 0]);
truck = platform(rs,'Dimension',dim1);

Specify the trajectory of the truck as a circle with radius 20 m.

truck.Trajectory = waypointTrajectory('Waypoints', ...
    [20*cos(2*pi*(0:10)'/10) 20*sin(2*pi*(0:10)'/10) -1.75*ones(11,1)], ...
    'TimeOfArrival',linspace(0,50,11)');

Create the platform for a small quadcopter with dimensions 0.3 m by 0.3 m by 0.1 m.

dim2 = struct('Length',.3,'Width',.3,'Height',.1,'OriginOffset',[0 0 0]);
quad = platform(rs,'Dimension',dim2);

Specify the trajectory of the quadcopter as a circle 10 m above the truck with a small angular delay.
Note that the negative z coordinates correspond to positive elevation.

quad.Trajectory = waypointTrajectory('Waypoints', ...
    [20*cos(2*pi*((0:10)'-.6)/10) 20*sin(2*pi*((0:10)'-.6)/10) -11.80*ones(11,1)], ...
    'TimeOfArrival',linspace(0,50,11)');

Visualize the results using theaterPlot.

tp = theaterPlot('XLim',[-30 30],'YLim',[-30 30],'Zlim',[-12 5]);
pp1 = platformPlotter(tp,'DisplayName','truck','Marker','s');
pp2 = platformPlotter(tp,'DisplayName','quadcopter','Marker','o');

Specify a view direction and run the simulation.

view(-28,37);
set(gca,'Zdir','reverse');

while advance(rs)
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    poses = platformPoses(rs);
    plotPlatform(pp1,poses(1).Position,truck.Dimensions,poses(1).Orientation);
    plotPlatform(pp2,poses(2).Position,quad.Dimensions,poses(2).Orientation);
end

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ClassID',2

ClassID — Platform classification identifier
0 (default) | nonnegative integer
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Platform classification identifier, specified as a nonnegative integer. You can define your own platform
classification scheme and assign ClassID values to platforms according to the scheme. The value of
0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

Trajectory — Platform motion
kinematicTrajectory object | waypointTrajectory object | geoTrajectory object

Platform motion, specified as a kinematicTrajectory object, a waypointTrajectory object, or a
geoTrajectory object. The trajectory object defines the time evolution of the position and velocity
of the platform frame origin, as well as the orientation of the platform frame relative to the scenario
frame.

• When the IsEarthCentered property of the scenario is set to false, use the
kinematicTrajectory or the waypointTrajectory object. By default, the platform uses a
stationary kinematicTrajectory object.

• When the IsEarthCentered property of the scenario is set to true, use the geoTrajectory
object. By default, the platform uses a stationary geoTrajectory object.

Position — Position of platform
three-element vector of scalars

This property is read-only.

Current position of the platform, specified as a three-element vector of scalars.

• When the IsEarthCentered property of the scenario is set to false, the position is specified as
a three-element Cartesian state [x, y, z] in meters.

• When the IsEarthCentered property of the scenario is set to true, the position is specified as a
three-element geodetic state: latitude in degrees, longitude in degrees, and altitude in
meters.

Specify this argument only when creating a stationary platform. If you choose to specify the
trajectory of the platform, use the Trajectory argument.
Data Types: double

Orientation — Orientation of platform
three-element numeric vector

This property is read-only.

Orientation of the platform, specified as a three-element numeric vector in degrees. The three
elements are the [yaw, pitch, roll] rotation angles from the local reference frame to the body
frame of the platform.

Specify this argument only when creating a stationary platform. If you choose to specify the
orientation over time, use the Trajectory argument.
Data Types: double

Signatures — Platform signatures
cell array of signature objects | {}
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Platform signatures, specified as a cell array of signature objects or an empty cell array ({}). The
default value is a cell array containing an rcsSignature object with default property values. If you
have Sensor Fusion and Tracking Toolbox, then the cell array can also include irSignature and
tsSignature objects. The cell array contains at most one instance for each type of signature object.
A signature represents the reflection or emission pattern of a platform such as its radar cross-section,
target strength, or IR intensity.

Dimensions — Platform dimensions and origin offset
structure

Platform dimensions and origin offset, specified as a structure. The structure contains the Length,
Width, Height, and OriginOffset of a cuboid that approximates the dimensions of the platform.
The OriginOffset is the position vector from the center of the cuboid to the origin of the platform
coordinate frame. The OriginOffset is expressed in the platform coordinate system. For example, if
the platform origin is at the center of the cuboid rear face as shown in the figure, then set
OriginOffset as [-L/2, 0, 0]. The default value for Dimensions is a structure with all fields
set to zero, which corresponds to a point model.

Fields of Dimensions

Fields Description Default
Length Dimension of a cuboid along the

x direction
0

Width Dimension of a cuboid along the
y direction

0

Height Dimension of a cuboid along the
z direction

0

OriginOffset Position of the platform
coordinate frame origin with
respect to the cuboid center

[0 0 0 ]

Example: struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[-2.5 0 0])
Data Types: struct

PoseEstimator — Platform pose estimator
insSensor object (default) | pose estimator object

Platform pose estimator, specified as a pose-estimator object such as an insSensor object. The pose
estimator determines platform pose with respect to the local NED scenario coordinates. The interface
of any pose estimator must match the interface of the insSensor object. By default, the platform
sets the pose estimator accuracy properties to zero.
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Emitters — Emitters mounted on platform
cell array of emitter objects

Emitters mounted on the platform, specified as a cell array of emitter objects such as radarEmitter
objects. If you have Sensor Fusion and Tracking Toolbox, then the cell array can also include
sonarEmitter objects.

Sensors — Sensors mounted on platform
cell array of sensor objects

Sensors mounted on the platform, specified as a cell array of sensor objects such as
radarDataGenerator objects.

Output Arguments
plat — Scenario platform
Platform object

Scenario platform, returned as a Platform object.

Version History
Introduced in R2021a

See Also
Platform | radarScenario | waypointTrajectory | rcsSignature | insSensor |
radarEmitter | radarDataGenerator
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platformProfiles
Profiles of radar scenario platforms

Syntax
profiles = platformProfiles(scenario)

Description
profiles = platformProfiles(scenario) returns the profiles of all platforms in the radar
scenario, scenario.

Examples

Generate Platform Profiles from Radar Scenario

Create a radar scenario.

rs = radarScenario;

Add two platforms to the scenario. Specify the ClassID of the second platform as 3.

p1 = platform(rs);
p2 = platform(rs);
p2.ClassID = 3;

Extract the profiles for all platforms in the scenario.

profiles = platformProfiles(rs)

profiles=1×2 struct array with fields:
    PlatformID
    ClassID
    Dimensions
    Signatures

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Output Arguments
profiles — Platform profiles
array of structures
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Profiles of all platforms in the radar scenario, returned as an array of structures. The number of
structures in the array is equal to the number of platforms. Each profile contains the signatures of a
platform and identifying information. Each structure contains these fields.

Field Description
PlatformID Scenario-defined platform identifier, defined as a

positive integer
ClassID User-defined platform classification identifier,

defined as a nonnegative integer
Dimensions Platform dimensions, defined as a structure with

these fields:

• Length
• Width
• Height
• OriginOffset

Signatures Platform signatures, defined as a cell array of
signature objects such as rcsSignature objects

See Platform for more information about the fields.

Version History
Introduced in R2021a

See Also
radarScenario | Platform | platform | platformPoses
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platformPoses
Position information for each platform in radar scenario

Syntax
poses = platformPoses(scenario)
poses = platformPoses(scenario,format)
poses = platformPoses( ___ ,'CoordinateSystem',coordinateSystem)

Description
poses = platformPoses(scenario) returns the current poses for all platforms in the radar
scenario, scenario. Pose is the position, velocity, and orientation of a platform relative to scenario
coordinates.

poses = platformPoses(scenario,format) also specifies the format of the returned platform
orientation as 'quaternion' or 'rotmat'.

poses = platformPoses( ___ ,'CoordinateSystem',coordinateSystem) specifies the
coordinate system of the poses output argument. You can use this syntax only when the
IsEarthCentered property of the radar scenario is set to true.

Examples

Get Pose of Platforms in Radar Scenario

Create a radar scenario.

rs = radarScenario;

Add a platform to the scenario.

plat = platform(rs);
plat.Trajectory.Position = [1 1 0];
plat.Trajectory.Orientation = quaternion([90 0 0],'eulerd','ZYX','frame');

Extract the pose of the platform from the radar scenario.

poses = platformPoses(rs)

poses = struct with fields:
         PlatformID: 1
            ClassID: 0
           Position: [1 1 0]
           Velocity: [0 0 0]
       Acceleration: [0 0 0]
        Orientation: [1x1 quaternion]
    AngularVelocity: [0 0 0]

4 Objects

4-80



Get Platform Orientation in Matrix Format

Create a radar scenario.

rs = radarScenario;

Add a platform to the scenario.

plat = platform(rs);
plat.Trajectory.Position = [1 1 0];
plat.Trajectory.Orientation = quaternion([90 0 0],'eulerd','ZYX','frame');

Extract the pose orientation in matrix format.

poses = platformPoses(rs,'rotmat');
poses.Orientation

ans = 3×3

    0.0000    1.0000         0
   -1.0000    0.0000         0
         0         0    1.0000

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

format — Pose orientation format
'quaternion' (default) | 'rotmat'

Pose orientation format, specified as 'quaternion' or 'rotmat'. When specified as
'quaternion', the Orientation field of the platform pose structure is a quaternion. When
specified as 'rotmat', the Orientation field is a rotation matrix.
Data Types: char | string

coordinateSystem — Coordinate system
'Cartesian' (default) | 'Geodetic'

Coordinate system in which the function reports poses, specified as one of these values:

• 'Cartesian' — Report poses using Cartesian coordinates in the Earth-Centered-Earth-Fixed
coordinate frame.

• 'Geodetic' — Report positions using geodetic coordinates (latitude, longitude, and altitude).
Report orientation, velocity, and acceleration in the local reference frame of each platform (North-
East-Down by default) corresponding to the current waypoint.

Specify this argument only when the IsEarthCentered property of the radar scenario, scenario,
is set to true.
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Data Types: char | string

Output Arguments
poses — Platform poses in scenario coordinates
structure | array of structures

Poses of all platforms in the radar scenario, returned as a structure or an array of structures. Each
structure contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector.

• If the coordinateSystem argument is
specified as 'Cartesian', then Position is
a three-element vector of Cartesian position
coordinates in meters.

• If the coordinateSystem argument is
specified as 'Geodetic', then Position is a
three-element vector of geodetic coordinates:
latitude in degrees, longitude in degrees, and
altitude in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. Units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).
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Field Description
AngularVelocity Angular velocity of the platform in scenario

coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are degrees per second.
The default value is [0 0 0].

Data Types: struct

Version History
Introduced in R2021a

See Also
radarScenario | platform | Platform | platformProfiles
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propagate
Propagate emissions in radar scenario

Syntax
propEmissions = propagate(scenario,emissions)
propEmissions = propagate(scenario,emissions,'HasOcclusion',tf)

Description
propEmissions = propagate(scenario,emissions) returns propagated emissions that are a
combination of the input emissions and the reflections of these input emissions from the platforms in
the radar scenario, scenario.

propEmissions = propagate(scenario,emissions,'HasOcclusion',tf) specifies whether
the radar channel models occlusion or not. By default, the radar channel models occlusion.

Examples

Propagate Emissions from Two Platforms in Radar Scenario

Create a radar scenario and add two platforms. Set the position and add an emitter to each platform.

rs = radarScenario('UpdateRate',1);
plat1 = platform(rs);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);
plat1.Emitters = emitter1;
plat2 = platform(rs);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
plat2.Emitters = emitter2;

Advance the radar scenario, generate emissions, and obtain propagated emissions.

advance(rs);
emtx = emit(rs);
emprop = propagate(rs,emtx,'HasOcclusion',true)

emprop=3×1 cell array
    {1x1 radarEmission}
    {1x1 radarEmission}
    {1x1 radarEmission}

Display the last propagated emission in the radar scenario. The last emission is emitted by emitter 1
and reflected from platform 2.

disp(emprop{end})

  radarEmission with properties:
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              PlatformID: 2
            EmitterIndex: 1
          OriginPosition: [100 0 0]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [180 180]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 100.0313
    PropagationRangeRate: 0
                    EIRP: 38.0131
                     RCS: 10

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

emissions — Emissions in radar scenario
cell array of emission objects

Emissions in the radar scenario, specified as a cell array of emission objects, such as
radarEmission objects. You can obtain emissions from a radar scenario using the emit function.

tf — Radar channel models occlusion
true or 1 (default) | false or 0

Radar channel models occlusion, specified as a numeric or logical 1 (true) or 0 (false).

Output Arguments
propEmissions — Propagated emissions
cell array of emission objects

Propagated emissions in the radar scenario, specified as a cell array of emission objects, such as
radarEmission objects. The propagated emissions contain the source emissions and the emissions
reflected from the platforms.

Version History
Introduced in R2021a

See Also
radarScenario | emit | detect | radarEmission | radarChannel
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receive
Receive IQ signal from radars in the scenario

Syntax
sig = receive(scenario)
[sig,info] = receive(scenario)
[sig,info,pids] = receive(scenario)

Description
sig = receive(scenario) returns the target echos, sig, received at radars in the scenario.

[sig,info] = receive(scenario) also returns a structure array of configurations at each radar,
info, of each radar when the signal is received.

[sig,info,pids] = receive(scenario) also returns a column array of platform IDs pids.

Examples

Received Platform Echo in Radar Scenario

Obtain the signal from two platforms in the a radar scenario using a radar detection generator. Set
the random number seed to insure the repeatability of the data.

s = rng(0);
scenario = radarScenario('UpdateRate',1);
plat1 = platform(scenario);
plat1.Trajectory.Position = [0,0,0];
plat1.Sensors = radarDataGenerator(1);
plat2 = platform(scenario);
plat2.Trajectory.Position = [1000,0,0];
[sig,sensorConfs] = receive(scenario)

sig = 1x1 cell array
    {1001x1 double}

sensorConfs = struct with fields:
              IsScanDone: 0
         MechanicalAngle: 0
         ElectronicAngle: [2x1 double]
          OriginPosition: [3x1 double]
             Orientation: [3x3 double]
    ReferenceSensorIndex: 1
                  Sensor: [1x1 radarTransceiver]

Platform 1 receives echo from platform 2:

rgrid = physconst('lightspeed')*(0:size(sig{1},1)-1)/ ...
    (2*sensorConfs.Sensor.Waveform.SampleRate)/1e3;
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plot(rgrid,abs(sig{1}),'r')
xlabel('Range (km)')
ylabel('Magnitude')

Signal from Two Platforms in Radar Scenario

Obtain the signal from two platforms in a radar scenario using a radarTransceiver. Set the seed in the
random number generator to obtain repeatable data.

s = rng(0);
scenario = radarScenario('UpdateRate', 1);
plat1 = platform(scenario);
plat1.Trajectory.Position = [0,0,0];
plat1.Sensors = radarTransceiver;
plat2 = platform(scenario);
plat2.Trajectory.Position = [1000,0,0];

Platform 1 receives echo from platform 2. Obtain the received signal.

[sig,sensorConfs,sensorConfPIDs] = receive(scenario)

sig = 1x1 cell array
    {100x2 double}
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sensorConfs = struct with fields:
              IsScanDone: 0
         MechanicalAngle: 0
         ElectronicAngle: [2x1 double]
          OriginPosition: [3x1 double]
             Orientation: [3x3 double]
    ReferenceSensorIndex: 0
                  Sensor: [1x1 radarTransceiver]

sensorConfPIDs = 1

Plot the received signal.

rgrid = physconst('lightspeed')*(0:size(sig{1},1)-1)/ ...
    (2*sensorConfs.Sensor.Waveform.SampleRate)/1e3;
plot(rgrid,abs(sig{1}))
xlabel('Range (km)')
ylabel('Magnitude')

Return the random number generator to its previous state

rng(s)
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Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Output Arguments
sig — Signal received at radar receivers
cell array

Signal received at the radar receiver, returned as a cell array. Each element of the cell array is the
received echoes at each radar.

info — Radar configurations array
structure array

Radar configurations, returned as a structure array. Each structure contains the following fields:

• IsScanDone –– Whether one period of mechanical scan is done
• MechanicalAngle –– Current antenna pointing angle due to mechanical scan
• Origin –– Radar location in the platform coordinate system
• Orientation –– Radar orientation axes in the platform coordinate system

Data Types: struct

pids — Platform IDs
column vector of real values

Platform IDs on which radars are mounted, returned as a column vector of real values.
Data Types: double

Version History
Introduced in R2021a

See Also
radarTransceiver | radarScenario | detect | emit | propagate | radarEmission
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record
Record simulation of radar scenario

Syntax
rec = record(scenario)
rec = record(scenario,format)
rec = record( ___ ,Name,Value)

Description
rec = record(scenario) returns a record, rec, of the evolution of the radar scenario simulation,
scenario. The function starts from the beginning of the simulation and stores the record until the
end of the simulation. A scenario simulation ends when either the StopTime of the scenario is
reached or any platform in the scenario has finished its trajectory as specified by the Trajectory
property.

Note The record function only records detections generated from sensors contained in the scenario
and does not record tracks generated from a radarDataGenerator object contained in the
scenario. radarDataGenerator generates detections when you set its TargetReportFormat
property to 'Detections' or 'Clustered Detections' and generates tracks when you set its
TargetReportFormat property to 'Tracks'.

rec = record(scenario,format) also specifies the format of the returned platform orientation.

rec = record( ___ ,Name,Value) specifies additional recording quantities using name-value
arguments.

Examples

Record Radar Scenario

Create a new radar scenario.

scenario = radarScenario;

Add a platform that follows a 25 m trajectory along the x-axis at 20 m/s.

plat = platform(scenario);
plat.Trajectory = waypointTrajectory('Waypoints',[0 0 0; 25 0 0], ...
    'TimeOfArrival',[0 25/20]);

Run the simulation and record the results.

r = record(scenario);

Show the platform states at the initial time.

r(1)
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ans = struct with fields:
    SimulationTime: 0
             Poses: [1x1 struct]

r(1).Poses

ans = struct with fields:
         PlatformID: 1
            ClassID: 0
           Position: [0 0 0]
           Velocity: [20 0 0]
       Acceleration: [0 0 0]
        Orientation: [1x1 quaternion]
    AngularVelocity: [0 0 0]

Show the platform states at the final time.

r(end)

ans = struct with fields:
    SimulationTime: 1.2000
             Poses: [1x1 struct]

r(end).Poses

ans = struct with fields:
         PlatformID: 1
            ClassID: 0
           Position: [24 0 0]
           Velocity: [20 0 0]
       Acceleration: [0 0 0]
        Orientation: [1x1 quaternion]
    AngularVelocity: [0 0 0]

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

format — Pose orientation format
'quaternion' (default) | 'rotmat'

Pose orientation format, specified as 'quaternion' or 'rotmat'. When specified as
'quaternion', the Orientation field of the platform pose structure is a quaternion. When
specified as 'rotmat', the Orientation field is a rotation matrix.
Data Types: char | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CoordinateSystem','Geodetic' reports recorded poses using geodetic coordinates

IncludeEmitters — Enable recording emission information
false (default) | true

Enable recording emission information, specified as true or false. When specified as true, the rec
output contains Emissions, EmitterConfigurations, EmitterPlatformIDs, and
CoverageConfig fields.

IncludeSensors — Enable recording sensor information
false (default) | true

Enable recording sensor information, specified as true or false. When specified as true, the rec
output contains Detections, SensorConfiguration, SensorPlatformIDs, and
CoverageConfig fields.

InitialSeed — Initial random seed for recording
current random seed (default) | positive integer

Initial random seed for recording, specified as a positive integer. If specified as a positive integer, the
function assigns this number to the random number generator "Twister" before the recording and
resets the random number generator at the end of the recording.

HasOcclusion — Enable occlusion in signal transmission
true (default) | false

Enable occlusion in signal transmission, specified as true or false. When specified as true, the
function accounts for the effect of occlusion in radar emission propagation.

RecordingFormat — Format of recording
'Struct' (default) | 'Recording'

Format of recording, specified as 'Struct' or 'Recording'. When specified as 'Struct', the rec
output is an array of structures. When specified as 'Recording', the rec output is a
radarScenarioRecording object.

CoordinateSystem — Coordinate system to report recorded poses
'Cartesian' (default) | 'Geodetic'

Coordinate system to report recorded positions, specified as one of these values.

• 'Cartesian' — Report recorded poses using Cartesian coordinates in the Earth-Centered-Earth-
Fixed coordinate frame.

• 'Geodetic' — Report recorded positions using geodetic coordinates (latitude, longitude, and
altitude). Report recorded orientation, velocity, and acceleration in the local reference frame of
each platform (North-East-Down by default) corresponding to the current waypoint.
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Specify this argument only when the IsEarthCentered property of the radar scenario, scenario,
is set to true.

Output Arguments
rec — Records of platform states during simulation
M-by-1 array of structures | radarScenarioRecording object

Records of platform states during the simulation, returned as an M-by-1 array of structures if the
RecordingFormat is specified as 'struct' (default) or a radarScenarioRecording object if the
RecordingFormat is specified as 'Recording'. M is the number of time steps in the simulation.

Each record contains the simulation time step and the recorded information at that time. The record
structure has at least two fields: SimulationTime and Poses. It can also have other optional fields
depending on the values of the 'IncludeEmitters' and 'IncludeSensors' name-value arguments.

The SimulationTime field contains the simulation time of the record. Poses is an N-by-1 array of
structures, where N is the number of platforms. Each structure in Poses contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector.

• If the coordinateSystem argument is
specified as 'Cartesian', then Position is
a three-element vector of Cartesian position
coordinates in meters.

• If the coordinateSystem argument is
specified as 'Geodetic', then Position is a
three-element vector of geodetic coordinates:
latitude in degrees, longitude in degrees, and
altitude in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. Units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].
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Field Description
Orientation Orientation of the platform with respect to the

local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are degrees per second.
The default value is [0 0 0].

The rec output contains these optional fields.

Field Description
Emissions Cell array of emissions (such as radarEmission

objects) in the scenario
EmitterConfigurations Structure array of emitter configurations for each

emitter
EmitterPlatformIDs Numeric array of platform IDs for each emitter
Detections Cell array of objectDetection objects

generated by the sensors in the scenario
SensorConfigurations Structure array of sensor configurations for each

sensor
SensorPlatformIDs Numeric array of platform IDs for each sensor
CoverageConfig Structure array of coverage configurations for

each sensor or emitter

Each emitter configuration structure contains these fields.

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.
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MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Each sensor configuration structure contains these fields.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as true or false.

IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Each coverage configuration structure contains these fields.

Field Description
Index A unique integer to distinguish sensors or

emitters. In practice, you can use SensorIndex
or EmitterIndex property of the sensor or
emitter objects, respectively.

LookAngle The current boresight angles of the sensor or
emitter, specified as one of these values:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.
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Field Description
FieldOfView The field of view of the sensor or emitter,

specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can scan only in the
azimuth direction, then specify the limits as a
1-by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, then specify the limits as a
2-by-2 matrix [minAz, maxAz; minEl, maxEl]
in degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the axes of the theater plot.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

Version History
Introduced in R2021a

See Also
radarScenario | restart | advance | platformPoses | coverageConfig |
radarScenarioRecording
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restart
Restart simulation of radar scenario

Syntax
restart(scenario)

Description
restart(scenario) restarts the simulation of the radar scenario, scenario, from the beginning
and sets the SimulationTime property of scenario to zero.

Examples

Restart Radar Scenario

Create a new radar scenario.

scenario = radarScenario;

Add a platform that follows a 25 m trajectory along the x-axis at 20 m/s.

plat = platform(scenario);
plat.Trajectory = waypointTrajectory('Waypoints',[0 0 0; 25 0 0], ...
    'TimeOfArrival',[0 25/20]);

Run the simulation to completion.

rec = record(scenario)

rec=13×1 struct array with fields:
    SimulationTime
    Poses

Display the scenario simulation time after the simulation is complete.

scenario.SimulationTime

ans = 1.3000

Restart the simulation and confirm that the scenario simulation time is reset to 0.

restart(scenario);
scenario.SimulationTime

ans = 0
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Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Version History
Introduced in R2021a

See Also
radarScenario | advance | record
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radarScenarioRecording
Return recording of radar scenario

Description
Use the radarScenarioRecording object to record a radar scenario.

Creation
You can create a radarScenarioRecording object in these ways:

• Create a recording of a radarScenario object by using the record function and specifying the
'RecordingFormat' name-value argument as 'Recording'.

• Create a recording from prerecorded radar scenario data by using the
radarScenarioRecording function described here.

Syntax
recording = radarScenarioRecording(recordedData)
recording = radarScenarioRecording(recordedData,Name,Value)

Description

recording = radarScenarioRecording(recordedData) creates a
radarScenarioRecording object using recorded data. The recordedData argument sets the
value of the RecordedData property.

recording = radarScenarioRecording(recordedData,Name,Value) sets one or both of the
CurrentTime and CurrentStep properties using name-value arguments. Enclose each property name
in quotes.

Properties
RecordedData — Recorded data stored in recording object
structure

Recorded data stored in the recording object, specified as a structure. You can set this property only
when creating the object. The fields of the structure are the same as the fields of the output of the
record function of the radarScenario object.

CurrentTime — Timestamp of latest read data
0 | nonnegative scalar

Timestamp of the latest read data, specified as a nonnegative scalar. When you call the read function
on the object, the function reads the recorded data set that has SimulationTime larger than the
CurrentTime.
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CurrentStep — Step index of latest read data
0 | nonnegative integer

Step index of the latest read data, specified as a nonnegative integer. When you call the read
function on the object, the function reads the data set with the next step index.

Object Functions
isDone Indicates end of radar scenario recording
read Read next step from radar scenario recording
reset Reset to beginning of radar scenario recording

Examples

Run Recorded Radar Scenario

Load prerecorded data from a radar scenario. The data is saved as a struct with the variable name
recordedData. Create a radarScenarioRecording object using the recorded data.

load recordedRadarScenarioData.mat
recording = radarScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits',["km" "km" "km"], ...
    'XLimits',[-50 50]*1e3,'YLimits',[-50 50]*1e3,'ZLimits',[-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10], ...
    'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15], ...
    'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
    % Step the reader to read the next frame of data
    [simTime,poses,covcon,dets,senconfig] = read(recording);
    scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
    plotPlatform(to,poses(1).Position);
    plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
    plotCoverage(cp,covcon);
    if ~isempty(dets)
        plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));
    end
    
    % Clear the buffer when a 360 degree scan is complete
    if senconfig.IsScanDone
        scanBuffer = {};
        dp.clearData;
    end
end
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Version History
Introduced in R2021a

See Also
radarScenario | record

 radarScenarioRecording
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isDone
Indicates end of radar scenario recording

Syntax
tf = isDone(recording)

Description
tf = isDone(recording) returns true if you have reached the end of data in the radar scenario
recording and false otherwise. Use isDone to check if the you have reached the end of the
recording before reading the next step in the recording.

Examples

Run Recorded Radar Scenario

Load prerecorded data from a radar scenario. The data is saved as a struct with the variable name
recordedData. Create a radarScenarioRecording object using the recorded data.

load recordedRadarScenarioData.mat
recording = radarScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits',["km" "km" "km"], ...
    'XLimits',[-50 50]*1e3,'YLimits',[-50 50]*1e3,'ZLimits',[-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10], ...
    'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15], ...
    'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
    % Step the reader to read the next frame of data
    [simTime,poses,covcon,dets,senconfig] = read(recording);
    scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
    plotPlatform(to,poses(1).Position);
    plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
    plotCoverage(cp,covcon);
    if ~isempty(dets)
        plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));
    end
    
    % Clear the buffer when a 360 degree scan is complete
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    if senconfig.IsScanDone
        scanBuffer = {};
        dp.clearData;
    end
end

Input Arguments
recording — Radar scenario recording
radarScenarioRecording object

Radar scenario recording, specified as a radarScenarioRecording object.

Output Arguments
tf — Recording has reached the end
true | false

Recording has reached the end, returned as true or false.
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Version History
Introduced in R2021a

See Also
radarScenarioRecording
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read
Read next step from radar scenario recording

Syntax
[simTime,poses,detections,sensorConfigs,sensorPlatformIDs,emissions,
emitterConfigs,emitterPlatformIDs] = read(recording)

Description
[simTime,poses,detections,sensorConfigs,sensorPlatformIDs,emissions,
emitterConfigs,emitterPlatformIDs] = read(recording) returns one recorded data set at
the simulation time, simTime, from a radar scenario recording.

Examples

Run Recorded Radar Scenario

Load prerecorded data from a radar scenario. The data is saved as a struct with the variable name
recordedData. Create a radarScenarioRecording object using the recorded data.

load recordedRadarScenarioData.mat
recording = radarScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits',["km" "km" "km"], ...
    'XLimits',[-50 50]*1e3,'YLimits',[-50 50]*1e3,'ZLimits',[-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10], ...
    'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15], ...
    'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
    % Step the reader to read the next frame of data
    [simTime,poses,covcon,dets,senconfig] = read(recording);
    scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
    plotPlatform(to,poses(1).Position);
    plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
    plotCoverage(cp,covcon);
    if ~isempty(dets)
        plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));
    end
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    % Clear the buffer when a 360 degree scan is complete
    if senconfig.IsScanDone
        scanBuffer = {};
        dp.clearData;
    end
end

Input Arguments
recording — Radar scenario recording
radarScenarioRecording object

Radar scenario recording, specified as a radarScenarioRecording object.

Output Arguments
simTime — Simulation time
nonnegative scalar
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Simulation time, returned as a nonnegative scalar.

poses — Poses of platforms
array of structures

Poses of platforms, returned as an array of structures. Each structure has these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector.

• If the coordinateSystem argument is
specified as 'Cartesian', then Position is
a three-element vector of Cartesian position
coordinates in meters.

• If the coordinateSystem argument is
specified as 'Geodetic', then Position is a
three-element vector of geodetic coordinates:
latitude in degrees, longitude in degrees, and
altitude in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. Units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are degrees per second.
The default value is [0 0 0].
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detections — Detections
cell array of objectDetection objects

Detections, returned as a cell array of objectDetection objects.

sensorConfigs — Sensor configurations
array of structures

Sensor configurations, returned as an array of structures. Each structure has these fields.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as true or false.

IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

sensorPlatformIDs — Platform IDs of sensors
array of nonnegative integers

Platform IDs of sensors, returned as an array of nonnegative integers.

emissions — Emissions
cell array of emission objects

Emissions, returned as a cell array of emission objects such as radarEmission objects.

emitterConfigs — Emitter configurations
array of structures

Emitter configurations, returned as an array of structures. Each structure has these fields.
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Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

emitterPlatformIDs — Platform IDs of emitters
array of nonnegative integers

Platform IDs of emitters, returned as an array of nonnegative integers.

Version History
Introduced in R2021a

See Also
radarScenarioRecording
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reset
Reset to beginning of radar scenario recording

Syntax
reset(recording)

Description
reset(recording) resets the radar scenario recording to the beginning of the recording.

Input Arguments
recording — Radar scenario recording
radarScenarioRecording object

Radar scenario recording, specified as a radarScenarioRecording object.

Version History
Introduced in R2021a

See Also
radarScenarioRecording
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quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')
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quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.
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Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'
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• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.7071   -0.0000    0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.8536    0.1464    0.5000
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Data Types: char | string

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
.\,ldivide Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
- Quaternion subtraction
* Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
.^,power Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
./,rdivide Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
.*,times Element-wise quaternion multiplication
' Transpose a quaternion array
- Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion
quat = quaternion()
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quat = 

  0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans = 
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
     1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector = 2x1 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k
     1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
     1.2,1.4];
B = [2.1,2.3; ...
     2.2,2.4];
C = [3.1,3.3; ...
     3.2,3.4];
D = [4.1,4.3; ...
     4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix = 2x2 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k     1.3 + 2.3i + 3.3j + 4.3k
     1.2 + 2.2i + 3.2j + 4.2k     1.4 + 2.4i + 3.4j + 4.4k
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Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) = 

     0.53767 +       0i +       0j +       0k     -2.2588 +       0i +       0j +       0k
      1.8339 +       0i +       0j +       0k     0.86217 +       0i +       0j +       0k

quatMultiDimArray(:,:,2) = 

     0.31877 +       0i +       0j +       0k    -0.43359 +       0i +       0j +       0k
     -1.3077 +       0i +       0j +       0k     0.34262 +       0i +       0j +       0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

quat = quaternion(quatParts)

quat = 3x1 quaternion array
     0.81472 + 0.91338i +  0.2785j + 0.96489k
     0.90579 + 0.63236i + 0.54688j + 0.15761k
     0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706
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Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
     0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

    0.3491    0.6283    0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
     0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

   20.0000   36.0000   20.0000
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Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0         0; ...
                  0 sqrt(3)/2 0.5; ...
                  0 -0.5      sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
     0.96593 + 0.25882i +       0j +       0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

    1.0000         0         0
         0    0.8660    0.5000
         0   -0.5000    0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

    1.5708         0    0.7854

 quaternion

4-119



Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

   90.0000         0   45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
     1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
     9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
     10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
     10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2
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Q1minusQ2 = quaternion
    -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
     8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
     6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
    -4 + 2i + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
    -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
    -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
   0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
      5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.
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isequal(Q1*5,5*Q1)

ans = logical
   1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
     1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
     1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
   1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector = 1x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix = 2x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
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    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
    -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped = 4x1 quaternion array
     1 + 2i + 3j + 4k
    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k
    -9 - 8i - 7j - 6k
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Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed = 2x2 quaternion array
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) = 

     1 + 2i + 3j + 4k     1 + 0i + 0j + 0k
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k

qMatPermute(:,:,2) = 

     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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radarTracker
Multi-target tracker using GNN assignment

Description
The radarTracker System object initializes, confirms, predicts, corrects, and deletes the tracks of
moving objects. Inputs to the radar tracker are detection reports generated as an objectDetection
object by radar sensors. The radar tracker accepts detections from multiple sensors and assigns them
to tracks using a global nearest neighbor (GNN) criterion. Each detection is assigned to a separate
track. If the detection cannot be assigned to any track, based on the AssignmentThreshold
property, the tracker creates a new track. The tracks are returned in a structure array.

A new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection is a known classification (the ObjectClassID field of
the returned track is nonzero), that track can be confirmed immediately. For details on the radar
tracker properties used to confirm tracks, see “Algorithms” on page 4-135.

When a track is confirmed, the radar tracker considers that track to represent a physical object. If
detections are not added to the track within a specifiable number of updates, the track is deleted.

The tracker also estimates the state vector and state vector covariance matrix for each track using a
Kalman filter. These state vectors are used to predict a track's location in each frame and determine
the likelihood of each detection being assigned to each track.

To track objects using a radar tracker:

1 Create the radarTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
tracker = radarTracker
tracker = radarTracker(Name,Value)

Description

tracker = radarTracker creates a radarTracker System object with default property values.

tracker = radarTracker(Name,Value) sets properties for the radar tracker using one or more
name-value pairs. For example,
radarTracker('FilterInitializationFcn',@initcvukf,'MaxNumTracks',100) creates a
radar tracker that uses a constant-velocity, unscented Kalman filter and maintains a maximum of 100
tracks. Enclose each property name in quotes.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system.
Example: 1

FilterInitializationFcn — Kalman filter initialization function
@initcvkf (default) | function handle | character vector | string scalar

Kalman filter initialization function, specified as a function handle or as a character vector or string
scalar of the name of a valid Kalman filter initialization function.

The toolbox supplies several initialization functions that you can use to specify
FilterInitializationFcn.

Initialization Function Function Definition
initcvekf Initialize constant-velocity extended Kalman filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turnrate extended Kalman

filter.
initctukf Initialize constant-turnrate unscented Kalman

filter.

You can also write your own initialization function. The input to this function must be a detection
report created by objectDetection. The output of this function must be a Kalman filter object:
trackingKF, trackingEKF, or trackingUKF. To guide you in writing this function, you can
examine the details of the supplied functions from within MATLAB. For example:

type initcvkf

Data Types: function_handle | char | string
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AssignmentThreshold — Detection assignment threshold
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Detection assignment threshold (or gating threshold), specified as a positive scalar or an 1-by-2
vector of [C1,C2], where C1≤C2. If specified as a scalar, the specified value, val, will be expanded to
[val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if their accurate normalized distance is less than C1. See the distance function used with
tracking filters (for example, trackingEKF) for an explanation of the distance calculation.

Tips:

• Increase the value of C2 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease it if there are detections that are assigned to tracks they should not be assigned to (too
far away).

MaxNumTracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
When you specify detections as input to the radar tracker, MaxNumSensors must be greater than or
equal to the highest SensorIndex value in the detections cell array of objectDetection objects
used to update the radar tracker. This property determines how many sets of ObjectAttributes
fields each output track can have.
Data Types: double

MaxNumDetections — Maximum number of detections
Inf (default) | positive integer

Maximum number of detections that the tracker can take as inputs, specified as a positive integer.
Data Types: single | double

Out-of-sequence measurements handling — Out-of-sequence measurements handling

Terminate (default) | neglect

Out-of-sequence measurements handling, specified as Terminate or neglect. Each detection has a
timestamp associated with it, td, and the tracker block has it own timestamp, tt, which is updated in
each invocation. The tracker block considers a measurement as an OOSM if td < tt.

When the parameter is specified as:
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• Terminate — The block stops running when it encounters any out-of-sequence measurements.
• Neglect — The block neglects any out-of-sequence measurements and continue to run.

ConfirmationThreshold — Threshold for track confirmation
[2 3] (default) | two-element vector of non-decreasing positive integers

Threshold for track confirmation, specified as a two-element vector of non-decreasing positive
integers, [M N], where M is less than or equal to N. A track is confirmed if it receives at least M
detections in the last N updates.

• When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.

• When setting N, consider the number of times you want the tracker to update before it makes a
confirmation decision. For example, if a tracker updates every 0.05 seconds, and you allow 0.5
seconds to make a confirmation decision, set N = 10.

Example: [3 5]
Data Types: double

DeletionThreshold — Threshold for track deletion
[5 5] (default) | two-element vector of positive non-decreasing integers

Threshold for track deletion, specified as a two-element vector of positive non-decreasing integers [P
Q], where P is less than or equal to Q. If a confirmed track is not assigned to any detection P times in
the last Q tracker updates, then the track is deleted.

• Decrease Q (or increase P) if tracks should be deleted earlier.
• Increase Q (or decrease P) if tracks should be kept for a longer time before deletion.

Example: [3 5]
Data Types: single | double

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix as input to the radarTracker System object, specified as false or true.
Data Types: logical

HasDetectableTrackIDsInput — Enable input of detectable track IDs
false (default) | true

Enable the input of detectable track IDs at each object update, specified as false or true. Set this
property to true if you want to provide a list of detectable track IDs. This list tells the tracker of all
tracks that the sensors are expected to detect and, optionally, the probability of detection for each
track.
Data Types: logical

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array
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Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

NumTracks — Number of tracks maintained by radar tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the radar tracker, specified as a nonnegative integer.
Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, specified as a nonnegative integer. The IsConfirmed fields of the
output track structures indicate which tracks are confirmed.
Data Types: double

Usage

Syntax
confirmedTracks = tracker(detections,time)
[confirmedTracks,tentativeTracks] = tracker(detections,time)
[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time)
[ ___ ] = tracker(detections,time,costMatrix)
[ ___ ] = tracker( ___ ,detectableTrackIDs)

Description

confirmedTracks = tracker(detections,time) creates, updates, and deletes tracks in the
radar tracker and returns details about the confirmed tracks. Updates are based on the specified list
of detections, and all tracks are updated to the specified time. Each element in the returned
confirmedTracks corresponds to a single track.

[confirmedTracks,tentativeTracks] = tracker(detections,time) also returns
tentativeTracks containing details about the tentative tracks.

[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time) also
returns allTracks containing details about all the confirmed and tentative tracks. The tracks are
returned in the order by which the tracker internally maintains them. You can use this output to help
you calculate the cost matrix, an optional input argument.

[ ___ ] = tracker(detections,time,costMatrix) specifies a cost matrix, returning any of the
outputs from preceding syntaxes.
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To specify a cost matrix, set the HasCostMatrixInput property of the tracker to true.

[ ___ ] = tracker( ___ ,detectableTrackIDs) also specifies a list of expected detectable
tracks given by detectableTrackIDs. This argument can be used with any of the previous input
syntaxes.

To enable this syntax, set the HasDetectableTrackIDsInput property to true.

Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current time of update, time, and
greater than the previous time value used to update the multi-object tracker.

time — Time of update
real scalar

Time of update, specified as a real scalar. The tracker updates all tracks to this time. Units are in
seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the multi-
object tracker.
Data Types: double

costMatrix — Cost matrix
NT-by-ND matrix

Cost matrix, specified as a real-valued NT-by-ND matrix, where NT is the number of existing tracks,
and ND is the number of current detections. The rows of the cost matrix correspond to the existing
tracks. The columns correspond to the detections. Tracks are ordered as they appear in the list of
tracks in the allTracks output argument of the previous update to the multi-object tracker.

In the first update to the multi-object tracker, or when the tracker has no previous tracks, assign the
cost matrix a size of [0, ND]. The cost must be calculated so that lower costs indicate a higher
likelihood that the tracker assigns a detection to a track. To prevent certain detections from being
assigned to certain tracks, use Inf.
Dependencies

To enable specification of the cost matrix when updating tracks, set the HasCostMatrixInput
property of the tracker to true
Data Types: double

detectableTrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column contains the detection probability for
the track. The detection probability is either reported by a sensor or, if not reported, obtained from
the DetectionProbability property.
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Tracks whose identifiers are not included in detectableTrackIDs are considered as undetectable.
The track deletion logic does not count the lack of detection as a 'missed detection' for track deletion
purposes.

Dependencies

To enable this input argument, set the detectableTrackIDs property to true.
Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to radarTracker
deleteTrack Delete existing track
getTrackFilterProperties Obtain values of filter properties from radarTracker
initializeTrack Initialize new track in tracker
confirmTrack Confirm tentative track
predictTracksToTime Predict tracks to a time stamp
setTrackFilterProperties Sets values of track filter properties

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Track Single Object Using Radar Tracker

Create a radarTracker System object™ using the default filter initialization function for a 3-D
constant-velocity model. For this motion model, the state vector is [x;vx;y;vy;z;vz].

tracker = radarTracker('ConfirmationThreshold',[4 5], ...
    'DeletionThreshold',10);

Create a detection by specifying an objectDetection object. To use this detection with the radar
tracker, enclose the detection in a cell array.

dettime = 1.0;
det = { ...
    objectDetection(dettime,[10; -1; 1], ...
    'SensorIndex',1, ...
    'ObjectAttributes',{'ExampleObject',1}) ...
    };

Update the radar tracker with this detection. The time at which you update the tracker must be
greater than or equal to the time at which the object was detected.

updatetime = 1.25;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

Create another detection of the same object and update the tracker. The tracker maintains only one
track.

dettime = 1.5;
det = { ...
    objectDetection(dettime,[10.1; -1.1; 1.2], ...
    'SensorIndex',1, ...
    'ObjectAttributes',{'ExampleObject',1}) ...
    };
updatetime = 1.75;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

4 Objects

4-132



Determine whether the track has been verified by checking the number of confirmed tracks.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Examine the position and velocity of the tracked object. Because the track has not been confirmed,
get the position and velocity from the tentativeTracks structure.

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
velocitySelector = [0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 1];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×3

   10.1426   -1.1426    1.2852

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×3

    0.1852   -0.1852    0.3705

Confirm and Delete Track in Radar Tracker

Create a sequence of detections of a moving object. Track the detections using a radarTracker
System object™. Observe how the tracks switch from tentative to confirmed and then to deleted.

Create a radar tracker using the initcakf filter initialization function. The tracker models 2-D
constant-acceleration motion. For this motion model, the state vector is [x;vx;ax;y;vy;ay].

tracker = radarTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationThreshold',[3 4],'DeletionThreshold',[6 6]);

Create a sequence of detections of a moving target using objectDetection. To use these detections
with the radarTracker, enclose the detections in a cell array.

dt = 0.1;
pos = [10; -1];
vel = [10; 5];
for detno = 1:2
    time = (detno-1)*dt;
    det = { ...
        objectDetection(time,pos, ...
        'SensorIndex',1, ...
        'ObjectAttributes',{'ExampleObject',1}) ...
        };
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end

Verify that the track has not been confirmed yet by checking the number of confirmed tracks.
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numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Because the track is not confirmed, get the position and velocity from the tentativeTracks
structure.

positionSelector = [1 0 0 0 0 0; 0 0 0 1 0 0];
velocitySelector = [0 1 0 0 0 0; 0 0 0 0 1 0];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×2

   10.6669   -0.6665

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×2

    3.3473    1.6737

Add more detections to confirm the track.

for detno = 3:5
    time = (detno-1)*dt;
    det = { ...
        objectDetection(time,pos, ...
        'SensorIndex',1, ...
        'ObjectAttributes',{'ExampleObject',1}) ...
        };
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end

Verify that the track has been confirmed, and display the position and velocity vectors for that track.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 1

position = getTrackPositions(confirmedTracks,positionSelector)

position = 1×2

   13.8417    0.9208

velocity = getTrackVelocities(confirmedTracks,velocitySelector)

velocity = 1×2

    9.4670    4.7335

Let the tracker run but do not add new detections. The existing track is deleted.

for detno = 6:20
    time = (detno-1)*dt;
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    det = {};
    [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
    pos = pos + vel*dt;
    meas = pos;
end

Verify that the tracker has no tentative or confirmed tracks.

isempty(allTracks)

ans = logical
   1

Algorithms
When you pass detections into a radar tracker, the System object:

• Attempts to assign the input detections to existing tracks, based on the AssignmentThreshold
property of the multi-object tracker.

• Creates new tracks from unassigned detections.
• Updates already assigned tracks and possibly confirms them, based on the

ConfirmationThreshold property of the tracker.
• Deletes tracks that have no assigned detections, based on the DeletionThreshold property of

the tracker.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with the tracker must have fields with the same sizes and types.
• The objectDetection structure must have an ObjectAttributes field. The value of this field

can be an empty structure, a structure, or a cell containing a structure. The structure for all
detections must have the same fields and the values in these fields must always have the same
size and type. The form of the structure cannot change during simulation.

• The first update to the tracker must contain at least one detection.
• When the filter initialization function specified in the tracker returns a trackingEKF or

trackingUKF object and when the MaxNuMDetections property is specified as a finite integer,
the tracker supports non-dynamic memory allocation code generation.
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See Also
Functions
getTrackPositions | getTrackVelocities

Objects
objectDetection | trackingEKF | trackingKF | trackingUKF
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deleteTrack
Delete existing track

Syntax
deleted = deleteTrack(tracker,trackID)

Description
deleted = deleteTrack(tracker,trackID) deletes the track specified by trackID in the
tracker.

Examples

Delete track in radarTracker

Create a track using detections in a radarTracker.

tracker = radarTracker 

tracker = 
  radarTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvekf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 100
              MaxNumDetections: Inf
                 MaxNumSensors: 20

                  OOSMHandling: 'Terminate'

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 0
            NumConfirmedTracks: 0

detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
tracker(detection1,0);
tracker(detection2,1)

ans = 
  objectTrack with properties:
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                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 0
                  UpdateTime: 1
                         Age: 2
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: [1 1 0 0 0]
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Delete the first track.

deleted1 = deleteTrack(tracker,1)

deleted1 = logical
   1

Uncomment the following to delete a nonexistent track. A warning will be issued.

% deleted2 = deleteTrack(tracker,2)

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer.
Example: 21

Output Arguments
deleted — Indicate if track was successfully deleted
1 | 0

Indicate if the track was successfully deleted or not, returned as 1 or 0. If the track specified by the
trackID input existed and was successfully deleted, it returns as 1. If the track did not exist, a
warning is issued and it returns as 0.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarTracker | initializeTrack
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getTrackFilterProperties
Obtain values of filter properties from radarTracker

Syntax
values = getTrackFilterProperties(tracker,trackID,property)
values = getTrackFilterProperties(tracker,trackID,property1,...,propertyN)

Description
values = getTrackFilterProperties(tracker,trackID,property) returns the tracking
filter property values for a specific track within a multi-object tracker. trackID is the ID of that
specific track.

values = getTrackFilterProperties(tracker,trackID,property1,...,propertyN)
returns multiple property values. You can specify the properties in any order.

Examples

Display and Set Tracking Filter Properties in Radar Tracker

Create a radarTracker System object™ using a constant-acceleration, linear Kalman filter for all
tracks.

tracker = radarTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationThreshold',[4 5],'DeletionThreshold',[9 9]);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

tracks=2×1 object
  2x1 objectTrack array with properties:

    TrackID
    BranchID
    SourceIndex
    UpdateTime
    Age
    State
    StateCovariance
    StateParameters
    ObjectClassID
    ObjectClassProbabilities
    TrackLogic
    TrackLogicState
    IsConfirmed
    IsCoasted
    IsSelfReported
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    ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 2×2

     1     0
     0     1

Set new values for this property by doubling the process noise for the first track. Display the updated
process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 2×2

     2     0
     0     2

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to return values for, specified as a character vector or string scalar.
property must be a valid property of the tracking filter used by tracker. Valid tracking filters are
trackingKF, trackingEKF, and trackingUKF.

You can specify additional properties in any order.
Example: 'MeasurementNoise','ProcessNoise'
Data Types: char | string

Output Arguments
values — Tracking filter property values
cell array
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Tracking filter property values, returned as a cell array. Each element in the cell array corresponds to
the values of a specified property. getTrackFilterProperties returns the values in the same
order in which you specified the corresponding properties.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
radarTracker | trackingKF | trackingEKF | trackingUKF

Functions
setTrackFilterProperties
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initializeTrack
Initialize new track in tracker

Syntax
trackID = initializeTrack(tracker,track)
trackID = initializeTrack(tracker,track,filter)

Description
trackID = initializeTrack(tracker,track) initializes a new track in the tracker. The
tracker must be updated at least once before initializing a track. If the track is initialized successfully,
the tracker assigns the output trackID to the track, sets the UpdateTime of the track equal to the
last step time in the tracker, and synchronizes the data in the input track to the initialized track.

A warning is issued if the tracker already maintains the maximum number of tracks specified by
itsMaxNumTracks property. In this case, the trackID is returned as 0, which indicates a failure to
initialize the track.

trackID = initializeTrack(tracker,track,filter) initializes a new track in the tracker,
using a specified tracking filter, filter.

Examples

Initialize Track in Radar Tracker

Create a radar tracker and update the tracker with detections at t = 0 and t = 1second.

tracker = radarTracker

tracker = 
  radarTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvekf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 100
              MaxNumDetections: Inf
                 MaxNumSensors: 20

                  OOSMHandling: 'Terminate'

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 0
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            NumConfirmedTracks: 0

detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
tracker(detection1,0);
currentTrack = tracker(detection2,1);

As seen from the NumTracks property, the tracker now maintains one track.

tracker

tracker = 
  radarTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvekf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 100
              MaxNumDetections: Inf
                 MaxNumSensors: 20

                  OOSMHandling: 'Terminate'

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 1
            NumConfirmedTracks: 1

Create a new track using the objectTrack object.

newTrack = objectTrack()

newTrack = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 1
                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: 1
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]
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Initialize a track in the GNN tracker object using the newly created track.

trackID = initializeTrack(tracker,newTrack)

trackID = uint32
    2

As seen from the NumTracks property, the tracker now maintains two tracks.

tracker

tracker = 
  radarTracker with properties:

                  TrackerIndex: 0
       FilterInitializationFcn: 'initcvekf'
           AssignmentThreshold: [30 Inf]
                  MaxNumTracks: 100
              MaxNumDetections: Inf
                 MaxNumSensors: 20

                  OOSMHandling: 'Terminate'

         ConfirmationThreshold: [2 3]
             DeletionThreshold: [5 5]

            HasCostMatrixInput: false
    HasDetectableTrackIDsInput: false
               StateParameters: [1x1 struct]

                     NumTracks: 2
            NumConfirmedTracks: 2

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

track — New track to be initialized
objectTrack object | structure

New track to be initialized, specified as an objectTrack object or a structure. If specified as a
structure, the name, variable type, and data size of the fields of the structure must be the same as the
name, variable type, and data size of the corresponding properties of the objectTrack object.
Data Types: struct | object

filter — Filter object
trackingKF | trackingEKF | trackingUKF

Filter object, specified as a trackingKF, trackingEKF, or trackingUKF object.
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Output Arguments
trackID — Track identifier
nonnegative integer

Track identifier, returned as a nonnegative integer. trackID is returned as 0 if the track is not
initialized successfully.
Example: 2

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarTracker | deleteTrack
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predictTracksToTime
Predict tracks to a time stamp

Syntax
predictedtracks = predictTracksToTime(tracker,trackID,time)
predictedtracks = predictTracksToTime(tracker,category,time)
predictedtracks = predictTracksToTime(tracker,category,
time,'WithCovariance',tf)

Description
predictedtracks = predictTracksToTime(tracker,trackID,time) returns the predicted
tracks, predictedtracks, of the tracker, at the specified time, time. The tracker or fuser must be
updated at least once before calling this object function. Use isLocked(tracker) to test whether
the tracker or fuser has been updated.

Note This function only outputs the predicted tracks and does not update the internal track states of
the tracker.

predictedtracks = predictTracksToTime(tracker,category,time) returns all predicted
tracks for a specified category, category, of tracked objects.

predictedtracks = predictTracksToTime(tracker,category,
time,'WithCovariance',tf) also allows you to specify whether to predict the state covariance of
each track or not by setting the tf flag to true or false. Predicting the covariance slows down the
prediction process and increases the computation cost, but it provides the predicted track state
covariance in addition to the predicted state. The default is false.

Examples

Predict Track State in radarTracker

Create a track from a detection at time t = 0 second.

tracker = radarTracker;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);

Predict the track to t = 1second.

predictedtracks = predictTracksToTime(tracker,'all',1)

predictedtracks = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
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                 SourceIndex: 0
                  UpdateTime: 1
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: [1 0 0 0 0]
                 IsConfirmed: 0
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer. Only the track specified by the trackID is predicted
in the tracker.
Example: 15
Data Types: single | double

time — Prediction time
scalar

Prediction time, specified as a scalar. The states of tracks are predicted to this time. The time must be
greater than the time input to the tracker in the previous track update. Units are in seconds.
Example: 1.0
Data Types: single | double

category — Track categories
'all' | 'confirmed' | 'tentative'

Track categories, specified as 'all', 'confirmed', or 'tentative'. You can choose to predict all
tracks, only confirmed tracks, or only tentative tracks.
Data Types: char

Output Arguments
predictedtracks — List of predicted track or branch states
array of objectTrack objects | array of structures
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List of tracks or branches, returned as:

• An array of objectTrack objects in the MATLAB interpreted mode.
• An array of structures in the code generation mode. The field names of the structures are the

same as the names of properties in objectTrack.

Data Types: struct | object

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarTracker
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setTrackFilterProperties
Sets values of track filter properties

Syntax
setTrackFilterProperties(tracker,trackID,property,value)
setTrackFilterProperties(tracker,
trackID,property1,value1,...,propertyN,valueN)

Description
setTrackFilterProperties(tracker,trackID,property,value) sets the specified tracking
filter property to the indicated value for a specific track within the radar tracker. trackID is the ID of
that specific track.

setTrackFilterProperties(tracker,
trackID,property1,value1,...,propertyN,valueN) sets multiple property values. You can
specify the property-value pairs in any order.

Examples

Display and Set Tracking Filter Properties in Radar Tracker

Create a radarTracker System object™ using a constant-acceleration, linear Kalman filter for all
tracks.

tracker = radarTracker('FilterInitializationFcn',@initcakf, ...
    'ConfirmationThreshold',[4 5],'DeletionThreshold',[9 9]);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

tracks=2×1 object
  2x1 objectTrack array with properties:

    TrackID
    BranchID
    SourceIndex
    UpdateTime
    Age
    State
    StateCovariance
    StateParameters
    ObjectClassID
    ObjectClassProbabilities
    TrackLogic
    TrackLogicState
    IsConfirmed
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    IsCoasted
    IsSelfReported
    ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 2×2

     1     0
     0     1

Set new values for this property by doubling the process noise for the first track. Display the updated
process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 2×2

     2     0
     0     2

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to set values for, specified as a character vector or string scalar. property
must be a valid property of the tracking filter used by tracker. Valid tracking filters are
trackingKF, trackingEKF, and trackingUKF.

You can specify additional property-value pairs in any order.
Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant Acceleration'
Data Types: char | string

value — Value to set tracking filter property to
valid MATLAB expression
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Value to set the corresponding tracking filter property to, specified as a MATLAB expression. value
must be a valid value of the corresponding property.

You can specify additional property-value pairs in any order.
Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant Acceleration'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingKF | trackingEKF | trackingUKF

Functions
getTrackFilterProperties
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confirmTrack
Confirm tentative track

Syntax
confirmed = confirmTrack(tracker,trackID)

Description
confirmed = confirmTrack(tracker,trackID) confirms a tentative track with the specified
track ID in the tracker.

Examples

Confirm Track

Create a radarTracker System object.

tracker = radarTracker;

Create one objectDetection object and use it to update the tracker.

detection1 = objectDetection(0,[1;1;1]);
[cofirmedTracks,tentativeTracks]=tracker(detection1,0)

cofirmedTracks = 

  0x1 objectTrack array with properties:

    TrackID
    BranchID
    SourceIndex
    UpdateTime
    Age
    State
    StateCovariance
    StateParameters
    ObjectClassID
    ObjectClassProbabilities
    TrackLogic
    TrackLogicState
    IsConfirmed
    IsCoasted
    IsSelfReported
    ObjectAttributes

tentativeTracks = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
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                 SourceIndex: 0
                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: [1 0 0 0 0]
                 IsConfirmed: 0
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

From the results, the tracker does not maintain any confirmed tracks and only maintains one
tentative track.

Confirm the tentative track using the confirmTrack object function.

confirmed = confirmTrack(tracker,1)

confirmed = logical
   1

Input Arguments
tracker — radar tracker
radarTracker object

Radar tracker, specified as a radarTracker object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer.
Example: 21

Output Arguments
confirmed — Indicate if track is successfully confirmed
true or logical 1 | false or logical 0

Indicate if the track is successfully confirmed, returned as a logical 1 (true) or 0 (false). If the
tentative track specified by the trackID input exits, the function confirms the track and returns 1. If
the tentative track does not exist, the function issues a warning and returns 0.

Version History
Introduced in R2022b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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clusterDBSCAN

Density-based algorithm for clustering data

Description
clusterDBSCAN clusters data points belonging to a P-dimensional feature space using the density-
based spatial clustering of applications with noise (DBSCAN) algorithm. The clustering algorithm
assigns points that are close to each other in feature space to a single cluster. For example, a radar
system can return multiple detections of an extended target that are closely spaced in range, angle,
and Doppler. clusterDBSCAN assigns these detections to a single detection.

• The DBSCAN algorithm assumes that clusters are dense regions in data space separated by
regions of lower density and that all dense regions have similar densities.

• To measure density at a point, the algorithm counts the number of data points in a neighborhood
of the point. A neighborhood is a P-dimensional ellipse (hyperellipse) in the feature space. The
radii of the ellipse are defined by the P-vector ε. ε can be a scalar, in which case, the hyperellipse
becomes a hypersphere. Distances between points in feature space are calculated using the
Euclidean distance metric. The neighborhood is called an ε-neighborhood. The value of ε is
defined by the Epsilon property. Epsilon can either be a scalar or P-vector:

• A vector is used when different dimensions in feature space have different units.
• A scalar applies the same value to all dimensions.

• Clustering starts by finding all core points. If a point has a sufficient number of points in its ε-
neighborhood, the point is called a core point. The minimum number of points required for a point
to become a core point is set by the MinNumPoints property.

• The remaining points in the ε-neighborhood of a core point can be core points themselves. If not,
they are border points. All points in the ε-neighborhood are called directly density reachable from
the core point.

• If the ε-neighborhood of a core point contains other core points, the points in the ε-neighborhoods
of all the core points merge together to form a union of ε-neighborhoods. This process continues
until no more core points can be added.

• All points in the union of ε-neighborhoods are density reachable from the first core point. In
fact, all points in the union are density reachable from all core points in the union.

• All points in the union of ε-neighborhoods are also termed density connected even though
border points are not necessarily reachable from each other. A cluster is a maximal set of
density-connected points and can have an arbitrary shape.

• Points that are not core or border points are noise points. They do not belong to any cluster.
• The clusterDBSCAN object can estimate ε using a k-nearest neighbor search, or you can specify

values. To let the object estimate ε, set the EpsilonSource property to 'Auto'.
• The clusterDBSCAN object can disambiguate data containing ambiguities. Range and Doppler

are examples of possibly ambiguous data. Set EnableDisambiguation property to true to
disambiguate data.

To cluster detections:
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1 Create the clusterDBSCAN object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
clusterer = clusterDBSCAN
clusterer = clusterDBSCAN(Name,Value)

Description

clusterer = clusterDBSCAN creates a clusterDBSCAN object, clusterer, object with default
property values.

“Effect of Epsilon on Clustering” on page 4-164

clusterer = clusterDBSCAN(Name,Value) creates a clusterDBSCAN object, clusterer, with
each specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Any unspecified properties take
default values. For example,

clusterer = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

creates a clusterer with the EnableDisambiguation property set to true and the
AmbiguousDimension set to [1,2].

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

EpsilonSource — Source of epsilon
'Property' (default) | 'Auto'

Source of epsilon values defining an ε-neighborhood, specified as 'Property' or 'Auto'.

• When you set the EpsilonSource property to 'Property', ε is obtained from the Epsilon
property.

• When you set the EpsilonSource property to 'Auto', ε is estimated automatically using a k-
nearest neighbor (k-NN) search over a range of k values from kmin to kmax.

kmin = MinNumPoints− 1
kmax = MaxNumPoints− 1
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The subtraction of one is needed because the number of neighbors of a point does not include the
point itself, whereas MinNumPoints and MaxNumPoints refer to the total number of points in a
neighborhood.

Data Types: char | string

Epsilon — Radius for neighborhood search
10.0 (default) | positive scalar | positive, real-valued 1-by-P row vector

Radius for a neighborhood search, specified as a positive scalar or positive, real-valued 1-by-P row
vector. P is the number of features in the input data, X.

Epsilon defines the radii of an ellipse around any point to create an ε-neighborhood. When Epsilon
is a scalar, the same radius applies to all feature dimensions. You can apply different epsilon values
for different features by specifying a positive, real-valued 1-by-P row vector. A row vector creates a
multidimensional ellipse (hyperellipse) search area, useful when the data features have different
physical meanings, such as range and Doppler. See “Estimate Epsilon” on page 4-171 for more
information about this property.

You can use the clusterDBSCAN.estimateEpsilon or clusterDBSCAN.discoverClusters
object functions to help estimate a scalar value for epsilon.
Example: [11 21.0]

Tunable: Yes

Dependencies

To enable this property, set the EpsilonSource property to 'Property'.
Data Types: double

MinNumPoints — Minimum number of points required for cluster
3 (default) | positive integer

Minimum number of points in an ε-neighborhood of a point for that point to become a core point,
specified as a positive integer. See “Choosing the Minimum Number of Points” on page 4-174 for
more information. When the object automatically estimates epsilon using a k-NN search, the starting
value of k (kmin) is MinNumPoints - 1.
Example: 5
Data Types: double

MaxNumPoints — Set end of k-NN search range
10 (default) | positive integer

Set end of k-NN search range, specified as a positive integer. When the object automatically
estimates epsilon using a k-NN search, the ending value of k (kmax) is MaxNumPoints - 1.
Example: 13

Dependencies

To enable this property, set the EpsilonSource property to 'Auto'.
Data Types: double
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EpsilonHistoryLength — Length of cluster threshold epsilon history
10 (default) | positive integer

Length of the stored epsilon history, specified as a positive integer. When set to one, the history is
memory-less, meaning that each epsilon estimate is immediately used and no moving-average
smoothing occurs. When greater than one, epsilon is averaged over the history length specified.
Example: 5
Dependencies

To enable this property, set the EpsilonSource property to 'Auto'.
Data Types: double

EnableDisambiguation — Enable disambiguation of dimensions
false (default) | true

Switch to enable disambiguation of dimensions, specified as false or true. When true, clustering
can occur across boundaries defined by the input amblims at execution. Use the
AmbiguousDimensions property to specify the column indices of X in which ambiguities can occur.
You can disambiguate up to two dimensions. Turning on disambiguation is not recommended for large
data sets.
Data Types: logical

AmbiguousDimension — Indices of ambiguous dimensions
1 (default) | positive integer | 1-by-2 vector of positive integers

Indices of ambiguous dimensions, specified as a positive integer or 1-by-2 vector of positive integers.
This property specifies the column of X in which to apply disambiguation. A positive integer indicates
a single ambiguous dimension in the input data matrix X. A 1-by-2 row vector specifies two
ambiguous dimensions. The size and order of AmbiguousDimension must be consistent with the
object input amblims.
Example: [3 4]
Dependencies

To enable this property, set the EnableDisambiguation property to true.
Data Types: double

Usage

Syntax
idx = clusterer(X)
[idx,clusterids] = clusterer(X)
[ ___ ] = clusterer(X,amblims)
[ ___ ] = clusterer(X,update)
[ ___ ] = clusterer(X,amblims,update)

Description

idx = clusterer(X) clusters the points in the input data, X. idx contains a list of IDs identifying
the cluster to which each row of X belongs. Noise points are assigned as '–1'.

 clusterDBSCAN

4-159



[idx,clusterids] = clusterer(X) also returns an alternate set of cluster IDs, clusterids,
for use in the phased.RangeEstimator and phased.DopplerEstimator objects. clusterids
assigns a unique ID to each noise point.

[ ___ ] = clusterer(X,amblims) also specifies the minimum and maximum ambiguity limits,
amblims, to apply to the data.

To enable this syntax, set the EnableDisambiguation property to true.

[ ___ ] = clusterer(X,update) automatically estimates epsilon from the input data matrix, X,
when update is set to true. The estimation uses a k-NN search to create a set of search curves. For
more information, see “Estimate Epsilon” on page 4-171. The estimate is an average of the L most
recent Epsilon values where L is specified in EpsilonHistoryLength

To enable this syntax, set the EpsilonSource property to 'Auto', optionally set the MaxNumPoints
property, and also optionally set the EpsilonHistoryLength property.

[ ___ ] = clusterer(X,amblims,update) sets ambiguity limits and estimates epsilon when
update is set to true. To enable this syntax, set EnableDisambiguation to true and set
EpsilonSource to 'Auto'.

Input Arguments

X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

amblims — Ambiguity limits
1-by-2 real-valued vector (default) | 2-by-2 real-valued matrix

Ambiguity limits, specified as a real-valued 1-by-2 vector or real-valued 2-by-2 matrix. For a single
ambiguity dimension, specify the limits as a 1-by-2 vector
[MinAmbiguityLimitDimension1,MaxAmbiguityLimitDimension1]. For two ambiguity dimensions,
specify the limits as a 2-by-2 matrix [MinAmbiguityLimitDimension1, MaxAmbiguityLimitDimension1;
MinAmbiguityLimitDimension2,MaxAmbiguityLimitDimension2]. Ambiguity limits allow clustering
across boundaries to ensure that ambiguous detections are appropriately clustered.

The ambiguous columns of X are defined in the AmbiguousDimension property. amblims defines
the minimum and maximum ambiguity limits in the same units as the data in the
AmbiguousDimension columns of X.
Example: [0 20; -40 40]

Dependencies

To enable this argument, set EnableDisambiguation to true and set the AmbiguousDimension
property.
Data Types: double

4 Objects

4-160



update — Enable automatic update of epsilon
false (default) | true

Enable automatic update of the epsilon estimate, specified as false or true.

• When true, the epsilon threshold is first estimated as the average of the knees of k-NN search
curves. The estimate is then added to a buffer whose length L is set in the
EpsilonHistoryLength property. The final epsilon that is used is calculated as the average of
the L-length epsilon history buffer. If EpsilonHistoryLength is set to 1, the estimate is
memory-less. Memory-less means that each epsilon estimate is immediately used and no moving-
average smoothing occurs.

• When false, a previous epsilon estimate is used. Estimating epsilon is computationally intensive
and not recommended for large data sets.

Dependencies

To enable this argument, set the EpsilonSource property to 'Auto' and specify the
MaxNumPoints property.
Data Types: double

Output Arguments

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, returned as an integer-valued N-by-1 column vector. idx represents the clustering
results of the DBSCAN algorithm. Positive idx values correspond to clusters that satisfy the DBSCAN
clustering criteria. A value of '-1' indicates a DBSCAN noise point.
Data Types: double

clusterids — Alternative cluster IDs
1-by-N integer-valued row vector

Alternative cluster IDs, returned as a 1-by-N row vector of positive integers. Each value is a unique
identifier indicating a hypothetical target cluster. This argument contains unique positive cluster IDs
for all points including noise. In contrast, the idx output argument labels noise points with '–1'. Use
clusterids as the input to Phased Array System Toolbox objects such as
phased.RangeEstimator and phased.DopplerEstimator.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to clusterDBSCAN
clusterDBSCAN.discoverClusters Find cluster hierarchy in data
clusterDBSCAN.estimateEpsilon Estimate neighborhood clustering threshold
clusterDBSCAN.plot Plot clusters
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume the
maximum unambiguous range is 20 m and the unambiguous Doppler span extends from −30 Hz to 30
Hz. Data for this example is contained in the dataClusterDBSCAN.mat file. The first column of the
data matrix represents range, and the second column represents Doppler.

The input data contains the following extended targets and false alarms:

• an unambiguous target located at 10, 15
• an ambiguous target in Doppler located at 10, − 30
• an ambiguous target in range located at 20, 15
• an ambiguous target in range and Doppler located at 20, 30
• 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by setting
EnableDisambiguation to false. Solve for the cluster indices.

load('dataClusterDBSCAN.mat');
cluster1 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',false);
idx = cluster1(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(cluster1,x,idx)
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The plot indicates that there are eight apparent clusters and six noise points. The 'Dimension 1'
label corresponds to range and the 'Dimension 2' label corresponds to Doppler.

Next, create another clusterDBSCAN object and set EnableDisambiguation to true to specify
that clustering is performed across the range and Doppler ambiguity boundaries.

cluster2 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

Perform the clustering using ambiguity limits and then plot the clustering results. The DBSCAN
clustering results correctly show four clusters and five noise points. For example, the points at ranges
close to zero are clustered with points near 20 m because the maximum unambiguous range is 20 m.

amblims = [0 maxRange; minDoppler maxDoppler];
idx = cluster2(x,amblims);
plot(cluster2,x,idx)
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Effect of Epsilon on Clustering

Cluster two-dimensional Cartesian position data using clusterDBSCAN. To illustrate how the choice
of epsilon affects clustering, compare the results of clustering with Epsilon set to 1 and Epsilon
set to 3.

Create random target position data in xy Cartesian coordinates.

x = [rand(20,2)+12; rand(20,2)+10; rand(20,2)+15];
plot(x(:,1),x(:,2),'.')
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Create a clusterDBSCAN object with the Epsilon property set to 1 and the MinNumPoints
property set to 3.

clusterer = clusterDBSCAN('Epsilon',1,'MinNumPoints',3);

Cluster the data when Epsilon equals 1.

idxEpsilon1 = clusterer(x);

Cluster the data again but with Epsilon set to 3. You can change the value of Epsilon because it is
a tunable property.

clusterer.Epsilon = 3;
idxEpsilon2 = clusterer(x);

Plot the clustering results side-by-side. Do this by passing in the axes handles and titles into the plot
method. The plot shows that for Epsilon set to 1, three clusters appear. When Epsilon is 3, the two
lower clusters are merged into one.

hAx1 = subplot(1,2,1);
plot(clusterer,x,idxEpsilon1, ...
    'Parent',hAx1,'Title','Epsilon = 1')
hAx2 = subplot(1,2,2);
plot(clusterer,x,idxEpsilon2, ...
    'Parent',hAx2,'Title','Epsilon = 3')
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Algorithms
Clustering Algorithm
Clustering Overview

This section illustrates the basic principles of cluster formation. The figure shows points in a two-
dimensional feature space. The clusters are compact and well-separated. A few noise points appear.
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Clusters Formed from a Single ε-Neighborhood

• Clusters start from core points. The first step in the algorithm is identifying all core points.

The figure here shows the point P1 and its ε-neighborhood Nε(P1). The ε-neighborhood has eight
points (including itself) within a radius ε. Using the MinNumPoints property to set the threshold
to 8 means that P1 is a core point. The blue points that lie within Nε are called border points.
These border points are directly density reachable from the core point P1.

• No other points in the figure have enough neighboring points in their ε-neighborhood to become a
core point. P2 is not a core point because it has only five points within its neighborhood. P2 is
directly density reachable from P1. The reverse is not true because P2 is not a core point. The one-
way arrow connecting the two points shows this asymmetry.

• Points that fall outside Nε(P1) are noise points (red) and do not belong to the cluster.
• Because no other points are core points, the core point and border points are a maximal set of

density-connected points and therefore form a cluster.

Cluster of Points from Two ε-Neighborhoods

• The next figure shows a larger set of points containing two core points, P1 and P2. P2 is a border
point of P1 but P2 also has enough points in its own neighborhood to become a core point. Because
they are both core points, P1 is directly density reachable from P2, and P1 is directly density
reachable from P2. The two-way arrow connecting them shows this symmetry.
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• P3 is directly density reachable from P2 but not from P1 (as indicated by the one-way arrow).
However, P3 is called simply density reachable from P1.

• Because no other points are core points, the two core points and their border points form a
maximal set of density-connected points and form one cluster.
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Cluster Points in Adjacent ε-Neighborhoods

• This process of growing a cluster can be extended from core point to core point until there are no
more core points to add. The core points and the border points belong to the same cluster. In
general, a point Pn is density reachable from point P1 when there is a chain of core points, P1,P2,
P3, …, Pn-1 such that each core point Pi+1 is directly density reachable from Pi, and Pn is directly
density reachable from Pn-1.
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Density Connectivity

The next figure illustrates some properties of density connectivity.

• A cluster can have multiple branching chains, for example (P1, P2, P3, P4) and (P1, P2, P5, P6).
• Two points, P6 and P4, are density connected when there is a third point P2 such that P6 and P4 are

density reachable from P2.
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• Two density connected points are not necessarily density reachable from one another.
• A maximal set of density connected points define a cluster. It does not matter which core point is

the starting core point.
• All points in a cluster are density reachable from all core points.

Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter ε. The clusterDBSCAN
object and the clusterDBSCAN.estimateEpsilon function use a k-nearest-neighbor search to
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estimate a scalar epsilon. Let D be the distance of any point P to its kth nearest neighbor. Define a
Dk(P)-neighborhood as a neighborhood surrounding P that contains its k-nearest neighbors. There are
k + 1 points in the Dk(P)-neighborhood including the point P itself. An outline of the estimation
algorithm is:

• For each point, find all the points in its Dk(P)-neighborhood
• Accumulate the distances in all Dk(P)-neighborhoods for all points into a single vector.
• Sort the vector by increasing distance.
• Plot the sorted k-dist graph, which is the sorted distance against point number.
• Find the knee of the curve. The value of the distance at that point is an estimate of epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above this value
are noise.

There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last points of the
curve. The ordinate of the point on the sorted k-dist graph furthest from the line and perpendicular to
the line defines epsilon.
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When you specify a range of k values, the algorithm averages the estimate epsilon values for all
curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14 through 19.

To create a single k-NN distance graph, set the MinNumPoints property equal to the MaxNumPoints
property.
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Choosing the Minimum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a maximal set
of density-connected points, choose smaller values when the expected number of detections in a
cluster is unknown. However, smaller values make the DBSCAN algorithm more susceptible to noise.
A general guideline for choosing MinNumPoints is:

• Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.
• For data sets that have one or more of the following properties:

• many noise points
• large number of points, N
• large dimensionality, P
• many duplicates

increasing MinNumPoints can often improve clustering results.

Ambiguous Data

The clustering algorithm is general enough to process ambiguities in any feature, but applying
clustering to range and Doppler ambiguities in radar are important applications.
Range Ambiguity

The time delay between pulse transmission and reception determines the range, R, of a target. R is
proportional to time delay, t, by

R = ct
2

where c is the speed of light. Time is measured from the transmission time of the pulse. If only one
pulse is transmitted, the equation accurately determines the range.

Often, the radar transmits multiple pulses spaced at intervals T, the pulse repetition interval (PRI).
Range ambiguities occur when the echoes from one pulse are not received before the next pulse is
transmitted. Range is computed from the time difference of the arrival of the received pulse from the
transmission time of the most recent transmitted pulse. Therefore the range can be incorrect by some
integer multiple of the unambiguous range. The unambiguous range of a radar system is the
maximum range at which a target can be located to guarantee that the reflected pulse from that
target corresponds to the most recent transmitted pulse. The PRI determines the unambiguous range.

Rmax = cT
2

The range of a detection less than Rmax is an unambiguous range. Range disambiguation clusters
detections that cross ambiguous range boundaries.

Turn on disambiguation by setting the EnableDisambiguation to true. Then, use the
AmbiguousDimension property to select the column in the input data corresponding to range. Set
the actual ambiguity limits for range using the amblims argument at execution time.
Doppler Ambiguity

Doppler aliasing occurs when echoes arrive from targets that move fast enough for the Doppler
frequency to exceed the pulse repetition frequency (PRF). If the Doppler shift is greater than ½ PRF
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or less than –½ PRF, the Doppler shift is aliased into the range (–½ PRF, ½ PRF). This range is called
the unambiguous Doppler. Turn on disambiguation by setting the EnableDisambiguation to true.
Then, use the AmbiguousDimension property to select the column in the input data corresponding
to Doppler. Set the actual ambiguity limits for Doppler using the amblims argument at execution
time. Doppler ambiguity implies radial speed ambiguity as well. Make sure that amblims matches the
interpretation of the feature.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon |
clusterDBSCAN.plot
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clusterDBSCAN.discoverClusters
Find cluster hierarchy in data

Syntax
[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)
clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)

Description
[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)
returns a cluster-ordered list of points, order, and the reachability distances, reachdist, for each
point in the data X. Specify the maximum epsilon, maxepsilon, and the minimum number of points,
minnumpoints. The method implements the Ordering Points To Identify the Clustering Structure
(OPTICS) algorithm. The OPTICS algorithm is useful when clusters have varying densities.

clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints) displays a bar graph
representing the cluster hierarchy.

Examples

Display Cluster Hierarchy

Create target data with random detections in xy Cartesian coordinates. Use the
clusterDBSCAN.discoverClusters object functions to reveal the underlying cluster hierarchy.

First, set clusterDBSCAN.discoverClusters parameters.

maxEpsilon = 10;
minNumPoints = 6;

Create random target data.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; randn(20,2) + [8,20]; 10*rand(10,2) + [20,20]];
plot(X(:,1),X(:,2),'.')
axis equal
grid
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Plot the cluster hierarchy.

clusterDBSCAN.discoverClusters(X,maxEpsilon,minNumPoints)

From a visual inspection of the plot, choose Epsilon as 2 and then perform the clustering using the
clusterDBSCAN object and plot the resultant clusters.

clusterer = clusterDBSCAN('MinNumPoints',6,'Epsilon',2, ...
    'EnableDisambiguation',false);
[idx,cidx] = clusterer(X);
plot(clusterer,X,idx)
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Input Arguments
X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

maxepsilon — Maximum epsilon size
positive scalar

Maximum epsilon size to use in the cluster hierarchy search, specified as a positive scalar. The
epsilon parameter defines the clustering neighborhood around a point. Reducing maxepsilon results
in shorter run times. Setting maxepsilon to inf identifies all possible clusters.

The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger parameters
can improve results.
Example: 5.0
Data Types: double

minnumpoints — Minimum number of points
positive integer

Minimum number of points used as a threshold, specified as a positive integer. The threshold sets the
minimum number of points for a cluster.

4 Objects

4-178



The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger parameters
can improve results.
Example: 10
Data Types: double

Output Arguments
order — Cluster hierarchy
integer-valued 1-by-N row vector

Cluster ordered list of sample indices, returned as an integer-valued 1-by-N row vector.N is the
number of rows in the input data matrix X.

reachdist — Reachability distance
positive, real-valued 1-by-N row vector

Reachability distance, returned as a positive, real-valued 1-by-N row vector. N is the number of rows
in the input data matrix X.
Data Types: double

Algorithms
The outputs of clusterDBSCAN.discoverClusters let you create a reachability-plot from which
the hierarchical structure of the clusters can be visualized. A reachability-plot contains ordered
points on the x-axis and the reachability distances on the y-axis. Use the outputs to examine the
cluster structure over a broad range of parameter settings. You can use the output to help estimate
appropriate epsilon clustering thresholds for the DBSCAN algorithm. Points belonging to a cluster
have small reachability distances to their nearest neighbor, and clusters appear as valleys in the
reachability plot. Deeper valleys correspond to denser clusters. Determine epsilon from the ordinate
of the bottom of the valleys.

OPTICS assumes that dense clusters are entirely contained by less dense clusters. OPTICS processes
data in the correct order by tracking the point density neighborhoods. This process is performed by
ordering data points by the shortest reachability distances, guaranteeing that clusters with higher
density are identified first.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is not supported for graphics output.

See Also
clusterDBSCAN | clusterDBSCAN.estimateEpsilon | clusterDBSCAN.plot
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clusterDBSCAN.estimateEpsilon
Estimate neighborhood clustering threshold

Syntax
epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)
clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)

Description
epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints) returns an
estimate of the neighborhood clustering threshold, epsilon, used in the density-based spatial
clustering of applications with noise (DBSCAN)algorithm. epsilon is computed from input data X
using a k-nearest neighbor (k-NN) search. MinNumPoints and MaxNumPoints set a range of k-
values for which epsilon is calculated. The range extends from MinNumPoints – 1 through
MaxNumPoints – 1. k is the number of neighbors of a point, which is one less than the number of
points in a neighborhood.

clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints) displays a figure
showing the k-NN search curves and the estimated epsilon.

Examples

Estimate Epsilon from Data

Create simulated target data and use the clusterDBSCAN.estimateEpsilon function to calculate
an appropriate epsilon threshold.

Create the target data as xy Cartesian coordinates.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; ...
    randn(20,2) + [8,20]; 10*rand(10,2) + [20,20]];

Set the range of values for the k-NN search.

minNumPoints = 15;
maxNumPoints = 20;

Estimate the clustering threshold epsilon and display its value on a plot.

clusterDBSCAN.estimateEpsilon(X,minNumPoints,maxNumPoints)
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Use the estimated Epsilon value, 3.62, in the clusterDBSCAN clusterer. Then, plot the clusters.

clusterer = clusterDBSCAN('MinNumPoints',6,'Epsilon',3.62, ...
    'EnableDisambiguation',false);
[idx,cidx] = clusterer(X);
plot(clusterer,X,idx)
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Input Arguments
X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

MinNumPoints — Starting value of k-NN search range
positive integer

The starting value of the k-NN search range, specified as a positive integer. MinNumPoints is used to
specify the starting value of k in the k-NN search range. The starting value of k is one less than
MinNumPoints.
Example: 10
Data Types: double

MaxNumPoints — Set end value of k-NN search range
positive integer
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The end value of k-NN search range, specified as a positive integer. MaxNumPoints is used to specify
the ending value of k in the k-NN search range. The ending value of k is one less than
MaxNumPoints.

Output Arguments
epsilon — Estimated epsilon
positive scalar

Estimated epsilon, returned as a positive scalar.

Algorithms
Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter ε. The clusterDBSCAN
object and the clusterDBSCAN.estimateEpsilon function use a k-nearest-neighbor search to
estimate a scalar epsilon. Let D be the distance of any point P to its kth nearest neighbor. Define a
Dk(P)-neighborhood as a neighborhood surrounding P that contains its k-nearest neighbors. There are
k + 1 points in the Dk(P)-neighborhood including the point P itself. An outline of the estimation
algorithm is:

• For each point, find all the points in its Dk(P)-neighborhood
• Accumulate the distances in all Dk(P)-neighborhoods for all points into a single vector.
• Sort the vector by increasing distance.
• Plot the sorted k-dist graph, which is the sorted distance against point number.
• Find the knee of the curve. The value of the distance at that point is an estimate of epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above this value
are noise.
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There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last points of the
curve. The ordinate of the point on the sorted k-dist graph furthest from the line and perpendicular to
the line defines epsilon.

When you specify a range of k values, the algorithm averages the estimate epsilon values for all
curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14 through 19.
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To create a single k-NN distance graph, set the MinNumPoints property equal to the MaxNumPoints
property.

Choosing the Minimum and Maximum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a maximal set
of density-connected points, choose smaller values when the expected number of detections in a
cluster is unknown. However, smaller values make the DBSCAN algorithm more susceptible to noise.
A general guideline for choosing MinNumPoints is:

• Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.
• For data sets that have one or more of the following properties:

• many noise points
• large number of points, N
• large dimensionality, P
• many duplicates

increasing MinNumPoints can often improve clustering results.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Code generation is not supported for graphics output.

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN.plot | clusterDBSCAN
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clusterDBSCAN.plot
Plot clusters

Syntax
fh = plot(clusterer,X,idx)
fh = plot( ___ ,'Parent',ax)
fh = plot( ___ ,'Title',titlestr)

Description
fh = plot(clusterer,X,idx) displays a plot of DBSCAN clustering results and returns a figure
handle, fh. Inputs are the cluster object, clusterer, the input data matrix, X, and cluster indices,
idx.

fh = plot( ___ ,'Parent',ax) also specifies the axes, ax, of the cluster results plot.

fh = plot( ___ ,'Title',titlestr) also specifies the title, titlestr, of the cluster results
plot.

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume the
maximum unambiguous range is 20 m and the unambiguous Doppler span extends from −30 Hz to 30
Hz. Data for this example is contained in the dataClusterDBSCAN.mat file. The first column of the
data matrix represents range, and the second column represents Doppler.

The input data contains the following extended targets and false alarms:

• an unambiguous target located at 10, 15
• an ambiguous target in Doppler located at 10, − 30
• an ambiguous target in range located at 20, 15
• an ambiguous target in range and Doppler located at 20, 30
• 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by setting
EnableDisambiguation to false. Solve for the cluster indices.

load('dataClusterDBSCAN.mat');
cluster1 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',false);
idx = cluster1(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(cluster1,x,idx)
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The plot indicates that there are eight apparent clusters and six noise points. The 'Dimension 1'
label corresponds to range and the 'Dimension 2' label corresponds to Doppler.

Next, create another clusterDBSCAN object and set EnableDisambiguation to true to specify
that clustering is performed across the range and Doppler ambiguity boundaries.

cluster2 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

Perform the clustering using ambiguity limits and then plot the clustering results. The DBSCAN
clustering results correctly show four clusters and five noise points. For example, the points at ranges
close to zero are clustered with points near 20 m because the maximum unambiguous range is 20 m.

amblims = [0 maxRange; minDoppler maxDoppler];
idx = cluster2(x,amblims);
plot(cluster2,x,idx)
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Input Arguments
clusterer — Clusterer object
clusterDBSCAN object

Clusterer object, specified as a clusterDBSCAN object.

X — Input data to cluster
real-valued N-by-P matrix

Input data, specified as a real-valued N-by-P matrix. The N rows correspond to points in a P-
dimensional feature space. The P columns contain the values of the features over which clustering
takes place. For example, a two-column input can contain Cartesian coordinates x and y, or range and
Doppler.
Data Types: double

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, specified as an N-by-1 integer-valued column vector. Cluster indices represent the
clustering results of the DBSCAN algorithm contained in the first output argument of
clusterDBSCAN. idx values start at one and are consecutively numbered. The plot object function
labels each cluster with the cluster index. A value of –1 in idx indicates a DBSCAN noise point. Noise
points are not labeled.
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Data Types: double

ax — Axes of plot
Axes handle

Axes of plot, specified as an Axes object handle.
Data Types: double

titlestr — Plot title
character vector | string

Plot title, specified as a character vector or string.
Example: 'Range-Doppler Clusters'
Data Types: char | string

Output Arguments
fh — Figure handle of plot
positive scalar

Figure handle of plot, returned as a positive scalar.

Version History
Introduced in R2021a

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN | clusterDBSCAN.estimateEpsilon
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radarDataGenerator
Generate radar detections and tracks

Description
The radarDataGenerator System object™ generates detection or track reports of targets. You can
specify the detection mode of the sensor as monostatic, bistatic, or electronic support measure (ESM)
through the DetectionMode property. You can use radarDataGenerator to simulate clustered or
unclustered detections with added random noise, and also generate false alarm detections. You can
fuse the generated detections with other sensor data and track objects using a radarTracker
object. You can also output tracks directly from the radarDataGenerator object. To configure
whether targets are output as clustered detections, unclustered detections, or tracks, use the
TargetReportFormat property. You can add radarDataGenerator to a Platform and then use
the radar in a radarScenario.

Using a single-exponential model, the radar computes range and elevation biases caused by
propagation through the troposphere. A range bias means that measured ranges are greater than the
line-of-sight range to the target. Elevation bias means that the measured elevations are above their
true elevations. Biases are larger when the line-of-sight path between the radar and target passes
through lower altitudes because the atmosphere is thicker at these altitudes. See “References” on
page 4-226 for more details.

To generate radar detection and track reports:

1 Create the radarDataGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rdr = radarDataGenerator
rdr = radarDataGenerator(id)
rdr = radarDataGenerator( ___ ,scanConfig)
rdr = radarDataGenerator( ___ ,Name,Value)

Description

rdr = radarDataGenerator creates a monostatic radar sensor that reports clustered detections
and uses default property values.

rdr = radarDataGenerator(id) sets the SensorIndex property to the specified id.

rdr = radarDataGenerator( ___ ,scanConfig) is a convenience syntax that creates a
monostatic radar sensor and sets its scanning configuration to a predefined scanConfig, in addition
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to any input arguments from previous syntaxes. You can specify scanConfig as 'No scanning',
'Raster', 'Rotator', 'Sector', or 'Custom'. See “Convenience Syntaxes” on page 4-220 for
more details on these configurations.

rdr = radarDataGenerator( ___ ,Name,Value) sets “Properties” on page 4-192 using one or
more name-value pairs. Enclose each property name in quotes. For example,
radarDataGenerator('TargetReportFormat','Tracks','FilterInitializationFcn',@i
nitcvkf) creates a radar sensor that generates track reports using a tracker initialized by a
constant-velocity linear Kalman filter.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Sensor Identification

SensorIndex — Unique sensor identifier
0 (default) | positive integer

Unique sensor identifier, specified as a positive integer. Use this property to distinguish between
detections or tracks that come from different sensors in a multisensor system. Specify a unique value
for each sensor. If you do not update SensorIndex from the default value of 0, then the radar
returns an error at the start of simulation.
Data Types: double

UpdateRate — Sensor update rate (Hz)
1 (default) | positive real scalar

Sensor update rate, in hertz, specified as a positive real scalar. The reciprocal of the update rate must
be an integer multiple of the simulation time interval. The radar generates new reports at intervals
defined by this reciprocal value. Any sensor update requested between update intervals contains no
detections or tracks.
Data Types: double

Sensor Mounting

MountingLocation — Mounting location of radar on platform (m)
[0 0 0] (default) | 1-by-3 real-valued vector

Mounting location of the radar on the platform, in meters, specified as a 1-by-3 real-valued vector of
the form [x y z]. This property defines the coordinates of the sensor along the x-axis, y-axis, and z-axis
relative to the platform body frame.
Data Types: double

MountingAngles — Mounting rotation angles of radar (deg)
[0 0 0] (default) | 1-by-3 real-valued vector of form [zyaw ypitch xroll]
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Mounting rotation angles of the radar, in degrees, specified as a 1-by-3 real-valued vector of the form
[zyaw ypitch xroll]. This property defines the intrinsic Euler angle rotation of the sensor around the z-axis,
y-axis, and x-axis with respect to the platform body frame, where:

• zyaw, or yaw angle, rotates the sensor around the z-axis of the platform body frame.
• ypitch, or pitch angle, rotates the sensor around the y-axis of the platform body frame. This rotation

is relative to the sensor position that results from the zyaw rotation.
• xroll, or roll angle, rotates the sensor about the x-axis of the platform body frame. This rotation is

relative to the sensor position that results from the zyaw and ypitch rotations.

These angles are clockwise-positive when looking in the forward direction of the z-axis, y-axis, and x-
axis, respectively.
Data Types: double

Scanning Settings

ScanMode — Scanning mode of radar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning' |
'Custom'

Scanning mode of the radar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', 'No scanning', or 'Custom'.

ScanMode Purpose
'Mechanical' The sensor scans mechanically across the

azimuth and elevation limits specified by the
MechanicalAzimuthLimits and
MechanicalElevationLimits properties. The scan
direction increments by the radar field of view
angle between dwells.

'Electronic' The sensor scans electronically across the
azimuth and elevation limits specified by the
ElectronicAzimuthLimits and
ElectronicElevationLimits properties. The scan
direction increments by the radar field of view
angle between dwells.

'Mechanical and electronic' The sensor mechanically scans the antenna
boresight across the mechanical scan limits and
electronically scans beams relative to the
mechanical angles across the electronic scan
limits. The total field of regard scanned in this
mode is the combination of the mechanical and
electronic scan limits. The scan direction
increments by the field of view angle between
dwells.

'No scanning' The sensor beam points along the antenna
boresight defined by the MountingAngles
property.

'Custom' The sensor points the beam in the direction
specified by the LookAngle property.
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Example: 'No scanning'

MaxAzimuthScanRate — Maximum mechanical azimuth scan rate (deg/s)
75 (default) | nonnegative scalar

Maximum mechanical azimuth scan rate, specified as a nonnegative scalar in degrees per second.
This property sets the maximum scan rate at which the sensor can mechanically scan in azimuth. The
sensor sets its scan rate to step the radar mechanical angle by the field of view. If the required scan
rate exceeds the maximum scan rate, the maximum scan rate is used.

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MaxElevationScanRate — Maximum mechanical elevation scan rate (deg/s)
75 (default) | nonnegative scalar

Maximum mechanical elevation scan rate, specified as a nonnegative scalar in degrees per second.
The property sets the maximum scan rate at which the sensor can mechanically scan in elevation. The
sensor sets its scan rate to step the radar mechanical angle by the field of view. If the required scan
rate exceeds the maximum scan rate, the maximum scan rate is used.

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'. Also, set the HasElevation property to true.
Data Types: double

MechanicalAzimuthLimits — Mechanical azimuth scan limits (deg)
[0 360] (default) | two-element real-valued vector

Mechanical azimuth scan limits, specified as a two-element real-valued vector of the form [azMin
azMax], where azMin ≤ azMax and azMax – azMin ≤ 360. The limits define the minimum and
maximum mechanical azimuth angles, in degrees, the sensor can scan from its mounted orientation.
Example: [-10 20]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MechanicalElevationLimits — Mechanical elevation scan limits (deg)
[-10 0] (default) | two-element real-valued vector

Mechanical elevation scan limits, specified as a two-element real-valued vector of the form [elMin
elMax], where –90 ≤ elMin ≤ elMax ≤ 90. The limits define the minimum and maximum mechanical
elevation angles, in degrees, the sensor can scan from its mounted orientation.
Example: [-50 20]
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Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'. Also, set the HasElevation property to true.
Data Types: double

ElectronicAzimuthLimits — Electronic azimuth scan limits (deg)
[-45 45] (default) | two-element real-valued vector

Electronic azimuth scan limits, specified as a two-element real-valued vector of the form [azMin
azMax], where -90 ≤ azMin ≤ azMax ≤ 90. The limits define the minimum and maximum electronic
azimuth angles, in degrees, the sensor can scan from its mounted orientation.
Example: [-50 20]

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

ElectronicElevationLimits — Electronic elevation scan limits (deg)
[-45 45] (default) | two-element real-valued vector

Electronic elevation scan limits, specified as a two-element real-valued vector of the form [elMin
elMax], where -90 ≤ elMin ≤ elMax ≤ 90. The limits define the minimum and maximum electronic
elevation angles, in degrees, the sensor can scan from its mounted orientation.
Example: [-50 20]

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'. Also, set the HasElevation property to true.
Data Types: double

MechanicalAngle — Current mechanical scan angle
two-element real-valued vector

This property is read-only.

Current mechanical scan angle of radar, specified as a two-element real-valued vector of the form [az
el]. az and el represent the mechanical azimuth and elevation scan angles, respectively, relative to the
mounted angle of the radar on the platform.
Data Types: double

ElectronicAngle — Current electronic scan angle
two-element real-valued vector

This property is read-only.

Current electronic scan angle of radar, specified as a two-element real-valued vector of the form [az
el]. az and el represent the electronic azimuth and elevation scan angles, respectively, relative to the
current mechanical angle.
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Data Types: double

LookAngle — Current look angle of sensor
two-element real-valued vector

This property is read-only unless ScanMode is specified as 'Custom'.

Current look angle of the sensor, specified as a two-element real-valued vector of the form [az el]. az
and el represent the azimuth and elevation look angles, respectively. Look angle is a combination of
the mechanical angle and electronic angle, depending on the ScanMode property.

ScanMode LookAngle
'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and electronic' MechnicalAngle + ElectronicAngle
'No scanning' [0 0]
'Custom' LookAngle can be set to point the radar beam to

a specific azimuth and elevation.

Dependencies

To enable setting this property, set the ScanMode property to 'Custom'. Otherwise, this property is
read-only.

BeamShape — Shape of main beam
'Gaussian' (default) | 'Rectangular'

Shape of the main beam of the two-way antenna pattern, specified as 'Rectangular' or
'Gaussian'.

• When set to 'Rectangular', the main beam is assumed to have an idealized rectangular shape
with a uniform antenna gain within the half-power beamwidth and a zero gain outside the half-
power beamwidth.

• When set to 'Gaussian', the main beam is approximated by an ideal Gaussian antenna pattern
with no side lobes. The azimuth and the elevation half-power beamwidths are determined by the
corresponding values of the AzimuthResolution and ElevationResolution properties.

The radar main beam is assumed to have the specified beam shape only within the effective field of
view. Outside the effective field of view, the two-way antenna pattern is assumed to be zero. When
BeamShape is set to 'Gaussian', the field of view in the azimuth and the elevation directions is
assumed to be twice the corresponding half-power beamwidth. When BeamShape is set to
'Rectangular', the azimuth and the elevation fields of view are set to be equal to the
corresponding half-power beamwidth. When HasScanLoss is true, the azimuth and the elevation
half-power beamwidths are adjusted to include beam broadening due to scanning off-broadside. In
this case, the half-power beamwidths are determined by the corresponding values of the
EffectiveAzimuthResolution and EffectiveElevationResolution properties.

Dependencies

To enable this property, set the ScanMode property to 'Custom'.
Data Types: char | string
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EffectiveFieldOfView — Total effective angular field of view
1-by-2 real-valued vector

This property is read-only.

Current effective azimuthal and elevation fields of view, specified as 2-element vector, [azfov,
elfov].

• When BeamShape is set to 'Gaussian', EffectiveFieldOfView=2*[AzimuthResolution
ElevationResolution].

• When BeamShape is set to 'Rectangular', EffectiveFieldOfView=[AzimuthResolution
ElevationResolution].

When HasScanLoss is true, EffectiveFieldOfView includes the effect of beam broadening when
the radar is pointed to an off-broadside angle. In that case it is determined by the corresponding
values of the EffectiveAzimuthResolution and EffectiveElevationResolution properties.
Units are in degrees.
Example: [3,4]

Dependencies

To enable this property, set the ScanMode property to 'Custom'.
Data Types: double

EffectiveAzimuthResolution — Effective azimuth resolution
scalar

This property is read-only.

Current effective azimuthal resolution of the sensor, specified as a scalar. When HasScanLoss is
true, EffectiveAzimuthResolution includes the effect of beam broadening when the radar is
pointed to an off-broadside angle. At boresight EffectiveAzimuthResolution equals to the value
of the AzimuthResolution property. EffectiveAzimuthResolution equals
AzimuthResolution for all look angles when the HasScanLoss property is set to false.

Dependencies

To enable this property, set the ScanMode property to 'Custom'.

EffectiveElevationResolution — Effective elevation resolution
scalar

This property is read-only.

Current effective elevation resolution of the sensor, specified as a scalar. When HasScanLoss is
true, EffectiveElevationResolution includes the effect of beam broadening when the radar is
pointed to an off-broadside angle. At boresight EffectiveElevationResolution equals to the
value of the ElevstionResolution property. EffectiveElevationResolution equals
ElevstionResolution for all look angles when the HasScanLoss property is set to false.

Dependencies

To enable this property, set the ScanMode property to 'Custom'.
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Detection Reporting Specifications

DetectionMode — Detection mode
'Monostatic' (default) | 'ESM' | 'Bistatic'

Detection mode, specified as 'Monostatic', 'ESM', or 'Bistatic'. When set to 'Monostatic',
the sensor generates detections from reflected signals originating from a collocated radar emitter.
When set to 'ESM', the sensor operates passively and can model ESM and (radar warning receiver)
RWR systems. When set to 'Bistatic', the sensor generates detections from reflected signals
originating from a separate radar emitter. For more details on detection mode, see “Radar Sensor
Detection Modes” on page 4-222.
Example: 'Monostatic'

HasElevation — Enable radar to scan in elevation and measure target elevation angles
false or 0 (default) | true or 1

Enable the radar to scan in elevation and measure target elevation angles, specified as a logical 0
(false) or 1 (true). Set this property to true to model a radar sensor that can estimate target
elevation.
Data Types: logical

HasRangeRate — Enable radar to measure target range rates
false or 0 (default) | true or 1

Enable the radar to measure target range rates, specified as a logical 0 (false) or 1 (true). Set this
property to true to model a radar sensor that can measure range rates from target detections.
Data Types: logical

HasNoise — Enable addition of noise to radar sensor measurements
true or 1 (default) | false or 0

Enable the addition of noise to radar sensor measurements, specified as a logical 1 (true) or 0
(false). Set this property to true to add noise to the radar measurements. Otherwise, the
measurements have no noise. Even if you set HasNoise to false, the sensor reports the
measurement noise covariance matrix specified in the MeasurementNoise property of its object
detection outputs.

When the sensor reports tracks, the sensor uses the measurement covariance matrix to estimate the
track state and state covariance matrix.
Data Types: logical

HasFalseAlarms — Enable creating false alarm radar detections
true or 1 (default) | false or 0

Enable creating false alarm radar measurements, specified as a logical 1 (true) or 0 (false). Set
this property to true to report false alarms. Otherwise, the radar reports only actual detections.
Data Types: logical

HasOcclusion — Enable occlusion from extended objects
true or 1 (default) | false or 0

Enable occlusion from extended objects, specified as a logical 1 (true) or 0 (false). Set this
property to true to model occlusion from extended objects. The sensor models two types of
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occlusion, self occlusion and inter-object occlusion. Self occlusion occurs when one side of an
extended object occludes another side. Inter-object occlusion occurs when one extended object
stands in the line of sight of another extended object or a point target. Note that both extended
objects and point targets can be occluded by extended objects, but a point target cannot occlude
another point target or an extended object.
Data Types: logical

HasGhosts — Enable ghost targets in target reports
false or 0 (default) | true or 1

Enable ghost targets in target reports, specified as a logical 1 (true) or 0 (false). The sensor
generates ghost targets for multipath propagation paths up to three reflections between transmission
and reception of the radar signal. The sensor only generates ghost targets when the DetectionMode
property is set to 'Monostatic'.
Data Types: logical

HasRangeAmbiguities — Enable range ambiguities
false or 0 (default) | true or 1

Enable range ambiguities, specified as a logical 0 (false) or 1 (true). Set this property to true to
enable sensor range ambiguities. In this case, the sensor does not resolve range ambiguities, and
target ranges beyond the MaxUnambiguousRange are wrapped into the interval [0,
MaxUnambiguousRange]. When false, the sensor reports targets at their unambiguous range.
Data Types: logical

HasRangeRateAmbiguities — Enable range-rate ambiguities
false or 0 (default) | true or 1

Enable range-rate ambiguities, specified as a logical 0 (false) or 1 (true). Set this property to true
to enable sensor range-rate ambiguities. When true, the sensor does not resolve range rate
ambiguities. Target range rates beyond the MaxUnambiguousRadialSpeed are wrapped into the
interval [0, MaxUnambiguousRadialSpeed]. When false, the sensor reports targets at their
unambiguous range rates.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: logical

HasINS — Enable inertial navigation system (INS) input
false or 0 (default) | true or 1

Enable the INS input argument, which passes the current estimate of the sensor platform pose to the
sensor, specified as a logical 0 (false) or 1 (true). When true, pose information is added to the
MeasurementParameters structure of the reported detections or the StateParameters structure
of the reported tracks, based on the TargetReportFormat property. Pose information enables
tracking and fusion algorithms to estimate the state of the target in the scenario frame.
Data Types: logical

HasScanLoss — Enable losses due to electronic scanning off-broadside
false (default) | true
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Enable scan loss due to electronic scanning off-broadside, specified as false or true. Scan loss models
the effect of antenna array beam broadening when the radar points to an off-broadside angle.

Dependencies

To enable this property, set the ScanMode property to 'Custom'.
Data Types: logical

MaxNumReportsSource — Source of maximum for number of detection or track reports
'Auto' (default) | 'Property'

Source of the maximum for the number of detection or track reports, specified as one of these
options:

• 'Auto' — The sensor reports all detections or tracks.
• 'Property' — The sensor reports the first N valid detections or tracks, where N is equal to the

MaxNumReports property value.

MaxNumReports — Maximum number of detection or track reports
100 (default) | positive integer

Maximum number of detection or track reports, specified as a positive integer. The sensor reports
detections, in order of increasing distance from the sensor, until reaching this maximum number.

Dependencies

To enable this property, set the MaxNumReportsSource property to 'Property'.
Data Types: double

TargetReportFormat — Format of generated target reports
'Clustered detections' (default) | 'Tracks' | 'Detections'

Format of generated target reports, specified as one of these options:

• 'Clustered detections' — The sensor generates target reports as clustered detections,
where each target is reported as a single detection that is the centroid of the unclustered target
detections. The sensor returns clustered detections as a cell array of objectDetection objects.
To enable this option, set the DetectionMode property to 'Monostatic' and set the
EmissionsInputPort property to false.

• 'Tracks' — The sensor generates target reports as tracks, which are clustered detections that
have been processed by a tracking filter. The sensor returns tracks as an array of objectTrack
objects. To enable this option, set the DetectionMode property to 'Monostatic' and set the
EmissionsInputPort property to false.

• 'Detections' — The sensor generates target reports as unclustered detections, where each
target can have multiple detections. The sensor returns unclustered detections as a cell array of
objectDetection objects.

DetectionCoordinates — Coordinate system used to report detections
'Body' | 'Scenario' | 'Sensor rectangular | 'Sensor spherical'

Coordinate system used to report detections, specified as one of these options:

4 Objects

4-200



• 'Scenario' — Detections are reported in the rectangular scenario coordinate frame. The
scenario coordinate system is defined as the local navigation frame at simulation start time. To
enable this value, set the HasINS property to true.

• 'Body' — Detections are reported in the rectangular body system of the sensor platform.
• 'Sensor rectangular' — Detections are reported in the sensor rectangular body coordinate

system.
• 'Sensor spherical' — Detections are reported in a spherical coordinate system derived from

the sensor rectangular body coordinate system. This coordinate system is centered at the sensor
and aligned with the orientation of the radar on the platform.

When the DetectionMode property is set to 'Monostatic', you can specify the
DetectionCoordinates as 'Body' (default for 'Monostatic'), 'Scenario', 'Sensor
rectangular', or 'Sensor spherical'. When the DetectionMode property is set to 'ESM' or
'Bistatic', the default value of the DetectionCoordinates property is 'Sensor spherical',
which cannot be changed.
Example: 'Sensor spherical'

Measurement Resolution and Bias

AzimuthResolution — Azimuth resolution of radar (deg)
1 (default) | positive scalar

Azimuth resolution of the radar, in degrees, specified as a positive scalar. The azimuth resolution
defines the minimum separation in azimuth angle at which the radar can distinguish between two
targets. The azimuth resolution is typically the half-power beamwidth of the azimuth angle
beamwidth of the radar.

Tunable: Yes
Data Types: double

ElevationResolution — Elevation resolution of radar (deg)
5 (default) | positive scalar

Elevation resolution of the radar, in degrees, specified as a positive scalar. The elevation resolution
defines the minimum separation in elevation angle at which the radar can distinguish between two
targets. The elevation resolution is typically the half-power beamwidth of the elevation angle
beamwidth of the radar.

Tunable: Yes

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeResolution — Range resolution of radar (m)
100 (default) | positive scalar

Range resolution of the radar, in meters, specified as a positive scalar. The range resolution defines
the minimum separation in range at which the radar can distinguish between two targets.

Tunable: Yes
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Data Types: double

RangeRateResolution — Range-rate resolution of radar (m/s)
10 (default) | positive scalar

Range-rate resolution of the radar, in meters per second, specified as a positive real scalar. The range
rate resolution defines the minimum separation in range rate at which the radar can distinguish
between two targets.

Tunable: Yes

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction of radar
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. Azimuth bias is expressed as a
fraction of the azimuth resolution specified in the AzimuthResolution property. This value sets a
lower bound on the azimuthal accuracy of the radar and is dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction of radar
0.1 (default) | nonnegative scalar

Elevation bias fraction of the radar, specified as a nonnegative scalar. Elevation bias is expressed as a
fraction of the elevation resolution specified by the ElevationResolution property. This value sets
a lower bound on the elevation accuracy of the radar and is dimensionless.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is expressed as a
fraction of the range resolution specified by the RangeResolution property. This property sets a
lower bound on the range accuracy of the radar and is dimensionless.
Data Types: double

RangeRateBiasFraction — Range-rate bias fraction
0.05 (default) | nonnegative scalar

Range-rate bias fraction of the radar, specified as a nonnegative scalar. Range-rate bias is expressed
as a fraction of the range-rate resolution specified by the RangeRateResolution property. This
property sets a lower bound on the range rate accuracy of the radar and is dimensionless.

Dependencies

To enable this property, set the HasRangeRate property to true.
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Data Types: double

Detection Settings

CenterFrequency — Center frequency of radar band (Hz)
300e6 (default) | positive scalar

Center frequency of the radar band, specified as a positive scalar. Units are in Hz.

Tunable: Yes
Data Types: double

Bandwidth — Radar waveform bandwidth
3e6 (default) | positive real scalar

Radar waveform bandwidth, specified as a positive real scalar. Units are in Hz.
Example: 100e3

Tunable: Yes
Data Types: double

WaveformTypes — Types of detectable waveforms
0 (default) | L-element vector of nonnegative integers

Types of detectable waveforms, specified as an L-element vector of nonnegative integers. Each
integer represents a type of waveform detectable by the radar.
Example: [1 4 5]
Data Types: double

ConfusionMatrix — Probability of correct classification of detected waveform
1 (default) | positive scalar | L-element vector of nonnegative real values | L-by-L matrix of
nonnegative real values

Probability of correct classification of a detected waveform, specified as a positive scalar, an L-
element vector of nonnegative real values, or an L-by-L matrix of nonnegative real values, where L is
the number of waveform types detectable by the sensor, as indicated by the value set in the
WaveformTypes property. Matrix values must be in the range [0, 1].

The (i, j) matrix element represents the probability of classifying the ith waveform as the jth
waveform. When you specify this property as a scalar from 0 through 1, the value is expanded along
the diagonal of the confusion matrix. When specified as a vector, the vector is aligned as the diagonal
of the confusion matrix. When defined as a scalar or a vector, the off-diagonal values are set to (1 –
val)/(L –1), where val is the value of the diagonal element.
Data Types: double

Sensitivity — Minimum operational sensitivity of receiver
-50 (default) | scalar

Minimum operational sensitivity of receiver, specified as a scalar. Sensitivity includes isotropic
antenna receiver gain. Units are in dBmi.
Example: -10
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Data Types: double

DetectionThreshold — Minimum SNR required to declare detection
5 (default) | scalar

Minimum signal-to-noise ratio (SNR) required to declare a detection, specified as a scalar. Units are
in dB.
Example: -1
Data Types: double

DetectionProbability — Probability of detecting reference target
0.9 (default) | scalar in range (0, 1]

Probability of detecting a reference target, specified as a scalar in the range (0, 1]. This property
defines the probability of detecting a reference target with a radar cross-section (RCS),
ReferenceRCS, at the reference detection range, ReferenceRange.

Tunable: Yes
Data Types: double

ReferenceRange — Reference range for given probability of detection (m)
100e3 (default) | positive real scalar

Reference range for the given probability of detection and the given reference radar cross-section
(RCS), in meters, specified as a positive real scalar. The reference range is the range, at which a
target having a radar cross-section specified by the ReferenceRCS property is detected with a
probability of detection specified by the DetectionProbability property.

Tunable: Yes
Data Types: double

ReferenceRCS — Reference radar cross-section for given probability of detection (dBsm)
0 (default) | real scalar

Reference radar cross-section (RCS) for a given probability of detection and reference range,
specified as a real scalar. The reference RCS is the RCS value at which a target is detected with a
probability specified by DetectionProbability at the specified ReferenceRange value. Units are
in decibel square meters (dBsm).

Tunable: Yes
Data Types: double

FalseAlarmRate — False alarm report rate
1e-6 (default) | positive real scalar in range [10–7, 10–3]

False alarm report rate within each radar resolution cell, specified as a positive real scalar in the
range [10–7, 10–3]. Units are dimensionless. The object determines resolution cells from the
AzimuthResolution and RangeResolution properties and, when enabled, from the
ElevationResolution and RangeRateResolution properties.

Tunable: Yes
Data Types: double
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FieldOfView — Azimuthal and elevation field of view of radar (deg)
[1 5] | 1-by-2 positive real-valued vector

Angular field of view of the radar, in degrees, specified as a 1-by-2 positive real-valued vector of the
form [azfov elfov]. The field of view defines the total angular extent spanned by the sensor. The
azimuth field of view, azfov, must be in the range (0, 360]. The elevation field of view, elfov, must be
in the range (0, 180]. Targets outside of the angular field of view will not be detected. Units are in
degrees.

Dependencies

To enable this property, set the ScanMode property to any value except 'Custom'. When the
ScanMode property is set to 'Custom', the field of view is determined by the angular resolutions
specified in AzimuthResolution and ElevationResolution properties and the current look
angle specified in LookAngle
Data Types: double

RangeLimits — Minimum and maximum range of radar (m)
[0 100e3] (default) | 1-by-2 nonnegative real-valued vector

Minimum and maximum range of radar, specified as a 1-by-2 nonnegative real-valued vector of the
form [min, max]. The radar does not detect targets that are outside this range. The maximum
range, max, must be greater than the minimum range, min. Units are in meters

Tunable: Yes

RangeRateLimits — Minimum and maximum range rate of radar (m/s)
[-200 200] (default) | 1-by-2 real-valued vector

Minimum and maximum range rate of radar, in meters per second, specified as a 1-by-2 real-valued
vector of the form [min, max]. The radar does not detect targets that are outside this range rate.
The maximum range rate, max, must be greater than the minimum range rate, min.

Tunable: Yes

Dependencies

To enable this property, set the HasRangeRate property to true.

MaxUnambiguousRange — Maximum unambiguous detection range
100e3 (default) | positive scalar

Maximum unambiguous detection range, specified as a positive scalar. Maximum unambiguous range
defines the maximum range for which the radar can unambiguously resolve the range of a target.
When HasRangeAmbiguities is set to true, targets detected at ranges beyond the maximum
unambiguous range are wrapped into the range interval [0, MaxUnambiguousRange]. Units are in
meters.

This property also applies to false target detections when you set the HasFalseAlarms property to
true. In this case, the property defines the maximum range at which false alarms can be generated.
Example: 5e3

Tunable: Yes
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Dependencies

To enable this property, set the HasRangeAmbiguities property to true.
Data Types: double

MaxUnambiguousRadialSpeed — Maximum unambiguous radial speed
200 (default) | positive scalar

Maximum unambiguous radial speed, specified as a positive scalar. Radial speed is the magnitude of
the target range rate. Maximum unambiguous radial speed defines the radial speed for which the
radar can unambiguously resolve the range rate of a target. When HasRangeRateAmbiguities is
set to true, targets detected at range rates beyond the maximum unambiguous radial speed are
wrapped into the range rate interval [–MaxUnambiguousRadialSpeed,
MaxUnambiguousRadialSpeed]. Units are in meters per second.

This property also applies to false target detections obtained when you set both the HasRangeRate
and HasFalseAlarms properties to true. In this case, the property defines the maximum radial
speed at which false alarms can be generated.

Tunable: Yes

Dependencies

To enable this property, set HasRangeRate and HasRangeRateAmbiguities to true.
Data Types: double

RadarLoopGain — Radar loop gain
real scalar

This property is read-only.

Radar loop gain, specified as a real scalar. RadarLoopGain depends on the values of the
DetectionProbability, ReferenceRange, ReferenceRCS, and FalseAlarmRate properties.
Radar loop gain is a function of the reported signal-to-noise ratio of the radar, SNR, the target radar
cross-section, RCS, and the target range, R, as described by this equation:

SNR = RadarLoopGain + RCS – 40log10(R)
SNR and RCS are in decibels and decibel square meters, respectively, R is in meters, and
RadarLoopGain is in decibels.
Data Types: double

Interference and Emission Inputs

InterferenceInputPort — Enable interference input
false or 0 (default) | true or 1

Enable interference input, specified as a logical 0 (false) or 1 (true). Set this property to true to
enable interference input when running the radar.

Dependencies

To enable this property, set DetectionMode to 'Monostatic' and set EmissionsInputPort to
false.
Data Types: logical
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EmissionsInputPort — Enable emissions input
false or 0 (default) | true or 1

Enable emissions input, specified as a logical 0 (false) or 1 (true). Set this property to true to
enable emissions input when running the radar.

Dependencies

To enable this property, set DetectionMode to 'Monostatic' and set InterferenceInputPort
to false.
Data Types: logical

EmitterIndex — Unique identifier of monostatic emitter
1 (default) | positive integer

Unique identifier of the monostatic emitter, specified as a positive integer. Use this index to identify
the monostatic emitter providing the reference emission for the radar.

Dependencies

To enable this property, set DetectionMode to 'Monostatic' and set EmissionsInputPort to
true.
Data Types: double

Tracking Settings

FilterInitializationFcn — Kalman filter initialization function
@initcvekf (default) | function handle | character vector | string scalar

Kalman filter initialization function, specified as a function handle or as a character vector or string
scalar of the name of a valid Kalman filter initialization function.

The table shows the initialization functions that you can use to specify FilterInitializationFcn.

Initialization Function Function Definition
initcaabf Initialize constant-acceleration alpha-beta

Kalman filter
initcvabf Initialize constant-velocity alpha-beta Kalman

filter
initcakf Initialize constant-acceleration linear Kalman

filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initctekf Initialize constant-turnrate extended Kalman

filter.
initcvekf Initialize constant-velocity extended Kalman filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
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Initialization Function Function Definition
initctukf Initialize constant-turnrate unscented Kalman

filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.

You can also write your own initialization function. The function must have the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by an objectDetection object.
The output of this function must be a tracking filter object, such as trackingKF, trackingEKF,
trackingUKF, or trackingABF.

To guide you in writing this function, you can examine the details of the supplied functions from
within MATLAB. For example:

type initcvekf

Dependencies

To enable this property, set the TargetReportFormat property to 'Tracks'.
Data Types: function_handle | char | string

ConfirmationThreshold — Threshold for track confirmation
[2 3] (default) | 1-by-2 vector of positive integers

Threshold for track confirmation, specified as a 1-by-2 vector of positive integers of the form [M N].
A track is confirmed if it receives at least M detections in the last N updates. M must be less than or
equal to N.

• When setting M, take into account the probability of object detection for the sensors. The
probability of detection depends on factors such as occlusion or clutter. You can reduce M when
tracks fail to be confirmed or increase M when too many false detections are assigned to tracks.

• When setting N, consider the number of times you want the tracker to update before it makes a
confirmation decision. For example, if a tracker updates every 0.05 seconds, and you want to allow
0.5 seconds to make a confirmation decision, set N = 10.

Example: [3 5]

Dependencies

To enable this property, set the TargetReportFormat property to 'Tracks'.
Data Types: double

DeletionThreshold — Threshold for track deletion
[5 5] (default) | 1-by-2 vector of positive integers

Threshold for track deletion, specified as a 1-by-2 vector of positive integers of the form [P R]. If a
confirmed track is not assigned to any detection P times in the last R tracker updates, then the track
is deleted. P must be less than or equal to R.

• To reduce how long the radar maintains tracks, decrease R or increase P.
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• To maintain tracks for a longer time, increase R or decrease P.

Example: [3 5]

Dependencies

To enable this property, set the TargetReportFormat property to 'Tracks'.
Data Types: double

TrackCoordinates — Coordinate system of reported tracks
'Scenario' | 'Body' | 'Sensor'

Coordinate system used to report tracks, specified as one of these options:

• 'Scenario' — Tracks are reported in the rectangular scenario coordinate frame. The scenario
coordinate system is defined as the local navigation frame at simulation start time. To enable this
option, set the “HasINS” on page 4-0  property to true.

• 'Body' — Tracks are reported in the rectangular body system of the sensor platform.
• 'Sensor' — Tracks are reported in the sensor rectangular body coordinate system.

Dependencies

To enable this property, set the TargetReportFormat property to 'Tracks'.

Target Profiles

Profiles — Physical characteristics of target platforms
structure | array of structures

Physical characteristics of target platforms, specified as a structure or an array of structures.
Unspecified fields take default values.

• If you specify the property as a structure, then the structure applies to all target platforms.
• If you specify the property as an array of structures, then each structure in the array applies to

the corresponding target platform based on the PlatformID filed. In this case, you must specify
each PlatformID filed as a positive integer and must not leave the field as empty.

Field Description Default Value
PlatformID Scenario-defined platform

identifier, defined as a positive
integer.

empty

ClassID User-defined platform
classification identifier, defined
as a nonnegative integer.

0

Dimensions Platform dimensions, defined as
a structure with these fields:

• Length
• Width
• Height
• OriginOffset

0
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Field Description Default Value
Signatures Platform signatures, defined as

a cell array containing an
rcsSignature object, which
specifies the RCS signature of
the platform.

The default rcsSignature
object

See Platform for more details on these fields.
Data Types: struct

Usage

Syntax
reports = rdr(targetPoses,simTime)
reports = rdr(targetPoses,interferences,simTime)
reports = rdr(emissions,emitterConfigs,simTime)

reports = rdr(emissions,simTime)

reports = rdr( ___ ,insPose,simTime)

[reports,numReports,config] = rdr( ___ )

Description
Monostatic Detection Mode

These syntaxes apply when you set the DetectionMode property to 'Monostatic'.

reports = rdr(targetPoses,simTime) returns monostatic target reports from the target
poses, targetPoses, at the current simulation time, simTime. The object can generate reports for
multiple targets. To enable this syntax:

• Set the DetectionMode property to 'Monostatic'.
• Set the InterferenceInputPort property to false.
• Set the EmissionsInputPort property to false.

reports = rdr(targetPoses,interferences,simTime) specifies the interference signals,
interferences, in the radar signal transmission. To enable this syntax:

• Set the DetectionMode property to 'Monostatic'.
• Set the InterferenceInputPort property to true.
• Set the EmissionsInputPort property to false.

reports = rdr(emissions,emitterConfigs,simTime) returns monostatic target reports
based on the emission signal, emissions, and the configurations of the corresponding emitters,
emitterConfigs, that generate the emissions. To enable this syntax:

• Set the DetectionMode property to 'Monostatic'.
• Set the InterferenceInputPort property to false.
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• Set the EmissionsInputPort property to true.

Bistatic or ESM Detection Mode

This syntax applies when you set the DetectionMode property to 'Bistatic' or 'ESM'. In these
two modes, the TargetReportFormat can only be 'Detections' and the
DetcetionCoordinates can only be 'Sensor spherical'.

reports = rdr(emissions,simTime) returns Bistatic or ESM reports form the radar signal
emissions at the simulation time, simTime.

Provide INS Input

This syntax applies when you set the HasINS property to true.

reports = rdr( ___ ,insPose,simTime) specifies the pose information of the radar platform
through an INS estimate. The insPose argument is the second to the last argument before the
simTime argument. This syntax can be used with any of the previous syntaxes. See the “HasINS” on
page 4-0  property for more details.

Output Additional Information

Use this syntax if you want to output additional information of the reports.

[reports,numReports,config] = rdr( ___ ) returns the number of reports, numReports, and
the configuration of the radar, config, at the current simulation time.

Input Arguments

targetPoses — Target poses
array of structures

Radar scenario target poses, specified as an array of structures. Each structure corresponds to a
target. You can generate the structure using the targetPoses object function of a platform. You can
also create such a structure manually. This table shows the fields of the structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. 0 is
reserved for unclassified platform types and is
the default value.

Position Position of the target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of the target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].
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Field Description
Acceleration Acceleration of the target in platform coordinates

specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

The values of the Position, Velocity, and Orientation fields are defined with respect to the
platform body frame.

If the dimensions of the target or RCS signature change with respect to time, you can specify these
two additional fields in the structure:

Field Description
Dimensions Platform dimensions, specified as a structure with

these fields:

• Length
• Width
• Height
• OriginOffset

Signatures Platform signatures, specified as a cell array
containing an rcsSignature object, which
specifies the RCS signature of the platform.

If the dimensions of the target and RCS signature remain static with respect to time, you can specify
its dimensions and RCS signature using the Profiles property.

interferences — Interference radar emissions
array of radarEmission objects | cell array of radarEmission objects | array of structure

Interference radar emissions, specified as an array or cell array of radarEmission objects. You can
also specify interferences as an array of structures with field names corresponding to the
property names of the radarEmission object.

emissions — Radar emissions
array of radarEmission objects | cell array of radarEmission objects | array of structures
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Radar emissions, specified as an array or cell array of radarEmission objects. You can also specify
emissions as an array of structures with field names corresponding to the property names of the
radarEmission object.

emitterConfigs — Emitter configurations
array of structures

Emitter configurations, specified as an array of structures. This array must contain the configuration
of the radar emitter whose EmitterIndex matches the value of the EmitterIndex property of the
radarDataGenerator. Each structure has these fields:

Field Description
EmitterIndex Unique emitter index.
IsValidTime Valid emission time, returned as 0 or 1. The value

of IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by UpdateInterval.

IsScanDone IsScanDone is true when the emitter has
completed a scan.

FieldOfView Field of view of the emitter.
MeasurementParameters MeasurementParameters is an array of

structures containing the coordinate frame
transforms needed to transform positions and
velocities in the top-level frame to the current
emitter frame.

For more details on MeasurementParameters, see “Measurement Parameters” on page 4-223.
Data Types: struct

insPose — Platform pose from INS
structure

Platform pose information from an inertial navigation system (INS), specified as a structure with
these fields:

Field Definition
Position Position in the scenario frame, specified as a real-

valued 1-by-3 vector. Units are in meters.
Velocity Velocity in the scenario frame, specified as a real-

valued 1-by-3 vector. Units are in meters per
second.

Orientation Orientation with respect to the scenario frame,
specified as a quaternion or a 3-by-3 real-
valued rotation matrix. The rotation is from the
navigation frame to the current INS body frame.
This is also referred to as a "parent to child"
rotation.

simTime — Current simulation time
nonnegative scalar
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Current simulation time, specified as a nonnegative scalar. The radarScenario object calls the scan
radar sensor at regular time intervals. The sensor only generates reports at simulation times
corresponding to integer multiples of the update interval, which is given by the reciprocal of the
UpdateRate property.

• When called at these intervals, targets are reported in reports, the number of reports is
returned in numReports, and the IsValidTime field of the returned config structure is
returned as true.

• When called at all other simulation times, the sensor returns an empty report, numReports is
returned as 0, and the IsValidTime field of the returned config structure is returned as false.

Example: 10.5
Data Types: double

Output Arguments

reports — Detection and track reports
cell array of objectDetection objects | cell array of objectTrack objects

Detection and track reports, returned as one of these options:

• A cell array of objectDetection objects, when the TargetReportFormat property is set to
'Detections' or 'Clustered detections'. Additionally, when the DetectionMode is set to
'ESM' or 'Bistatic', the sensor can only generate unclustered detections and cannot generate
clustered detections.

• A cell array of objectTrack objects, when the TargetReportFormat property is set to 'Tracks'.
The sensor can only output tracks when the DetectionMode is set to 'Monostatic'. The sensor
returns only confirmed tracks, which are tracks that satisfy the confirmation threshold specified in
the ConfirmationThreshold property. For these tracks, the IsConfirmed property of the
object is true.

In generated code, reports return as equivalent structures with field names corresponding to the
property names of the objectDetection object or the property names of the objectTrack objects,
based on the TargetReportFormat property.

The format and coordinates of the measurement states or track states is determined by the
specifications of the HasRangeRate, HasElevation, HasINS, TaregetReportFormat, and
DetectionCoordinates properties. For more details, see “Detection and Track State Coordinates”
on page 4-222.

numReports — Number of reported detections or tracks
nonnegative integer

Number of reported detections or tracks, returned as a nonnegative integer. numReports is equal to
the length of the reports argument.
Data Types: double

config — Current sensor configuration
structure

Current sensor configuration, specified as a structure. This output can be used to determine which
objects fall within the radar beam during object execution.
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Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as true or false.

IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.

RangeLimits Minimum and maximum range of sensor, in
meters, specified as a 1-by-2 nonnegative real-
valued vector of the form [rmin,rmax].

RangeRateLimits Minimum and maximum range rate of sensor, in
meters per second, specified as a 1-by-2 real-
valued vector of the form [rrmin,rrmax].

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarDataGenerator
coverageConfig Sensor and emitter coverage configuration
radarTransceiver Create corresponding radar transceiver from radarDataGenerator
perturb Apply perturbations to object
perturbations Perturbation defined on object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Model Air Traffic Control Tower Scanning

Create three targets by specifying their platform ID, position, and velocity.

tgt1 = struct('PlatformID',1, ...
    'Position',[0 -50e3 -1e3], ...
    'Velocity',[0 900*1e3/3600 0]);

tgt2 = struct('PlatformID',2, ...
    'Position',[20e3 0 -500], ...
    'Velocity',[700*1e3/3600 0 0]);

tgt3 = struct('PlatformID',3, ...
    'Position',[-20e3 0 -500], ...
    'Velocity',[300*1e3/3600 0 0]);

Create an airport surveillance radar that is 15 meters above the ground.

rpm = 12.5;
fov = [1.4; 5]; % [azimuth; elevation]
scanrate = rpm*360/60;  % deg/s
updaterate = scanrate/fov(1); % Hz

sensor = radarDataGenerator(1,'Rotator', ...
    'UpdateRate',updaterate, ...
    'MountingLocation',[0 0 -15], ...
    'MaxAzimuthScanRate',scanrate, ...
    'FieldOfView',fov, ...
    'AzimuthResolution',fov(1));

Generate detections from a full scan of the radar.

simTime = 0;
detBuffer = {};
while true
    [dets,numDets,config] = sensor([tgt1 tgt2 tgt3],simTime);
    detBuffer = [detBuffer; dets]; %#ok<AGROW>

    % Is full scan complete?
    if config.IsScanDone
        break % yes
    end
    simTime = simTime + 1/sensor.UpdateRate;
end

radarPosition = [0 0 0];
tgtPositions = [tgt1.Position; tgt2.Position; tgt3.Position];

Visualize the results.

clrs = lines(3);

figure
hold on

% Plot radar position
plot3(radarPosition(1),radarPosition(2),radarPosition(3),'Marker','s', ...
    'DisplayName','Radar','MarkerFaceColor',clrs(1,:),'LineStyle','none')
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% Plot truth
plot3(tgtPositions(:,1),tgtPositions(:,2),tgtPositions(:,3),'Marker','^', ...
    'DisplayName','Truth','MarkerFaceColor',clrs(2,:),'LineStyle', 'none')

% Plot detections
if ~isempty(detBuffer)
    detPos = cellfun(@(d)d.Measurement(1:3),detBuffer, ...
        'UniformOutput',false);
    detPos = cell2mat(detPos')';
    plot3(detPos(:,1),detPos(:,2),detPos(:,3),'Marker','o', ...
        'DisplayName','Detections','MarkerFaceColor',clrs(3,:),'LineStyle','none')
end

xlabel('X(m)')
ylabel('Y(m)')
axis('equal')
legend

Detect Radar Emission with radarDataGenerator

Create a radar emission and then detect the emission using a radarDataGenerator object.

First, create a radar emission.
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orient = quaternion([180 0 0],'eulerd','zyx','frame');
rfSig = radarEmission('PlatformID',1,'EmitterIndex',1,'EIRP',100, ...
    'OriginPosition',[30 0 0],'Orientation',orient);

Then, create an ESM sensor using radarDataGenerator.

sensor = radarDataGenerator(1,'DetectionMode','ESM');

Detect the RF emission.

time = 0;
[dets,numDets,config] = sensor(rfSig,time)

dets = 1x1 cell array
    {1x1 objectDetection}

numDets = 1

config = struct with fields:
              SensorIndex: 1
              IsValidTime: 1
               IsScanDone: 0
              FieldOfView: [1 5]
              RangeLimits: [0 Inf]
          RangeRateLimits: [0 Inf]
    MeasurementParameters: [1x1 struct]

Point Radar at Target

Create a radar that can be pointed directly at targets of interest to generate statistical detections.
This setup is useful in cases where the azimuth and elevation of the target are already estimated by a
tracker. Thus the radar can be cued to detect the target to update the track in between surveillance
updates and other target track updates. To specify such a radar, set the ScanMode property of
radarDataGenerator to "Custom".

rdr = radarDataGenerator(1,'ScanMode','Custom','HasElevation',true)

rdr = 
  radarDataGenerator with properties:

              SensorIndex: 1
               UpdateRate: 1
            DetectionMode: 'Monostatic'
                 ScanMode: 'Custom'
    InterferenceInputPort: 0

         MountingLocation: [0 0 0]
           MountingAngles: [0 0 0]

     EffectiveFieldOfView: [2 10]
                LookAngle: [0 0]
              RangeLimits: [0 100000]

     DetectionProbability: 0.9000

4 Objects

4-218



           FalseAlarmRate: 1.0000e-06
           ReferenceRange: 100000

       TargetReportFormat: 'Clustered detections'

  Show all properties

Create a target at which to point the radar. The target is located at a range of 1 km from the radar at
an azimuth of 10 degrees and an elevation of 5 degrees.

tgtRg = 1e3;
tgtAz = 10;
tgtEl = 5;

[X,Y,Z] = sph2cart(deg2rad(tgtAz),deg2rad(tgtEl),tgtRg);

tgt = struct(PlatformID=1,Position=[X Y Z]);

Point the radar directly at the target. Generate the statistical detection.

rdr.LookAngle = [tgtAz tgtEl];

simTime = 0;
dets = rdr(tgt,simTime);

Compare the measured target location to the actual position.

detpos = dets{1}.Measurement;

ttb = table(detpos,tgt.Position', ...
    RowNames=["X" "Y" "Z"],VariableNames=["Measured" "Actual"])

ttb=3×2 table
         Measured    Actual
         ________    ______

    X     968.64     981.06
    Y     171.74     172.99
    Z     101.94     87.156

Create a theaterPlot object. Plot the radar, the target, and the radar detections. Overlay a plot of
the radar coverage.

tp = theaterPlot(AxesUnits=["m" "m" "m"],XLimits=[0 2e3]);

pltPlotter = platformPlotter(tp,DisplayName="Radar Platform");
tgtPlotter = platformPlotter(tp,DisplayName="Targets", ...
    MarkerFaceColor="#D95319");

plotPlatform(pltPlotter,[0 0 0])
plotPlatform(tgtPlotter,tgt.Position)

covPlotter = coveragePlotter(tp,DisplayName="Radar Coverage");
covcfg = coverageConfig(rdr);
plotCoverage(covPlotter,covcfg)
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detPlotter = detectionPlotter(tp,DisplayName="Radar Detections");
plotDetection(detPlotter,detpos')

axis equal

Algorithms
Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of radar.

No Scanning

Sets ScanMode to 'No scanning'.

Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
HasElevation true
MaxMechanicalScanRate [75; 75]
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MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]

Change the ScanMode property to 'Electronic' to perform an electronic raster scan over the
same volume as a mechanical scan.

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1; 10]
HasElevation false or true
MechanicalScanLimits [0 360; -10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1; 10]
HasElevation false
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Changing the ScanMode property to 'Electronic' lets you perform an electronic raster scan over
the same volume as a mechanical scan.

Custom Scanning

The LookAngle property is not read-only only for this mode. and enables the BeamShape property.

This syntax also disables these properties:

MaxAzimuthScanRate MaxElevationScanRate MechanicalAzimuthLimits
MechanicalElevationLimit
s

ElectronicAzimuthLimits ElectronicElevationLimit
s

MechanicalAngle ElectronicAngle FieldOfView
EmissionsInputPort   

In this syntax, these properties are now tunable:

CenterFrequency Bandwidth DetectionProbability

 radarDataGenerator

4-221



ReferenceRange ReferenceRCS FalseAlarmRate
RangeLimits RangeRateLimits MaxUnambiguousRange
MaxUnambiguousRadialSpee
d

AzimuthResolution ElevationResolution

ElevationResolution RangeRateResolution  

Radar Sensor Detection Modes

The radarDataGenerator System object can model three detection modes: monostatic, bistatic,
and electronic support measures (ESM) as shown in the following figures.

For the monostatic detection mode, the transmitter and the receiver are collocated, as shown in
figure (a). In this mode, the range measurement R can be expressed as R = RT = RR, where RT and RR
are the ranges from the transmitter to the target and from the target to the receiver, respectively. In
the radar sensor, the range measurement is R = ct/2, where c is the speed of light and t is the total
time of the signal transmission. Other than the range measurement, a monostatic sensor can
optionally report range-rate, azimuth, and elevation measurements of the target.

For the bistatic detection mode, the transmitter and the receiver are separated by a distance L. As
shown in figure (b), the signal is emitted from the transmitter, reflected from the target, and received
by the receiver. The bistatic range measurement Rb is defined as Rb = RT + RR − L. In the radar
sensor, the bistatic range measurement is obtained by Rb = cΔt, where Δt is the time difference
between the receiver receiving the direct signal from the transmitter and receiving the reflected
signal from the target. Other than the bistatic range measurement, a bistatic sensor can also
optionally report the bistatic range-rate, azimuth, and elevation measurements of the target. Since
the bistatic range and the two bearing angles (azimuth and elevation) do not correspond to the same
position vector, they cannot be combined into a position vector and reported in a Cartesian
coordinate system. As a result, the measurements of a bistatic sensor can only be reported in a
spherical coordinate system.

For the ESM detection mode, the receiver can only receive a signal reflected from the target or
directly emitted from the transmitter, as shown in figure (c). Therefore, the only available
measurements are the azimuth and elevation of the target or transmitter. These measurements can
only be reported in a spherical coordinate system.

Detection and Track State Coordinates

The format of the measurement states or track states is determined by the specifications of the
HasRangeRate, HasElevation, HasINS, TaregetReportFormat, and DetectionCoordinates
properties.
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There are two general types of detection or track coordinates:

• Cartesian coordinates — Enabled by specifying the DetectionCoordinates property as
'Body', 'Scenario', or 'Sensor rectangular'. The complete form of a Cartesian state is
[x; y; z; vx; vy; vz], where x, y, and z are the Cartesian positions and vx, vy, and vz are
the corresponding velocities. You can only set DetectionCoordinates as 'Scenario' when
the HasINS property is set to true, so that the sensor can transform sensor detections or tracks
to the scenario frame.

• Spherical coordinates — Enabled by specifying the DetectionCoordinates property as
'Sensor spherical'. The complete form of a spherical state is [az; el; rng; rr], where
az, el, rng, and rr represent azimuth angle, elevation angle, range, and range rate, respectively.
When the DetectionMode property of the sensor is set to 'ESM' or 'Bistatic', the sensor can
only report detections in the 'Sensor spherical' frame.

When the HasRangeRate property is set to false, vx, vy, and vz are removed from the Cartesian
state coordinates and rr is removed from the spherical coordinates.

When the HasElevation property is set to false, z and vz are removed from the Cartesian state
coordinates and el is removed from the spherical coordinates.

When the DetectionMode property is set to 'ESM', the sensor can only report detections in the
'Sensor spherical' frame as [az; el].

When the DetectionMode property is set to 'Bistatic', the sensor can only report detections in
the 'Sensor spherical' frame as [az; el; rng; rr]. Here, rng and rr are the bistatic range
and range rate, respectively.

Measurement Parameters

The MeasurementParameters property of an output detection consists of an array of structures that
describes a sequence of coordinate transformations from a child frame to a parent frame, or the
inverse transformations. In most cases, the longest required sequence of transformations is Sensor →
Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to false, then the
sequence consists only of one transformation from sensor to platform. In this transformation, the
OriginPosition is same as the MountingLocation property of the sensor. The Orientation
consists of two consecutive rotations. The first rotation, corresponding to the MountingAngles
property of the sensor, accounts for the rotation from the platform frame (P) to the sensor mounting
frame (M). The second rotation, corresponding to the azimuth and elevation angles of the sensor,
accounts for the rotation from the sensor mounting frame (M) to the sensor scanning frame (S). In
the S frame, the x-direction is the boresight direction, and the y-direction lies within the x-y plane of
the sensor mounting frame (M).

 radarDataGenerator

4-223



If HasINS is true, the sequence of transformations consists of two transformations: first from the
scenario frame to the platform frame, and then from the platform frame to the sensor scanning
frame. In the first transformation, the Orientation is the rotation from the scenario frame to the
platform frame, and the OriginPosition is the position of the platform frame origin relative to the
scenario frame.

If the detections are reported in platform rectangular coordinates and HasINS is set to false, the
transformation consists only of the identity.

The table shows the fields of the MeasurementParameters structure. Not all fields have to be
present in the structure. The specific set of fields and their default values can depend on the type of
sensor.

Field Description
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first structure.

OriginPosition Position offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

OriginVelocity Velocity offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.
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Orientation 3-by-3 real-valued orthonormal frame rotation
matrix. The direction of the rotation depends on
the IsParentTochild field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation instead performs a frame
rotation from the child coordinate frame to the
parent coordinate frame.

HasElevation A logical scalar indicating if elevation is included
in the measurement. For measurements reported
in a rectangular frame, if HasElevation is
false, the measurements are reported assuming
0 degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is included
in the measurement.

HasRange A logical scalar indicating if range is included in
the measurement.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. For
measurements reported in a rectangular frame, if
HasVelocity is false, the measurements are
reported as [x y z]. If HasVelocity is true,
measurements are reported as [x y z vx vy
vz].

Radar Loop Gain

The radar equation relates the signal-to-noise ratio of a received signal to the transmitted radar
power, target distance and target radar cross-section and other radar parameters.

S
N =

PtGtGrλ2σ
(4π)3kbT0BNFR4L

where

• S/N: signal-to-noise ratio (dimensionless)
• Pt: peak transmitted power (W)
• Gt: transmit antenna gain (dimensionless)
• Gr: receive antenna gain (dimensionless)
• λ: radar wavelength (m)
• σ: radar target cross-section (m²)
• kb: Boltzmann's constant (W/Hz/K)
• T0: system noise temperature (K)
• B: receiver bandwidth (Hz)
• NF: noise figure (dimensionless)
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• L: general loss factor that combines losses along the transmitter-target-receiver path
(dimensionless)

Separating out the signal-to-noise ratio dependence on range and radar cross-section from the other
parameters yields

S
N = C′ σ

R4

where all the other parameters are lumped together into C'.

When expressed in dB, the radar equation is

SNR = C + RCS− 40logR

where the constant C = 10 logC' is the radar loop gain stored in the RadarLoopGain property. C can
be thought of as a constant combining all the terms of the radar design. Radar loop gain is a measure
of the sensitivity of the radar. With C, you can determine the expected SNR of a received target signal
at distance R with radar cross-section RCS.

The detectability factor is the minimum SNR required to declare a detection with a specified
probability of detection (Pd) in the DetectionProbability and specified probability false alarm
(Pfa) in the FalseAlarmRate property. The minimum radar loop gain can be derived from the
receiver operating characteristic (ROC) curve of a radar. Using the ROC curves you can find the SNR
as a function of Pd and Pfa. The radar loop gain is the minimum SNR. The ROC curves depend on the
number of pulses and the Swerling target model.

Version History
Introduced in R2021a
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See Also
radarScenario | radarTracker | radarEmitter | radarEmission | rcsSignature |
radarChannel

Topics
“Measurement Accuracy, Bias, and Resolution”
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radarTransceiver
Create corresponding radar transceiver from radarDataGenerator

Syntax
iqSensor = radarTransceiver(radarGenerator)

Description
iqSensor = radarTransceiver(radarGenerator) creates a corresponding radar transceiver,
iqSensor, based on the radarDataGenerator object, radarGenerator. The function configures
the parameters in iqSensor so that you can process the signal it generates to obtain comparable
detections to those returned from radarGenerator.

Examples

Create Radar Transceiver from Radar Data Generator

Create a radarDataGenerator and generate a radar transceiver from it.

rdr = radarDataGenerator;
iqsensor = radarTransceiver(rdr);

Produce radar signal from a target using the transceiver.

tgt = struct('Position',[50e3 0 0]);
x = iqsensor(tgt,0);
t = (0:numel(x)-1)/iqsensor.Waveform.SampleRate;
plot(t*physconst('lightspeed')/2,abs(x))
xlabel('Range (m)')
ylabel('Magnitude')
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Input Arguments
radarGenerator — Radar data generator
radarDataGenerator object

Radar data generator, specified as a radarDataGenerator object.

Output Arguments
iqSensor — Radar transceiver
radarTransceiver object

Radar transceiver, returned as a radarTransceiver object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
radarDataGenerator | radarTransceiver | radarChannel
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surfaceReflectivityLand
Normalized reflectivity of land surface

Description
Normalized reflectivity is the radar cross-section of a unit area of a land surface. Multiplying by the
total area of a surface or the illuminated area of a surface gives the total radar cross-section.
Normalized reflectivity is also referred to as surface σ0 and is a function of frequency and grazing
angle.

To compute the normalized reflectivity:

1 Create the surfaceReflectivityLand object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
refl = surfaceReflectivityLand
refl = surfaceReflectivityLand(Name=Value)

Description

refl = surfaceReflectivityLand creates a normalized reflectivity object refl for a land
surface. Use this object to generate a normalized radar cross section (NRCS). This syntax creates a
normalized reflectivity object with a 'Barton' land Model and a 'Flatland' LandType.

refl = surfaceReflectivityLand(Name=Value) creates a normalized reflectivity object for a
land surface with the specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1=Value1, … ,NameN=ValueN).
Example: refl =
surfaceReflectivityLand(Model="GIT",LandType="Soil",SurfaceHeightStandardDevi
ation=1) creates a normalized reflectivity object for land using the GIT model with a LandType of
Soil and a SurfaceHeightStandardDeviation of 1.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Model — Land reflectivity model
'Barton' (default) | 'APL' | 'Billingsley' | 'GIT' | 'Morchin' | 'Nathanson' |
'UlabyDobson' | 'ConstantGamma'

Land reflectivity model, specified as 'Barton', 'APL', 'Billingsley', 'GIT', 'Morchin',
'Nathanson', 'Nathanson', 'UlabyDobson', or 'ConstantGamma'. Descriptions of the models
and land types are shown in the table “Land Reflectivity Models and Land Types” on page 4-240.

LandType — Land type
char | string

Land type, specified as a char or string. The allowable land type and their default values depend on
the Model property. If the Model property is not specified, the default land type is 'Flatland'.
Descriptions of the models and land types are shown in the table “Land Reflectivity Models and Land
Types” on page 4-240.
Data Types: char | string

SurfaceHeightStandardDeviation — Height standard deviation
0 (default) | scalar

Standard deviation of the surface height, specified as a positive scalar. Units are in meters.

Dependencies

To enable this property, set the Model property to 'GIT'.
Data Types: double

Polarization — Polarization of reflectivity model
'H' (default) | 'V'

Polarization of reflectivity model, specified as 'H' or 'V'. 'H' designates horizontal polarization and
'V' designates vertical polarization.

Dependencies

To enable this property, set the Model property to 'UlabyDobson'.
Data Types: char | string

Gamma — Terrain gamma value
-20 (default) | real scalar

Terrain gamma value used in the constant gamma clutter reflectivity model, specified as a scalar. The
gamma value depends on both terrain type and the operating frequency. The default value is
representative of flat land. Units are in dB.
Example: -15

Dependencies

To enable this property, set the Model property to 'ConstantGamma'.
Data Types: double

Speckle — Speckle distribution type
'None' (default) | 'Lognormal' | 'Rayleigh' | 'Weibull' | 'Custom'
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Speckle distribution type, specified as 'None', 'Lognormal', 'Rayleigh', 'Weibull', or
'Custom'. Speckle is a multiplicative factor used to make clutter data appear noisier and is
especially applicable to imaging applications.

Speckle is correlated with clutter RCS and is applied as I = σ*n, where σ represents the clutter RCS
and n represents random numbers, which are often drawn from an independent identically-
distributed unity mean noise statistical distribution.

• None – No speckle is applied.
• Lognormal – Speckle has a lognormal distribution. Define the distribution using the

SpeckleMean and SpeckleStandardDeviation properties. Default values of these properties
create speckle with a normalized mean lognormal distribution.

• Rayleigh – Speckle has a Rayleigh distribution. Define the distribution using the SpeckleScale
property. The default value of this property creates speckle with a unit mean Rayleigh distribution.

• Weibull – Speckle has a Weibull distribution. Define the distribution using the SpeckleScale
and SpeckleShape properties. The default values of these properties create speckle with a unit
mean Rayleigh distribution.

Data Types: char | string

SpeckleMean — Mean of value of lognormal-distributed speckle
-0.5*log(2) (default) | scalar

Mean value of lognormal-distributed speckle, specified as a scalar.
Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleStandardDeviation — Standard deviation of lognormal-distributed speckle
sqrt(log(2)) (default) | non-negative scalar

Standard deviation of lognormal-distributed speckle, specified as a non-negative scalar.
Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleScale — Scale parameter for Weibull and Rayleigh speckle distribution
sqrt(4/π) (default) | non-negative scalar

Scale parameter for speckle for the Rayleigh and Weibull distributions, specified as a positive scalar.
Dependencies

To enable this property, set the Speckle property to 'Rayleigh' or 'Weibull'.
Data Types: double

SpeckleShape — Shape value for Weibull distribution
2 (default) | positive scalar

Shape value for the Weibull speckle distribution, specified as a positive scalar.

4 Objects

4-232



Dependencies

To enable this property, set the Speckle property to Weibull.
Data Types: double

Usage

Syntax
nrcs = refl(graz,freq)
[nrcs,speck] = refl(graz,freq)

Description

nrcs = refl(graz,freq) returns the normalized radar cross section nrcs at grazing angle graz
and frequency freq. When the Model property is set to 'Billingsley', graz is interpreted as a
depression angles.

[nrcs,speck] = refl(graz,freq) also returns the multiplicative speckle speck.

Input Arguments

graz — Grazing or depression angle
scalar | M-length vector of real values

Grazing or depression angle of a surface relative to the radar, specified as a scalar or an M-length
row vector of real values. When the land Model property is set to 'Billingsley', the angle is
interpreted as a depression angle depressionang between –90° and 90°. For all other models, the
angle is interpreted as a grazing angle grazingang ranging from 0° to 90° . Units are in degrees.

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
Example: freq = 7*10e9

Output Arguments

nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

speck — Multiplicative speckle
N-length real-valued vector

Multiplicative speckle, returned as an N-length real-valued vector where N is the length of the
frequency vector in freq.
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Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Surface Reflectivity of Default Land Model

Plot the normalized radar cross-section for grazing angles from 5 to 90 degrees. Assume the default
'Barton' land Model and 'Flatland' LandType. Set the radar frequency to 1 GHz.

grazAng = 5:90;
freq = 1e9;
reflectivity = surfaceReflectivityLand;
nrcs = reflectivity(grazAng,freq);
plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('Barton Land Model with Flat Land Type')
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Create Reflective Land Surface in Radar Scenario

Configure a radarscenario to simulate a reflective land surface. Add a land surface object to define
the physical properties of the scenario surface. The surface is a simple 200-by-200 meter rectangle.
Use the surfaceReflectivityLand function to create a constant-gamma reflectivity model with a
gamma value of -10 dB. Use the scenario landSurface method to add the rectangular land region
and the radar reflectivity model to the scenario. Use a surface reference height of 16 meters.

scene = radarScenario(UpdateRate = 0, IsEarthCentered = false);
refl = surfaceReflectivityLand(Model = "ConstantGamma", Gamma = -10);
srf = landSurface(scene,RadarReflectivity = refl, ...
    Boundary=[-100 100; -100 100],ReferenceHeight = 16)

srf = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 16
             Boundary: [2x2 double]
              Terrain: []
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Surface Reflectivity of GIT Land Model

Create a normalized reflectivity object using the GIT 'Model' and a 'Soil' land type. Obtain the
normalized radar cross-section at a frequency of 3 GHz over grazing angles from 20 to 60 degrees.
Assume a surface height standard deviation of two meters. Plot the surface reflectivity.

grazAng = 20:60;
freq = 10e9;
reflectivity = surfaceReflectivityLand(Model="GIT", ...
    LandType="Soil",SurfaceHeightStandardDeviation=2);
nrcs = reflectivity(grazAng,freq);
plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('GIT Model')

Surface Reflectivity of Billingsley Land Model

Create a normalized reflectivity object using the Billingsley 'Model' and a 'LowReliefRural' land type.
Obtain the normalized radar cross-section at a frequency of 3 GHz over depression angles from 0.1 to
3 degrees. Plot the surface reflectivity.

    depAng = 0.1:0.1:2;
    freq = 3e9; 
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    reflectivity = surfaceReflectivityLand(Model="Billingsley", ...
         LandType="LowReliefRural");
    nrcs = reflectivity(depAng,freq);
    plot(depAng,pow2db(nrcs))
    grid on
    xlabel('Depression Angle (deg)')
    ylabel('NRCS (dB m^2/m^2)')
    title('Billingsley Model')

Surface Reflectivity of Ulaby-Dobson Land Model

Create a normalized reflectivity object using the Ulaby-Dobson model for a grass land type. Obtain
the normalized radar cross-section for both vertical and horizontal polarizations at a frequency of 10
GHz over grazing angles from 1 to 10 degrees. Plot the surface reflectivities.

grazAng = 1:0.1:10;
freq = 10e9;
reflectivity_v = surfaceReflectivityLand(Model="UlabyDobson", ...
    LandType="Grass",Polarization="V");
nrcs_v = reflectivity_v(grazAng,freq);
reflectivity_h = surfaceReflectivityLand(Model="UlabyDobson", ...
    LandType="Grass",Polarization="H");
nrcs_h = reflectivity_h(grazAng,freq);
plot(grazAng,pow2db(nrcs_v))
hold on
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plot(grazAng,pow2db(nrcs_h))
grid on
legend('Vertical Polarization','Horizonal Polarization')
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('Ulaby-Dobson Model')

Create Land Surface in Radar Scenario

Create a surface with two hills. Plot the surface on a 200-by-200 meter grid with grid points one
meter apart. Add the surface to a radar scenario. Assume the surface has a radar reflectivity defined
by a constant gamma model.

[x,y] = meshgrid(linspace(-100,100,201));
ht1 = 40*exp(-(x.^2 + y.^2)/30^2);
ht2 = 100*exp(-((x-60).^2 + y.^2)/25^2);
ht = ht1 + ht2;
p = surfc(x(1,:),y(:,1),ht);
axis equal
axis tight
shading interp
simTime = 3;
scene = radarScenario(UpdateRate = 1, ...
    IsEarthCentered = false,StopTime = simTime);
gammaDB = surfacegamma('Flatland');
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refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = gammaDB);
srf = landSurface(scene,RadarReflectivity = refl, ...
    Terrain = ht,Boundary = [-100,100;-100,100]);

Use surface manager to identify the surface.

scene.SurfaceManager

ans = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

scene.SurfaceManager.Surfaces

ans = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: [201x201 double]

Obtain and plot the height of the surface at the point (50,-30).

xt = 50;
yt = -30;
htx = height(srf,[xt,yt])

htx = 21.1046

hold on
plot3(xt,yt,htx+5,'ow','MarkerFaceColor','r')
xlabel('x')
ylabel('y')
hold off
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More About
Land Reflectivity Models and Land Types

Model Land Type Range of Validity Settable Properties
'Barton' – Constant-
gamma mathematical
model generally
applicable over medium
grazing angles.
'Barton' is the default
model. See [1] [2], and
[3].

'RuggedMountains'
'Mountains'
'Metropolitan'
'Urban'
'WoodedHills'
'RollingHills'
'Woods'
'Farm'
'Desert'
'Flatland' (default
for model)
'Smooth'

• Grazing angle 20 –
60 degrees

• Frequency 1 – 10
GHz

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape
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Model Land Type Range of Validity Settable Properties
'APL' – This model also
known as the ADSAM
model. Low-fidelity
constant-gamma
mathematical model
that includes specular
scattering. See [4].

'Urban'
'HighRelief'
'LowRelief' (default
for model)

• Grazing angle 0 – 90
degrees

• Frequency 1 – 100
GHz

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape

'Billingesley' –
High-validity empirical
model generally
applicable for low
depression angles less
than 2 degrees. See [5].

'LowReliefRural'
(default for model)
'LowReliefForest'
'Farm'
'Desert'
'Marsh'
'Grassland'
'HighReliefRural'
'HighReliefForest
'
'Mountains'
'Urban'
'LowReliefUrban'

• Depression angle
-0.75 – 2 degrees

• Frequency – VHF
(0.030 – 0.3), UHF
(0.3 – 1), L (1 -- 2), S
(2 - 4), X (8 - 12)
GHz

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape

'GIT' – Georgia
Institute of Technology
semi-empirical model
that takes into account
terrain roughness.
Generally applicable for
medium grazing angles.
See [6]

'Soil' (default for
Model)
'Grass'
'TallGrass'
'Trees'
'Urban'

• Grazing angle 20 –
65 degrees

• Frequency 3 – 15
GHz

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape
SurfaceHeightStan
dardDeviation

'Morchin' –
Mathematical model
generally applicable for
high grazing angles for
frequencies from UHF
to C-band. See [7].

'Desert'
'Farm' (default for
Model)
'Woods'
'Mountains'

• Grazing angle 70 –
90 degrees

• Frequencies UHF
(0.3 – 1) L (1 – 2) S
(2 – 4) C (4 – 8)

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape
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Model Land Type Range of Validity Settable Properties
'Nathanson' –
Applicable up to Ka
band for low grazing
angle surface radars
and medium grazing
angle airborne radars
for low mountains,
farmland, and wooded
areas. See [3].

'Desert'
'Farm' (default for
Model)
'Woods'
'Jungle'
'RollingHills'
'Urban'

• Grazing angle 0 – 60
degrees

• Frequency L (1 – 2).
S ( 2 – 4), C (4 – 8), X
(8 --12), Ku (12 --18),
Ka (32 -- 36) GHz

LandType
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape

'UlabyDobson' –
High-validity semi-
empirical model for low
to medium grazing
angles covering L-band
to Ku, taking into
account polarization.
See [8].

'Soil' (default
for Model)
'Grass'
'Shrubs'
'ShortVegetation'

• Grazing angle 0 – 60
degrees

• Frequency L (1 – 2),
S ( 2 – 4), C (4 – 8), X
(8 --12), Ku (12 --18)
GHz

LandType
Polarization
Speckle
SpeckleMean
SpeckleStandardDe
viation
SpeckleScale
SpeckleShape

'ConstantGamma' –
Mathematical model for
the normalized
reflectivity. See
“Constant Gamma
Model” on page 4-242.

  Gamma

Constant Gamma Model

The constant-gamma model expresses a simple analytic relationship between the normalized radar
cross-section and grazing angle.

σ = 10(γ/10)sin(θ)

γ is defined by the Gamma property and θ is the grazing angle input argument graz given in degrees.
The default value of Gamma is –20, which is representative of flat land.

Speckle Model

Speckle is modeled as an uncorrelated, multiplicative factor I = σ∙n, where σ represents the clutter
RCS and n are independent identically distributed (IDD) mean noise samples with unity mean.
Because speckle is correlated with underlying terrain RCS, it is usually applied to radar intensity. The
speckle noise models include Weibull, Rayleigh, and lognormal.

Version History
Introduced in R2022a

4 Objects

4-242



References
[1] Barton, David Knox. Radar Equations for Modern Radar. Artech House, 2013.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea. 3rd ed, Artech House, 2001.

[3] Nathanson, Fred E., et al. Radar Design Principles: Signal Processing and the Environment. 2. ed.,
Repr, Scitech Publ, 2004.

[4] Reilly, J. P., R. L. McDonald, and G. D. Dockery. "RF-Environment Models for the ADSAM Program."
Report No. A1A97U-070, Laurel, MD: Johns Hopkins University Applied Physics Laboratory,
August 22, 1997.

[5] Billingsley, J. Barrie. Low-Angle Radar Land Clutter: Measurements and Empirical Models. William
Andrew Pub. : SciTech Pub. ; Institution of Electrical Engineers, 2002.

[6] Richards, M. A., et al., editors. Principles of Modern Radar. SciTech Pub, 2010.

[7] Morchin, Fred E., J. Patrick Reilly, and Marvin Cohen. Radar Design Principles: Signal Processing
and the Environment. 2nd ed. New York: McGraw-Hill, 1991.

[8] Ulaby, Fawwaz T., and M. Craig Dobson. Handbook of Radar Scattering Statistics for Terrain.
Artech House, 1989.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterSurfaceRCS | landroughness | landreflectivity | searoughness |
seareflectivity | surfaceReflectivity | surfaceReflectivitySea |
surfaceReflectivityCustom | grazingang | depressionang | radarScenario |
radarDataGenerator

Topics
“Introduction to Radar Scenario Clutter Simulation”
“Generate Clutter and Target Returns for MTI Radar”
“Simulate Radar Detections of Surface Targets in Clutter”
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surfaceReflectivitySea
Normalized reflectivity of sea surface

Description
Normalized reflectivity is the radar cross-section of a unit area of a sea surface. Multiplying by the
total area of a surface or the illuminated area of a surface gives the total radar cross-section.
Normalized reflectivity is also referred to as surface σ0 and is a function of frequency and grazing
angle.

To compute the normalize reflectivity:

1 Create the surfaceReflectivitySea object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
refl = surfaceReflectivitySea
refl = surfaceReflectivitySea(Name=Value)

Description

refl = surfaceReflectivitySea creates a normalized reflectivity object, refl, for a sea
surface. Use this object to generate a normalized radar cross section (NRCS). This syntax assumes a
'NRL' sea model with a sea state of zero.

refl = surfaceReflectivitySea(Name=Value) also creates a normalized reflectivity object for
a sea surface with the specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1=Value1,...,NameN=ValueN).
Example: refl =
surfaceReflectivitySea(Model="Hybrid",SeaState=2,Speckle="Rayleigh") creates a
normalized reflectivity object for a sea surface using the Hybrid model with a SeaState of 2 and a
Rayleigh Speckle type.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Model — Sea reflectivity model
'NRL' (default) | 'APL' | 'GIT' | 'Hybrid' | 'Masuko' | 'Nathanson' | 'RRE' | 'Sittrop' |
'TSC' | 'ConstantGamma'

Sea reflectivity model, specified as 'NRL', 'APL', 'GIT', 'Hybrid', 'Masuko', 'Nathanson',
'RRE', 'Sittrop', 'TSC', or 'ConstantGamma'. The table.“Sea Reflectivity Models” on page 4-
251 summarize the sea surface models available in the radar simulation and their domain of
application

SeaState — Sea state
1 (default) | nonnegative integer

Sea state, specified as a nonnegative integer from 0 - 8.
Data Types: double

Polarization — Polarization of reflectivity model
'H' (default) | 'V'

Polarization of reflectivity model, specified as 'H' for horizontal polarization or 'V' for vertical
polarization.
Dependencies

To enable this property, set the Model property to any value except 'ConstantGamma'.

Gamma — Sea gamma value
-40 (default) | real scalar

Sea gamma value used in the constant gamma clutter reflectivity model, specified as a scalar. The
gamma value depends on both sea state and the operating frequency. Units are in dB.
Example: -25
Dependencies

To enable this property, set the Model property to ConstantGamma.
Data Types: double

Speckle — Speckle distribution type
'None' (default) | 'Lognormal' | 'Rayleigh' | 'Weibull' | 'Custom'

Speckle distribution type, specified as 'None', 'Lognormal', 'Rayleigh', 'Weibull', or
'Custom'. Speckle is a multiplicative factor used to make clutter data appear noisier and is
especially applicable to imaging applications.

Speckle is correlated with clutter RCS and is applied as I = σ*n, where σ represents the clutter RCS
and n represents random numbers, which are often drawn from an independent identically-
distributed unity mean noise statistical distribution.

• None – No speckle is applied.
• Lognormal – Speckle has a lognormal distribution. Define the distribution using the

SpeckleMean and SpeckleStandardDeviation properties. Default values of these properties
create speckle with a normalized mean lognormal distribution.

• Rayleigh – Speckle has a Rayleigh distribution. Define the distribution using the SpeckleScale
property. The default value of this property creates speckle with a unit mean Rayleigh distribution.
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• Weibull – Speckle has a Weibull distribution. Define the distribution using the SpeckleScale
and SpeckleShape properties. The default values of these properties create speckle with a unit
mean Rayleigh distribution.

Data Types: char | string

SpeckleMean — Mean of value of lognormal-distributed speckle
-0.5*log(2) (default) | scalar

Mean value of lognormal-distributed speckle, specified as a scalar.

Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleStandardDeviation — Standard deviation of lognormal-distributed speckle
sqrt(log(2)) (default) | non-negative scalar

Standard deviation of lognormal-distributed speckle, specified as a non-negative scalar.

Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleScale — Scale parameter for Weibull and Rayleigh speckle distribution
sqrt(4/π) (default) | non-negative scalar

Scale parameter for speckle for the Rayleigh and Weibull distributions, specified as a positive scalar.

Dependencies

To enable this property, set the Speckle property to 'Rayleigh' or 'Weibull'.
Data Types: double

SpeckleShape — Shape value for Weibull distribution
2 (default) | positive scalar

Shape value for the Weibull speckle distribution, specified as a positive scalar.

Dependencies

To enable this property, set the Speckle property to Weibull.
Data Types: double

Usage

Syntax
nrcs = refl(graz,freq)
nrcs = refl(graz,freq,lookang)
[nrcs,speck] = refl( ___ )
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Description

nrcs = refl(graz,freq) returns the normalized radar cross section nrcs at grazing angle graz
and frequency freq.

nrcs = refl(graz,freq,lookang) also specifies the radar look angle lookang with respect to
the wind direction. To enable this syntax, set the Model property to 'APL', 'GIT', 'Hybrid',
'Masuko', 'Sittrop', or 'TSC'.

[nrcs,speck] = refl( ___ ) also returns multiplicative speckle speck.

Input Arguments

graz — Grazing angle
nonnegative scalar | length-M row vector of nonnegative values

Grazing angle of surface relative to radar, specified as a scalar or a length-M row vector of
nonnegative values. Grazing angles must lie between 0° and 90°. Units are in degrees.

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
Example: freq = 7*10e9

lookangle — Look angle with respect to wind direction
0 (default) | scalar

Look angle with respect to wind direction, specified as a scalar between 0° and 180°. The look angle
is zero when looking upwind.

Dependencies

To enable this argument, set the Model property to 'APL', 'GIT', 'Hybrid', 'Masuko',
'Sittrop', or 'TSC'.
Data Types: double

Output Arguments

nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

speck — Multiplicative speckle
N-length real-valued vector

Multiplicative speckle, returned as an N-length real-valued vector where N is the length of the
frequency vector in freq.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Sea Surface Reflectivity Model

Create a sea surface normalized reflectivity object using the default NRL model and a sea state of 6.
Obtain the normalized reflectivity at a frequency of 1 GHz over grazing angles from 0.1 to 10 degrees
and assume vertical polarization. Plot the normalize reflectivity as a function of grazing angle.

grazAng = 0.1:0.1:10;
freq = 1e9;
seastate = 6;
pol = 'V';
refl = surfaceReflectivitySea(SeaState = seastate,Polarization = pol);
nrcs = refl(grazAng,freq);
plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('NRL Model, Vertical Polarization')
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Create Sea Surface Reflectivity Model with Default Values

Create a sea surface normalized reflectivity object using the default model parameters. Obtain the
normalized reflectivity at a frequency of 1 GHz over grazing angles from 0.1 to 10 degrees and
assume vertical polarization. Plot the normalize reflectivity as a function of grazing angle.

grazAng = 0.1:0.1:10;
freq = 1e9;
refl = surfaceReflectivitySea

refl = 
  surfaceReflectivitySea with properties:

           Model: 'NRL'
        SeaState: 1
    Polarization: 'H'
         Speckle: 'None'

nrcs = refl(grazAng,freq);
plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('NRL Model, Vertical Polarization')
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Create Reflective Sea Surface in Radar Scenario

Configure a radarscenario to simulate a reflective sea surface. Add a sea surface object to define
the physical properties of the scenario surface. The surface is a simple 400-by-400 meter rectangle.
Use the surfaceReflectivitySea function to create a GIT model with a sea state 3. Then, use the
scenario seaSurface method to add the rectangular sea region and the radar reflectivity model to
the scenario. Use a surface reference height of 16 meters.

scene = radarScenario(UpdateRate = 0, IsEarthCentered = false);
refl = surfaceReflectivitySea(Model = "GIT", SeaState = 3, Polarization = "V");
srf = seaSurface(scene,RadarReflectivity = refl, ...
    Boundary=[-200 200; -200 200],ReferenceHeight = 16)

srf = 
  SeaSurface with properties:

            WindSpeed: 10
        WindDirection: 0
                Fetch: Inf
        SpectralModel: []
    RadarReflectivity: [1x1 surfaceReflectivitySea]
      ReflectivityMap: 1
      ReferenceHeight: 16
             Boundary: [2x2 double]
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More About
Sea Reflectivity Models

Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'NRL' – Sea
Clutter Model
due to Gregers-
Hansen and
Mittal. (Default
model)

• Naval
Research
Laboratory
empirical
model for
sea
reflectivity.

• The model
does not
include
variation
with azimuth
or wind
direction.

• The model
matches
experimenta
l results with
an absolute
deviation of
about 2.2 to
2.3 dB for
grazing
angles from
0.1° to 10°.
A deviation
of 2.6 dB
can be seen
for grazing
angles above
10° and
below 60°.

See [1] and [2].

Empirical 0.1 – 60 0.5 – 35 0 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e
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Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'APL' –

• John
Hopkins
Applied
Physics
Laboratory
ADSAM
model.

• Derived
wind
velocity from
sea state
produces
less
conservative
reflectivity
values than
GIT model at
lower sea
states.

• Takes into
account
wave height
and wave
speed.

• Differs from
the GIT
model by
deriving
wind
velocity from
sea state.

See [3].

Semi-empirical 0.1 – 10 1 – 100 1 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

4 Objects

4-252



Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'GIT' –

• Georgia
Institute of
Technology

• Semi-
empirical
model based
on
multipath,
wind speed,
and wind
direction
factor.

• Takes into
account
wave height
and wave
speed.

• Derived
wind
velocity from
sea state
produces
less
conservative
reflectivity
values than
GIT at lower
sea states.

See [4], [5], and
[1].

Semi-empirical 0.1 – 10 1 – 100 1 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e
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Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'Hybrid' –

• Hybrid
model that
mixes work
by Barton,
Nathanson's
tables, and
GIT semi-
empirical
models.

• May be
biased high
in the low
grazing
angle
regime.

See [5].

Semi-empirical 0.1 – 30 0.5 – 35 0 – 5 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

'Masuko' –

• Empirical
model
applicable
for medium
grazing
angles for X
and Ka
bands.

See [6] and [4].

Empirical 30 – 60 X (8 – 12) Ka
(26.5 – 40)

1 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e
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Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'Nathanson' –

• Empirical
tables
compiled
from
experimenta
l data that
are averages
of all wind
directions
covering
UHF to Ka.

See [7].

Empirical 0.1 – 60 UHF (0.3 – 1), L
(1 – 2), S(2 – 4),
C(4 – 8), X(8 –
12), Ku(12 –
18), Ka(32 – 36)

0 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

'RRE' –

• Royal Radar
Establishme
nt model

• Averages
over all wind
directions.

• Used
extensively
in the UK for
airborne
radar
performance
assessment.
See [4].

Mathematical < 10 9 – 10 0 – 6 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

'Sittrop' –

• Empirical
model for
lower
grazing
angles and
higher sea
states for X-
band.

See [4].

Empirical 0.2 – 10 X (8 – 12) 0 – 7 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e
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Model Type Grazing
Angles

Frequency
Range

Sea State Settable
Properties

'TSC' –

• Technology
Service
Corporation
Empirical
model.

• Based on fit
to
Nathanson
tables.

• Similar to
the GIT
model but
with values
not falling
off as rapidly
in range

• Recommend
ed for
conservative
performance
prediction or
when
conditions
are
unknown.

See [5].

Empirical 0.1 – 90 0.5 – 35 0 – 5 SeaState
Polarizatio
n
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

'ConstantGam
ma' – See the
“Constant
Gamma Model”
on page 4-256
for a
description.

Mathematical    SeaState
Gamma
Speckle
SpeckleMean
SpeckleStan
dardDeviati
on
SpeckleScal
e
SpeckleShap
e

Constant Gamma Model

The constant-gamma model expresses a simple analytic relationship between the normalized radar
cross-section and grazing angle.
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σ = 10(γ/10)sin(θ)

γ is defined by the Gamma property and θ is the grazing angle input argument graz given in degrees.
The default value of Gamma is –40, which is representative of sea state 3.

Speckle Model

Speckle is modeled as an uncorrelated, multiplicative factor I = σ∙n, where σ represents the clutter
RCS and n are independent identically distributed (IDD) mean noise samples with unity mean.
Because speckle is correlated with underlying terrain RCS, it is usually applied to radar intensity. The
speckle noise models include Weibull, Rayleigh, and lognormal.

Version History
Introduced in R2022a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterSurfaceRCS | landroughness | searoughness | landreflectivity |
seareflectivity | surfaceReflectivity | surfaceReflectivityCustom |
surfaceReflectivityLand | grazingang | depressionang | radarScenario |
radarDataGenerator
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Topics
“Introduction to Radar Scenario Clutter Simulation”
“Generate Clutter and Target Returns for MTI Radar”
“Simulate Radar Detections of Surface Targets in Clutter”
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surfaceReflectivityCustom
Normalized reflectivity of custom surface

Description
Normalized reflectivity is the radar cross-section of a unit area of a general surface. Multiplying by
the total area of the surface or the illuminated area of a surface gives the total radar cross-section.
Normalized reflectivity is also referred to as surface σ0 and is a function of frequency and grazing
angle.

To compute the normalized reflectivity:

1 Create the surfaceReflectivityCustom object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
refl = surfaceReflectivityCustom
refl = surfaceReflectivityCustom(Name=Value)

Description

refl = surfaceReflectivityCustom creates a normalized reflectivity System object refl for a
custom surface with default reflectivities. The default custom surface has reflectivity set to 1 m²/m²
for grazing angles from 0° – 90° for frequencies from 0 – 1e20 Hz.

refl = surfaceReflectivityCustom(Name=Value) also creates a normalized reflectivity object
for a surface with the specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1=Value1, ..., NameN=ValueN).
Example: refl = surfaceReflectivityCustom(Reflectivity = nrcsTable,Frequency =
(0:10)*1e9,GrazingAngle = (0:0.001:2)) creates a custom normalized reflectivity object
from a table of reflectivity values nrcsTable for frequencies from 0 – 10 GHz and grazing angles
from 0° – 2°.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Reflectivity — Normalized radar cross section
ones(91,2) (default) | Q-by-R real-valued matrix | Q-by-R-by-S real-valued array

Normalized radar cross section (NRCS) or reflectivity values, specified as an M-by-N real-valued
matrix. where Q corresponds to the number of angles set in the GrazingAngle property and R
corresponds to the number of frequencies set in the Frequency property.

For more than one surface, you can specify an Q-by-R-by-S real-valued array where P corresponds to
the surface type index.

Units are dimensionless but often expressed in m²/m².
Data Types: double

Frequency — Valid frequencies
[0 1e20] (default) | length-R row-vector of real values

Valid frequencies for the normalized reflectivity, specified as a length-R row-vector of real values. R
corresponds to the number of rows in the Reflectivity property. Frequency units are in Hz.
Data Types: double

GrazingAngle — Grazing angles
0:90 (default) | length-Q row-vector of real values

Grazing angles, specified as a length-Q row-vector of real values. Q corresponds to the number of
columns in the Reflectivity property. Units are in degrees.
Data Types: double

Speckle — Speckle distribution type
'None' (default) | 'Lognormal' | 'Rayleigh' | 'Weibull' | 'Custom'

Speckle distribution type, specified as 'None', 'Lognormal', 'Rayleigh', 'Weibull', or
'Custom'. Speckle is a multiplicative factor used to make clutter data appear noisier and is
especially applicable to imaging applications.

Speckle is correlated with clutter RCS and is applied as I = σ*n, where σ represents the clutter RCS
and n represents random numbers, which are often drawn from an independent identically-
distributed unity mean noise statistical distribution.

• None – No speckle is applied.
• Lognormal – Speckle has a lognormal distribution. Define the distribution using the

SpeckleMean and SpeckleStandardDeviation properties. Default values of these properties
create speckle with a normalized mean lognormal distribution.

• Rayleigh – Speckle has a Rayleigh distribution. Define the distribution using the SpeckleScale
property. The default value of this property creates speckle with a unit mean Rayleigh distribution.

• Weibull – Speckle has a Weibull distribution. Define the distribution using the SpeckleScale
and SpeckleShape properties. The default values of these properties create speckle with a unit
mean Rayleigh distribution.

Data Types: char | string

SpeckleMean — Mean of value of lognormal-distributed speckle
-0.5*log(2) (default) | scalar
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Mean value of lognormal-distributed speckle, specified as a scalar.
Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleStandardDeviation — Standard deviation of lognormal-distributed speckle
sqrt(log(2)) (default) | non-negative scalar

Standard deviation of lognormal-distributed speckle, specified as a non-negative scalar.
Dependencies

To enable this property, set the Speckle property to 'Lognormal'.
Data Types: double

SpeckleScale — Scale parameter for Weibull and Rayleigh speckle distribution
sqrt(4/π) (default) | non-negative scalar

Scale parameter for speckle for the Rayleigh and Weibull distributions, specified as a positive scalar.
Dependencies

To enable this property, set the Speckle property to 'Rayleigh' or 'Weibull'.
Data Types: double

SpeckleShape — Shape value for Weibull distribution
2 (default) | positive scalar

Shape value for the Weibull speckle distribution, specified as a positive scalar.
Dependencies

To enable this property, set the Speckle property to Weibull.
Data Types: double

Usage

Syntax
nrcs = refl(graz,freq)
nrcs = refl(graz,freq,idx)
[nrcs,speck] = relf( ___ )

Description

nrcs = refl(graz,freq) returns the normalized radar cross section nrcs at grazing angle graz
and frequency freq. When either graz or freq lies outside of the valid region defined by the
GrazingAngle and Frequency properties, the nearest value of the normalized reflectivity is
returned.

nrcs = refl(graz,freq,idx) also specifies the surface type index idx of the surface patch. To
enable this syntax, specify the Reflectivity property as an M-by-N-by-P array, where M
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corresponds to the number of angles specified in the GrazingAngle property, N corresponds to the
number of frequencies in the Frequency property, and P corresponds to the surface type index.
MATLAB array.

[nrcs,speck] = relf( ___ ) also returns speckle values speck.

Input Arguments

graz — Grazing angle
nonnegative scalar | M-length vector of nonnegative values

Grazing angle of the surface relative to the radar, specified as a scalar or a M-length row vector of
nonnegative values. The angles range from 0° to 90°. Units are in degrees.
Example: 10

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
Example: 7*10e9

idx — Surface type index
scalar | length-p vector of positive values

Surface type index, specified as a scalar or length-P vector of positive values.
Data Types: double

Output Arguments

nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

speck — Multiplicative speckle values
length-N vector of real values

Multiplicative speckle, returned as an N-length real-valued vector where N is the length of the
frequency vector in freq.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Custom Normalized Reflectivity as Standalone Function

Construct a table of normalized reflectivities of a land surface using the surfacegamma function. The
table covers frequencies from 1 - 10 GHz and grazing angles from 0 - 7 degrees. Use the
surfaceReflectivityCustom System object™ directly.

freqs = (1:10)*1e9;
angs = 0:.1:7;
gammaFarm   = db2pow(surfacegamma('farmland',freqs));
gammaHills  = db2pow(surfacegamma('wooded hill',freqs));

Create a constant gamma model by multiplying the reflectivity coefficients by the sine of the grazing
angle. Add Rayleigh speckle.

nrcsTbl   = zeros(numel(angs),numel(freqs),2);
nrcsTbl(:,:,1) = gammaFarm.*sind(angs).';  % Farmland
nrcsTbl(:,:,2) = gammaHills.*sind(angs).'; % Wooded hills
refl = surfaceReflectivityCustom(Reflectivity = nrcsTbl, Frequency = freqs, ...
    GrazingAngle = angs, Speckle = 'Rayleigh');

Find the normalized reflectivity of farm land (in dB).

nrcs = pow2db(refl(6.3, 2.5e9, 1));
disp(nrcs)

  -27.2110

Find the normalized reflectivity of wooded hills (in dB).

nrcs = pow2db(refl(6.3, 2.5e9, 2));
disp(nrcs)

  -22.2110

Create Custom Surface in Radar Scenario

Create a land reflectivity model using the surfaceReflectivityCustom object and
radarScenario.

First create a two hill scenario.

[x,y] = meshgrid(linspace(-100,100,201));
ht1 = 40*exp(-(x.^2 + y.^2)/30^2);
ht2 = 100*exp(-((x-60).^2 + y.^2)/25^2);
ht = ht1 + ht2;
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p = surfc(x(1,:),y(:,1),ht);
shading interp

Construct a table of normalized reflectivities of a land surface using the surfacegamma function. The
table covers frequencies from 1 - 10 GHz and grazing angles from 0 - 7 degrees.

freqs = (1:10)*1e9;
angs = 0:.1:7;
gammaFarm   = db2pow(surfacegamma('farmland',freqs));
gammaHills  = db2pow(surfacegamma('wooded hill',freqs));

Create a constant gamma model by multiplying the reflectivity coefficients by the sine of the grazing
angle. Add Rayleigh speckle.

nrcsTbl   = zeros(numel(angs),numel(freqs),2);
nrcsTbl(:,:,1) = gammaFarm.*sind(angs).';  % Farmland
nrcsTbl(:,:,2) = gammaHills.*sind(angs).'; % Wooded hills
simTime = 3;
scene = radarScenario(UpdateRate = 1, ...
    IsEarthCentered = false,StopTime = simTime);
refl = surfaceReflectivityCustom(Reflectivity = nrcsTbl, Frequency = freqs, ...
    GrazingAngle = angs, Speckle = 'Rayleigh');
srf = landSurface(scene,RadarReflectivity = refl, ...
    Terrain = ht,Boundary = [-100,100;-100,100]);

Find the normalized reflectivity of farm land (in dB).
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nrcs = pow2db(refl(6.3, 2.5e9, 1));
disp(nrcs)

  -27.2110

Find the normalized reflectivity of wooded hills (in dB).

nrcs = pow2db(refl(6.3, 2.5e9, 2));
disp(nrcs)

  -22.2110

More About
Speckle Model

Speckle is modeled as an uncorrelated, multiplicative factor I = σ∙n, where σ represents the clutter
RCS and n are independent identically distributed (IDD) mean noise samples with unity mean.
Because speckle is correlated with underlying terrain RCS, it is usually applied to radar intensity. The
speckle noise models include Weibull, Rayleigh, and lognormal.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterSurfaceRCS | landroughness | searoughness | surfacegamma | landreflectivity |
seareflectivity | surfaceReflectivity | surfaceReflectivityLand |
surfaceReflectivitySea | radarScenario | radarDataGenerator

Topics
“Introduction to Radar Scenario Clutter Simulation”
“Generate Clutter and Target Returns for MTI Radar”
“Simulate Radar Detections of Surface Targets in Clutter”
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surfaceReflectivity

Normalized reflectivity of surface

Description
The surfaceReflectivity System object creates a common interface for the
surfaceReflectivityLand, surfaceReflectivityCustom, and surfaceReflectivitySea
System objects.

To compute the normalized reflectivity:

1 Create the surfaceReflectivity object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
refl = surfaceReflectivity
refl = surfaceReflectivity(surfacetype)
refl = surfaceReflectivity(surfacetype,Name=Value)

Description

refl = surfaceReflectivity creates a normalized reflectivity object, refl, for a land surface.
Use this object to generate a normalized radar cross section (NRCS) (also called surface σ0) as a
function of frequency and grazing angle. This syntax creates a constant gamma land reflectivity
model with a constant gamma value of -20 dB, which is representative of flatland.

refl = surfaceReflectivity(surfacetype) creates a normalized reflectivity object, refl, for
a surfacetype specified as one of 'Land', 'Sea', or 'Custom'. Use this object to generate a
normalized radar cross section (NRCS) (also called surface σ0) as a function of frequency and grazing
angle.

refl = surfaceReflectivity(surfacetype,Name=Value) also creates a normalized
reflectivity object for surface type surfacetype with the specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1=Value1,...,NameN=ValueN).
Example: refl =
surfaceReflectivity('Land',Model="GIT",LandType="Soil",SurfaceHeightStandardD
eviation=1) creates a normalized reflectivity object for land using the GIT model with a LandType
of Soil and a SurfaceHeightStandardDeviation of 1.
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Usage

Syntax
nrcs = refl(graz,freq)
[nrcs,speck] = refl( ___ )

Description

nrcs = refl(graz,freq) returns the normalized radar cross section nrcs at grazing angle graz
and frequency freq.

[nrcs,speck] = refl( ___ ) also returns multiplicative speckle speck.

Input Arguments

graz — Grazing or depression angle
scalar | M-length vector of real values

Grazing or depression angle of a surface relative to the radar, specified as a scalar or an M-length
row vector of real values. When the land Model property is set to 'Billingsley', the angle is
interpreted as a depression angle depressionang between –90° and 90°. For all other models, the
angle is interpreted as a grazing angle grazingang ranging from 0° to 90° . Units are in degrees.

freq — Transmitted frequencies
10e9 (default) | positive scalar | N-length vector of positive values

Transmitted frequencies, specified as a positive scalar or N-length vector of positive values. Units are
in Hz.
Example: freq = 7*10e9

Output Arguments

nrcs — Normalized surface reflectivity
real-valued N-length row vector | real-valued M-by-N matrix

Normalized surface reflectivity, returned as either a real-valued N-length row vector or a real-valued
M-by-N matrix. Normalized reflectivity is also called normalized radar cross section. M is the length
of the grazing angle or depression angle vector graz and N is the length of the frequency vector
freq. nrcs is dimensionless but often expressed as m²/m².

speck — Multiplicative speckle
N-length real-valued vector

Multiplicative speckle, returned as an N-length real-valued vector where N is the length of the
frequency vector in freq.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Constant Gamma Normalized Reflectivity

Obtain the constant gamma normalized reflectivity for using the default gamma value of -20 dB at a
frequency of 10 GHz and a grazing angle of 10 degrees.

grazAng = 10;
freq = 10e9;
refl = surfaceReflectivity

refl = 
  surfaceReflectivityLand with properties:

      Model: 'ConstantGamma'
      Gamma: -20
    Speckle: 'None'

nrcs = refl(grazAng,freq)

nrcs = 0.0017

Obtain Normalized Radar Cross-Section From GIT Model

Create a normalized reflectivity cross-section object for a land surface using the GIT model and a soil
land type. Obtain the NRCS at a frequency of 10 GHz over grazing angles from 20 to 60 degrees.
Assume a standard deviation of surface height of 1 m.

grazAng = 20:60;
freq    = 10e9;
refl = surfaceReflectivity('Land','Model','GIT','LandType','Soil', ...
    'SurfaceHeightStandardDeviation',1);
nrcs = refl(grazAng,freq);

Plot normalized reflectivities for grazing angles from 20 to 60 degrees.

plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('GIT Model')
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Sea Surface Normalized Reflectivity

Create a sea normalized reflectivity object using the default NRL model and a sea state of 2. Obtain
the normalized reflectivity at 10 GHz over grazing angles from 0.1 to 10 degrees. Assume horizontal
polarization.

grazAng = 0.1:0.1:10;
freq = 10e9;
ss = 2;
pol = 'H';

Use the surfaceReflectivity object to obtain the normalized reflectivity.

refl = surfaceReflectivity('Sea',SeaState = ss,Polarization = pol);
nrcs = refl(grazAng,freq);

Plot the reflectivity as a function of grazing angle.

plot(grazAng,pow2db(nrcs))
grid on
xlabel('Grazing Angle (deg)')
ylabel('NRCS (dB m^2/m^2)')
title('NRL Model, Horizontal Polarization')
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Nathanson Reflectivity Model

Define a custom NRCS table using Nathanson reflectivity values for farmlands. Assume Rayleigh
speckle. Next, calculate the RCS of a clutter patch and estimate the clutter-to-noise ratio at the
receiver. Assume that the patch is 1000 meters away from the radar system. The azimuth and
elevation beamwidths are 1 degree and 3 degrees, respectively. The grazing angle is 10 degrees. The
pulse width is 10 microseconds. The radar operates at an L-band frequency of 1.5 GHz with a peak
power of 5 kw. Use the general surfaceReflectivity object.

rng    = 1000;
bwAz   = 1;
bwEl   = 3;
graz   = 10;
tau    = 10e-6;
freq   = 1.5e9;
ppow   = 5000;

Configure a custom surface.

nathansonNRCS = db2pow([-35 -33 -32; -31 -30 -29; -29 -27 -25; ...
    -19 -17 -15; -14 -15 -14]);
nathansonFreq    = [1.5 3 6]*1e9;
nathansonGrazAng = [1.5 3 10 30 60];
refl = surfaceReflectivity('Custom',Reflectivity = nathansonNRCS, ...
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    Frequency = nathansonFreq,GrazingAngle = nathansonGrazAng, ...
    Speckle = "Rayleigh")

refl = 
  surfaceReflectivityCustom with properties:

    Reflectivity: [5x3 double]
       Frequency: [1.5000e+09 3.0000e+09 6.0000e+09]
    GrazingAngle: [1.5000 3 10 30 60]
         Speckle: 'Rayleigh'
    SpeckleScale: 1.1284

[nrcs,n] = refl(graz,freq)

nrcs = 0.0013

n = 0.5108

Calculate the clutter RCS and apply multiplicative speckle

sigma = clutterSurfaceRCS(nrcs,rng,bwAz,bwEl,graz,tau)

sigma = 6.6253

rcs = sigma.*n   

rcs = 3.3841

Calculate clutter-to-noise ratio.

lambda = freq2wavelen(freq);
cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs)

cnr = 69.2976

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clutterSurfaceRCS | landroughness | searoughness | landreflectivity |
seareflectivity | surfaceReflectivityLand | surfaceReflectivityCustom |
surfaceReflectivitySea | grazingang | depressionang | radarScenario |
radarDataGenerator

Topics
“Introduction to Radar Scenario Clutter Simulation”
“Generate Clutter and Target Returns for MTI Radar”
“Simulate Radar Detections of Surface Targets in Clutter”
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LandSurface
Land surface belonging to radar scenario

Description
LandSurface defines a land surface object belonging to a radarScenario object. You can use the
LandSurface object to determine land heights in a scenario and surface reflectivity, test for
occlusion along the line-of-sight between two points in the scenario and give surface height at a point.

Creation
Create LandSurface objects using the landSurface object function of the radarScenario object.

Properties
RadarReflectivity — Radar reflectivity object of surface
surfaceReflectivityLand object (default) | surfaceReflectivityCustom object

Radar reflectivity object of surface, specified as a surfaceReflectivityLand or
surfaceReflectivityCustom System object for the normalized radar cross section (NRCS) of the
surface. Defaults to a surfaceReflectivityLand object using a Barton land model and flatland
land type.
Example:
surfaceReflectivityLand(Model="GIT",LandType="Soil",SurfaceHeightStandardDevi
ation=1)

ReflectivityMap — Map of reflectivity type indices over the surface
1 (default) | scalar | real-valued matrix

This property contains a grid of reflectivity type values corresponding to vertices of the surface
height data. If any terrain or a spectral model is present, ReflectivityMap must be a matrix of the
same size as the domain of that data. Otherwise it must be scalar. Each element is an index into the
third dimension of the Reflectivity property of the surfaceReflectivityCustom object.
Dependencies

To enable this property, set the RadarReflectivity property to a surfaceReflectivityCustom
object.
Data Types: double

ReferenceHeight — Surface reference height
0 (default) | scalar

Reference height of surface height data, specified as a scalar. Surface heights are relative to the
reference height. For surfaces with no height data, this is the assumed height of the entire surface.
Units are in meters.
Data Types: double
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Boundary — Bounding rectangle of surface
[-Inf Inf; -Inf Inf] (default) | 2-by-2 matrix of real values

Bounding rectangle of the surface, specified as a 2-by-2 matrix of real values. The bounding rectangle
is defined by two two-dimensional points in either Cartesian or geodetic scenario coordinates. When
the IsEarthCentered property of the radarScenario object is specified as:

• false — Scenario coordinates are Cartesian. Specify the bounding rectangle [MinX, MaxX, MinY
MaxY], as Cartesian coordinates in the reference frame of the scenario, where MinX < MaxX, and
MinY < MaxY.

• true — Scenario coordinates are geodetic. Specify the bounding rectangle as [StartLat,
EndLat, StartLon EndLon] where StartLat and EndLat are the minimum and maximum
latitudes of the geodetic frames. StartLat and EndLat must lie in the interval [–90,90] where
StartLat < EndLat.

Specify StartLon and EndLon as the minimum and maximum longitudes of the geodetic frame.
StartLon and EndLon must lie in the interval [–180,180]. If EndLon < StartLon, the object
wraps EndLon to StartLon + 360°. Units are in degrees.

Data Types: double

Terrain — Terrain data for surface
[] (default) | M-by-N real-valued matrix | string | char array

Terrain data of the surface, specified as an M-by-N real-valued matrix or a string containing a Digital
Terrain Elevation Data (DTED) file name. Terrain data consists of land height as a function of geo-
position.

• M-by-N real-valued matrix — The matrix values represent the height data of an area defined by
the Boundary property of the surface object. The domain can be a global Cartesian frame in
meters or a geodetic grid with units of degrees. The object extends the height data in the matrix
to the area. The object automatically fills heights of unspecified points using linear interpolation.
M or N must be greater than or equal to 3.

• DTED file name — To use this option, you must specify the IsEarthCentered property of the
radar scenario as true. In this case, the function uses the DTED file to specify the terrain heights
for an area defined by the Boundary property of the ground surface object. Also, the object
automatically fills unspecified data in the DTED file using linear interpolation.

Height values here are relative to the ReferenceHeight property.
Data Types: double | string | char

Object Functions
height Height of point on surface
occlusion Test for occlusion of point by a surface

Examples
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Create Land Surface in Radar Scenario

Create a surface with two hills. Plot the surface on a 200-by-200 meter grid with grid points one
meter apart. Add the surface to a radar scenario. Assume the surface has a radar reflectivity defined
by a constant gamma model.

[x,y] = meshgrid(linspace(-100,100,201));
ht1 = 40*exp(-(x.^2 + y.^2)/30^2);
ht2 = 100*exp(-((x-60).^2 + y.^2)/25^2);
ht = ht1 + ht2;
p = surfc(x(1,:),y(:,1),ht);
axis equal
axis tight
shading interp
simTime = 3;
scene = radarScenario(UpdateRate = 1, ...
    IsEarthCentered = false,StopTime = simTime);
gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = gammaDB);
srf = landSurface(scene,RadarReflectivity = refl, ...
    Terrain = ht,Boundary = [-100,100;-100,100]);

Use surface manager to identify the surface.

scene.SurfaceManager

ans = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

scene.SurfaceManager.Surfaces

ans = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: [201x201 double]

Obtain and plot the height of the surface at the point (50,-30).

xt = 50;
yt = -30;
htx = height(srf,[xt,yt])

htx = 21.1046

hold on
plot3(xt,yt,htx+5,'ow','MarkerFaceColor','r')
xlabel('x')
ylabel('y')
hold off
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Create Land Surface from DTED File

Create a radar scenario and specify its IsEarthCentered property as true to use DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl)

srf = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: 'n39_w106_3arc_v2.dt1'
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mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
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Test for Occlusion Between Two Points on Land Surface

Create a radar scenario and specify set the IsEarthCentered property as true to obtain the terrain
from a DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl);

Verify that occlusion is turned on.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
hold on

Test for occlusion.

ht1 = height(srf,[39.59 -105.5])

ht1 = 2810

ht2 = height(srf,[39.51 -105.41])

ht2 = 2786

occlusion(srf,[39.59 -105.5 ht1],[39.51 -105.41 ht2])

ans = logical
   1
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The points are occluded. The line between the two points passes through the surface as shown.

plot3([-105.5 -105.41],[39.59 39.51], [ht1 ht2],'r','LineWidth',3)

Version History
Introduced in R2022a

See Also
height | occlusion | radarScenario | SurfaceManager

Topics
“Introduction to Radar Scenario Clutter Simulation”
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landSurface
Add land surface to radar scenario

Syntax
srf = landSurface(scene)
srf = landSurface(scene,Name=Value)

Description
srf = landSurface(scene) adds a LandSurface object srf to the radar scenario
radarScenario scene.

srf = landSurface(scene,Name=Value) adds a land surface object with the specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1=Value1,...,NameN=ValueN).

Examples

Create Land Surface in Radar Scenario

Create a surface with two hills. Plot the surface on a 200-by-200 meter grid with grid points one
meter apart. Add the surface to a radar scenario. Assume the surface has a radar reflectivity defined
by a constant gamma model.

[x,y] = meshgrid(linspace(-100,100,201));
ht1 = 40*exp(-(x.^2 + y.^2)/30^2);
ht2 = 100*exp(-((x-60).^2 + y.^2)/25^2);
ht = ht1 + ht2;
p = surfc(x(1,:),y(:,1),ht);
axis equal
axis tight
shading interp
simTime = 3;
scene = radarScenario(UpdateRate = 1, ...
    IsEarthCentered = false,StopTime = simTime);
gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = gammaDB);
srf = landSurface(scene,RadarReflectivity = refl, ...
    Terrain = ht,Boundary = [-100,100;-100,100]);

Use surface manager to identify the surface.

scene.SurfaceManager

ans = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]
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scene.SurfaceManager.Surfaces

ans = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: [201x201 double]

Obtain and plot the height of the surface at the point (50,-30).

xt = 50;
yt = -30;
htx = height(srf,[xt,yt])

htx = 21.1046

hold on
plot3(xt,yt,htx+5,'ow','MarkerFaceColor','r')
xlabel('x')
ylabel('y')
hold off
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Create Land Surface from DTED File

Create a radar scenario and specify its IsEarthCentered property as true to use DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl)

srf = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: 'n39_w106_3arc_v2.dt1'

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
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Test for Occlusion Between Two Points on Land Surface

Create a radar scenario and specify set the IsEarthCentered property as true to obtain the terrain
from a DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl);

Verify that occlusion is turned on.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
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        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
hold on

Test for occlusion.

ht1 = height(srf,[39.59 -105.5])

ht1 = 2810

ht2 = height(srf,[39.51 -105.41])

ht2 = 2786

occlusion(srf,[39.59 -105.5 ht1],[39.51 -105.41 ht2])

ans = logical
   1

The points are occluded. The line between the two points passes through the surface as shown.

plot3([-105.5 -105.41],[39.59 39.51], [ht1 ht2],'r','LineWidth',3)
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Input Arguments
scene — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: surface = landSurface(scene,Boundary=[-100,100,-100,100])

RadarReflectivity — Radar reflectivity object of surface
surfaceReflectivityLand object (default) | surfaceReflectivityCustom object

Radar reflectivity object of surface, specified as a surfaceReflectivityLand or
surfaceReflectivityCustom System object for the normalized radar cross section (NRCS) of the
surface. Defaults to a surfaceReflectivityLand object using a Barton land model and flatland
land type.
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Example:
surfaceReflectivityLand(Model="GIT",LandType="Soil",SurfaceHeightStandardDevi
ation=1)

ReflectivityMap — Map of reflectivity type indices over the surface
1 (default) | scalar | real-valued matrix

This property contains a grid of reflectivity type values corresponding to vertices of the surface
height data. If any terrain or a spectral model is present, ReflectivityMap must be a matrix of the
same size as the domain of that data. Otherwise it must be scalar. Each element is an index into the
third dimension of the Reflectivity property of the surfaceReflectivityCustom object.

Dependencies

To enable this property, set the RadarReflectivity property to a surfaceReflectivityCustom
object.
Data Types: double

ReferenceHeight — Surface reference height
0 (default) | scalar

Reference height of surface height data, specified as a scalar. Surface heights are relative to the
reference height. For surfaces with no height data, this is the assumed height of the entire surface.
Units are in meters.
Data Types: double

Boundary — Bounding rectangle of surface
[-Inf Inf; -Inf Inf] (default) | 2-by-2 matrix of real values

Bounding rectangle of the surface, specified as a 2-by-2 matrix of real values. The bounding rectangle
is defined by two two-dimensional points in either Cartesian or geodetic scenario coordinates. When
the IsEarthCentered property of the radarScenario object is specified as:

• false — Scenario coordinates are Cartesian. Specify the bounding rectangle [MinX, MaxX, MinY
MaxY], as Cartesian coordinates in the reference frame of the scenario, where MinX < MaxX, and
MinY < MaxY.

• true — Scenario coordinates are geodetic. Specify the bounding rectangle as [StartLat,
EndLat, StartLon EndLon] where StartLat and EndLat are the minimum and maximum
latitudes of the geodetic frames. StartLat and EndLat must lie in the interval [–90,90] where
StartLat < EndLat.

Specify StartLon and EndLon as the minimum and maximum longitudes of the geodetic frame.
StartLon and EndLon must lie in the interval [–180,180]. If EndLon < StartLon, the object
wraps EndLon to StartLon + 360°. Units are in degrees.

Data Types: double

Terrain — Terrain data for surface
[] (default) | M-by-N real-valued matrix | string | char array

Terrain data of the surface, specified as an M-by-N real-valued matrix or a string containing a Digital
Terrain Elevation Data (DTED) file name. Terrain data consists of land height as a function of geo-
position.
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• M-by-N real-valued matrix — The matrix values represent the height data of an area defined by
the Boundary property of the surface object. The domain can be a global Cartesian frame in
meters or a geodetic grid with units of degrees. The object extends the height data in the matrix
to the area. The object automatically fills heights of unspecified points using linear interpolation.
M or N must be greater than or equal to 3.

• DTED file name — To use this option, you must specify the IsEarthCentered property of the
radar scenario as true. In this case, the function uses the DTED file to specify the terrain heights
for an area defined by the Boundary property of the ground surface object. Also, the object
automatically fills unspecified data in the DTED file using linear interpolation.

Height values here are relative to the ReferenceHeight property.
Data Types: double | string | char

Output Arguments
srf — Land surface
LandSurface object

Land surface, returned as a LandSurface object.

Version History
Introduced in R2022a

See Also
radarScenario | LandSurface | SurfaceManager | height | occlusion

Topics
“Introduction to Radar Scenario Clutter Simulation”
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SeaSurface
Sea surface belonging to radar scenario

Description
SeaSurface defines a sea surface object belonging to a radarScenario. The object describes the
size, surface reflectivity, motion, and wind speed of the surface. You can use the SeaSurface object
to determine sea heights in a scenario and surface reflectivity, test for occlusion along the line-of-
sight between two points in the scenario and give surface height at a point.

Creation
Create SeaSurface objects using the seaSurface object function of the radarScenario object.

Properties
SpectralModel — Sea surface omnidirectional motion spectrum
seaSpectrum object

Sea surface omnidirectional motion spectrum, specified as a seaSpectrum object. This object models
surface heights over time.
Dependencies

To enable this property, set the radarScenario property IsEarthCentered to false.

Boundary — Bounding rectangle of surface
[-Inf Inf; -Inf Inf] (default) | 2-by-2 matrix of real values

Bounding rectangle of the surface, specified as a 2-by-2 matrix of real values. The bounding rectangle
is defined by two two-dimensional points in either Cartesian or geodetic scenario coordinates. When
the IsEarthCentered property of the radarScenario object is specified as:

• false — Scenario coordinates are Cartesian. Specify the bounding rectangle [MinX, MaxX, MinY
MaxY], as Cartesian coordinates in the reference frame of the scenario, where MinX < MaxX, and
MinY < MaxY.

• true — Scenario coordinates are geodetic. Specify the bounding rectangle as [StartLat,
EndLat, StartLon EndLon] where StartLat and EndLat are the minimum and maximum
latitudes of the geodetic frames. StartLat and EndLat must lie in the interval [–90,90] where
StartLat < EndLat.

Specify StartLon and EndLon as the minimum and maximum longitudes of the geodetic frame.
StartLon and EndLon must lie in the interval [–180,180]. If EndLon < StartLon, the object
wraps EndLon to StartLon + 360°. Units are in degrees.

Data Types: double

RadarReflectivity — Radar reflectivity object of surface
surfaceReflectivitySea object (default) | surfaceReflectivityCustom object
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Radar reflectivity object of surface, specified as a surfaceReflectivitySea or
surfaceReflectivityCustom for the normalized radar cross section (NRCS) of the surface. The
default object is a surfaceReflectivitySea object with default properties.

ReflectivityMap — Map of reflectivity type indices over the surface
1 (default) | matrix of real values

This property contains a grid of reflectivity type values corresponding to vertices of the surface
height data If terrain or spectral model is present, ReflectivityMap must be a matrix of the same
size as the domain of that data. Otherwise it must be scalar. Each element is an index into the third
dimension of the Reflectivity property of the surfaceReflectivityCustom object.

Dependencies

To enable this property, set the RadarReflectivity property to a surfaceReflectivityCustom
object.
Data Types: double

ReferenceHeight — Surface reference height
0 (default) | scalar

Reference height of surface height data, specified as a scalar. Surface heights are relative to the
reference height. For surfaces with no height data, this is the assumed height of the entire surface.
Units are in meters.
Data Types: double

WindSpeed — Wind speed
10 (default) | nonnegative scalar

Wind speed over sea surface, specified as a nonnegative scalar. Wind speed is defined at a height of
10 meters from the water surface. Wind speed is used as a parameter for the associated spectral
model. Units are m/s.
Data Types: double

WindDirection — Wind direction
0 (default) | scalar

Wind direction over the sea surface, specified as a scalar in the range 0° to 180°. A standard right-
handed Cartesian coordinate system is used. When the IsEarthCentered property of
radarScenario is true, wind direction is a positive angle defined counterclockwise from the
positive x-axis. Otherwise, wind direction is defined as clockwise from the North direction. This
property is used to determine surface reflectivity and is used as a parameter for the associated
spectral model. Units are in degrees.
Data Types: double

Fetch — Wave fetch
Inf (default) | positive scalar

Fetch, specified as a positive scalar. Fetch is the distance over a sea surface in which the wind blows
in a single direction without obstruction. The fetch is used as a parameter for the associated spectral
model. Units are in meters.
Data Types: double
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Object Functions
height Height of point on surface
occlusion Test for occlusion of point by a surface

Examples

Find Height of Sea Surface

Create a square sea surface area using the seaSurface object. Assume a moderate sea state with a
wind speed of about 10 m/s, a fetch of 250 km and a length of 1.0 km. Add an Elfouhaily spectrum to
the sea surface. Use the height function to determine the heights of 2 points on the map.

Create a radar scenario.

scene = radarScenario(IsEarthCentered = false);
rng('default')

Add a sea surface to the scene with an Elfouhaily spectrum.

spec = seaSpectrum(Resolution = 20);
srf = seaSurface(scene,Boundary = [-500 500; -500 500], ...
    WindSpeed = 10,Fetch = 250000,SpectralModel = spec);

Find the height at two points.

P1 = [0;0];
P2 = [30;-70];
H = height(srf,[P1 P2])

H = 1×2

   -0.9394   -0.2682

Display the sea surface properties in the surface manager.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.SeaSurface]

mgr.Surfaces

ans = 
  SeaSurface with properties:

            WindSpeed: 10
        WindDirection: 0
                Fetch: 250000
        SpectralModel: [1x1 seaSpectrum]
    RadarReflectivity: [1x1 surfaceReflectivitySea]
      ReflectivityMap: 1
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      ReferenceHeight: 0
             Boundary: [2x2 double]

Test for Occlusion Between Two Points on Sea Surface

Create a square sea surface assuming a moderate sea state with a wind speed of about 12 knots (6.17
m/s), a fetch of 120 nmi (222.24 km), and a length of 1.024 km. Add an Elfouhaily spectrum to the sea
surface. Use the occlusion object function to determine if the path from point 1 to point 2 is
occluded.

Start by creating a radar scenario;

scene = radarScenario;

Add a sea surface with an Elfouhaily spectrum.

rng('default');
spec = seaSpectrum('Resolution',16);

Create the sea surface.

bnds = [0 1024; 0 1024];
srf = seaSurface(scene,'Boundary',bnds, ...
    'WindSpeed',6.17,'Fetch',222.24e3, ...
    'SpectralModel',spec);

Set two points for testing occlusion.

p1 = [1016; 368; -0.082];
p2 = [10; 100; 0.13];

Determine if the path from p1 to p2 is occluded

tf1 = occlusion(srf,p1,p2)

tf1 = logical
   1

Create Surface from Sea Spectrum

Create a 1024-by-1024 m square sea surface. Assume an NRL reflectivity model for a high sea state 6
with a wind speed of about 20 m/s and a fetch of 250 km. Set UseOcclusion in the
SurfaceManager to false.

Create a radar scenario.

scene = radarScenario;

Model the reflectivity using the NRL model.
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refl = surfaceReflectivitySea(Model = 'NRL',SeaState = 6, ...
    Polarization = 'V')

refl = 
  surfaceReflectivitySea with properties:

           Model: 'NRL'
        SeaState: 6
    Polarization: 'V'
         Speckle: 'None'

rng(2033)
spec = seaSpectrum(Resolution = 2);
bnds = [0 1024; 0 1024];
srf = seaSurface(scene,Boundary = bnds, ...
    WindSpeed = 20,Fetch = 250e3, ...
    SpectralModel = spec);
mgr = scene.SurfaceManager;
mgr.UseOcclusion = false

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 0
        Surfaces: [1x1 radar.scenario.SeaSurface]

x = linspace(srf.Boundary(1,1),srf.Boundary(1,2),1000);
y = linspace(srf.Boundary(2,1),srf.Boundary(2,2),1000);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
hts = height(srf,[Y1;X1]);
hts = reshape(hts,length(x),length(y));
surf(x,y,hts)
axis equal
shading interp
ylabel('X (m)')
xlabel('Y (m)')
zlabel('Height (m)')
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Version History
Introduced in R2022a

See Also
rum | SurfaceManager | radarScenario | landSurface | seaSpectrum

Topics
“Simulating Radar Returns from Moving Sea Surfaces”

4 Objects

4-292



seaSurface
Add sea surface to radar scenario

Syntax
srf = seaSurface(scene)
srf = seaSurface(scene,Name=Value)

Description
srf = seaSurface(scene) adds a SeaSurface object srf to the radarScenario object scene.

srf = seaSurface(scene,Name=Value) adds a sea surface object with the specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1=Value1,...,NameN=ValueN).

Examples

Find Height of Sea Surface

Create a square sea surface area using the seaSurface object. Assume a moderate sea state with a
wind speed of about 10 m/s, a fetch of 250 km and a length of 1.0 km. Add an Elfouhaily spectrum to
the sea surface. Use the height function to determine the heights of 2 points on the map.

Create a radar scenario.

scene = radarScenario(IsEarthCentered = false);
rng('default')

Add a sea surface to the scene with an Elfouhaily spectrum.

spec = seaSpectrum(Resolution = 20);
srf = seaSurface(scene,Boundary = [-500 500; -500 500], ...
    WindSpeed = 10,Fetch = 250000,SpectralModel = spec);

Find the height at two points.

P1 = [0;0];
P2 = [30;-70];
H = height(srf,[P1 P2])

H = 1×2

   -0.9394   -0.2682

Display the sea surface properties in the surface manager.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

 seaSurface

4-293



    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.SeaSurface]

mgr.Surfaces

ans = 
  SeaSurface with properties:

            WindSpeed: 10
        WindDirection: 0
                Fetch: 250000
        SpectralModel: [1x1 seaSpectrum]
    RadarReflectivity: [1x1 surfaceReflectivitySea]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]

Test for Occlusion Between Two Points on Sea Surface

Create a square sea surface assuming a moderate sea state with a wind speed of about 12 knots (6.17
m/s), a fetch of 120 nmi (222.24 km), and a length of 1.024 km. Add an Elfouhaily spectrum to the sea
surface. Use the occlusion object function to determine if the path from point 1 to point 2 is
occluded.

Start by creating a radar scenario;

scene = radarScenario;

Add a sea surface with an Elfouhaily spectrum.

rng('default');
spec = seaSpectrum('Resolution',16);

Create the sea surface.

bnds = [0 1024; 0 1024];
srf = seaSurface(scene,'Boundary',bnds, ...
    'WindSpeed',6.17,'Fetch',222.24e3, ...
    'SpectralModel',spec);

Set two points for testing occlusion.

p1 = [1016; 368; -0.082];
p2 = [10; 100; 0.13];

Determine if the path from p1 to p2 is occluded

tf1 = occlusion(srf,p1,p2)

tf1 = logical
   1
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Create Surface from Sea Spectrum

Create a 1024-by-1024 m square sea surface. Assume an NRL reflectivity model for a high sea state 6
with a wind speed of about 20 m/s and a fetch of 250 km. Set UseOcclusion in the
SurfaceManager to false.

Create a radar scenario.

scene = radarScenario;

Model the reflectivity using the NRL model.

refl = surfaceReflectivitySea(Model = 'NRL',SeaState = 6, ...
    Polarization = 'V')

refl = 
  surfaceReflectivitySea with properties:

           Model: 'NRL'
        SeaState: 6
    Polarization: 'V'
         Speckle: 'None'

rng(2033)
spec = seaSpectrum(Resolution = 2);
bnds = [0 1024; 0 1024];
srf = seaSurface(scene,Boundary = bnds, ...
    WindSpeed = 20,Fetch = 250e3, ...
    SpectralModel = spec);
mgr = scene.SurfaceManager;
mgr.UseOcclusion = false

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 0
        Surfaces: [1x1 radar.scenario.SeaSurface]

x = linspace(srf.Boundary(1,1),srf.Boundary(1,2),1000);
y = linspace(srf.Boundary(2,1),srf.Boundary(2,2),1000);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
hts = height(srf,[Y1;X1]);
hts = reshape(hts,length(x),length(y));
surf(x,y,hts)
axis equal
shading interp
ylabel('X (m)')
xlabel('Y (m)')
zlabel('Height (m)')
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Input Arguments
scene — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: srf = seaSurface(scene,'Boundary',[-500 500; -500
500],'WindSpeed',10,'Fetch',250000,'SpectralModel',spec);

SpectralModel — Sea surface omnidirectional motion spectrum
seaSpectrum object

Sea surface omnidirectional motion spectrum, specified as a seaSpectrum object. This object models
surface heights over time.
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Dependencies

To enable this property, set the radarScenario property IsEarthCentered to false.

Boundary — Bounding rectangle of surface
[-Inf Inf; -Inf Inf] (default) | 2-by-2 matrix of real values

Bounding rectangle of the surface, specified as a 2-by-2 matrix of real values. The bounding rectangle
is defined by two two-dimensional points in either Cartesian or geodetic scenario coordinates. When
the IsEarthCentered property of the radarScenario object is specified as:

• false — Scenario coordinates are Cartesian. Specify the bounding rectangle [MinX, MaxX, MinY
MaxY], as Cartesian coordinates in the reference frame of the scenario, where MinX < MaxX, and
MinY < MaxY.

• true — Scenario coordinates are geodetic. Specify the bounding rectangle as [StartLat,
EndLat, StartLon EndLon] where StartLat and EndLat are the minimum and maximum
latitudes of the geodetic frames. StartLat and EndLat must lie in the interval [–90,90] where
StartLat < EndLat.

Specify StartLon and EndLon as the minimum and maximum longitudes of the geodetic frame.
StartLon and EndLon must lie in the interval [–180,180]. If EndLon < StartLon, the object
wraps EndLon to StartLon + 360°. Units are in degrees.

Data Types: double

RadarReflectivity — Radar reflectivity object of surface
surfaceReflectivitySea object (default) | surfaceReflectivityCustom object

Radar reflectivity object of surface, specified as a surfaceReflectivitySea or
surfaceReflectivityCustom for the normalized radar cross section (NRCS) of the surface.
Defaults to a surfaceReflectivitySea object using a Barton land model and flatland land type.

ReflectivityMap — Map of reflectivity type indices over the surface
1 (default) | matrix of real values

This property contains a grid of reflectivity type values corresponding to vertices of the surface
height data If terrain or spectral model is present, ReflectivityMap must be a matrix of the same
size as the domain of that data. Otherwise it must be scalar. Each element is an index into the third
dimension of the Reflectivity property of the surfaceReflectivityCustom object.

Dependencies

To enable this property, set the RadarReflectivity property to a surfaceReflectivityCustom
object.
Data Types: double

ReferenceHeight — Surface reference height
0 (default) | scalar

Reference height of surface height data, specified as a scalar. Surface heights are relative to the
reference height. For surfaces with no height data, this is the assumed height of the entire surface.
Units are in meters.
Data Types: double
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WindSpeed — Wind speed
10 (default) | nonnegative scalar

Wind speed over sea surface, specified as a nonnegative scalar. Wind speed is defined at a height of
10 meters from the water surface. Wind speed is used as a parameter for the associated spectral
model. Units are m/s.
Data Types: double

WindDirection — Wind direction
0 (default) | scalar

Wind direction over the sea surface, specified as a scalar in the range 0° to 180°. A standard right-
handed Cartesian coordinate system is used. When the IsEarthCentered property of
radarScenario is true, wind direction is a positive angle defined counterclockwise from the
positive x-axis. Otherwise, wind direction is defined as clockwise from the North direction. This
property is used to determine surface reflectivity and is used as a parameter for the associated
spectral model. Units are in degrees.
Data Types: double

Fetch — Wave fetch
Inf (default) | positive scalar

Fetch, specified as a positive scalar. Fetch is the distance over a sea surface in which the wind blows
in a single direction without obstruction. The fetch is used as a parameter for the associated spectral
model. Units are in meters.
Data Types: double

Output Arguments
srf — Sea surface
SeaSurface object

Sea surface, returned as a SeaSurface object.

Version History
Introduced in R2022a

See Also
SurfaceManager | radarScenario | landSurface | height | occlusion | seaSpectrum |
SeaSurface | surfaceReflectivitySea

Topics
“Simulating Radar Returns from Moving Sea Surfaces”
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occlusion
Test for occlusion of point by a surface

Syntax
status = occlusion(surface,point1,point2)

Description
status = occlusion(surface,point1,point2) returns status as true if the line-of-sight
between point1 and point2 on a surface is occluded by parts of the surface.

Examples

Test for Occlusion Between Two Points on Land Surface

Create a radar scenario and specify set the IsEarthCentered property as true to obtain the terrain
from a DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl);

Verify that occlusion is turned on.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
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shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
hold on

Test for occlusion.

ht1 = height(srf,[39.59 -105.5])

ht1 = 2810

ht2 = height(srf,[39.51 -105.41])

ht2 = 2786

occlusion(srf,[39.59 -105.5 ht1],[39.51 -105.41 ht2])

ans = logical
   1

The points are occluded. The line between the two points passes through the surface as shown.

plot3([-105.5 -105.41],[39.59 39.51], [ht1 ht2],'r','LineWidth',3)
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Test for Occlusion Between Two Points on Sea Surface

Create a square sea surface assuming a moderate sea state with a wind speed of about 12 knots (6.17
m/s), a fetch of 120 nmi (222.24 km), and a length of 1.024 km. Add an Elfouhaily spectrum to the sea
surface. Use the occlusion object function to determine if the path from point 1 to point 2 is
occluded.

Start by creating a radar scenario;

scene = radarScenario;

Add a sea surface with an Elfouhaily spectrum.

rng('default');
spec = seaSpectrum('Resolution',16);

Create the sea surface.

bnds = [0 1024; 0 1024];
srf = seaSurface(scene,'Boundary',bnds, ...
    'WindSpeed',6.17,'Fetch',222.24e3, ...
    'SpectralModel',spec);

Set two points for testing occlusion.

p1 = [1016; 368; -0.082];
p2 = [10; 100; 0.13];

Determine if the path from p1 to p2 is occluded

tf1 = occlusion(srf,p1,p2)

tf1 = logical
   1

Input Arguments
surface — Land or sea surface
LandSurface object | SeaSurface object

Surface, specified as a LandSurface object or SeaSurface object.

point1 — Position of first point
length-3 real-valued vector

Position of the first point on a surface, specified as a length-3 real-valued vector.

If the IsEarthCentered property of the radarScenario object is specified as:

• false — Specify the three elements as the x-, y-, and z-coordinates in the reference frame of the
tracking scenario. Units are in meters,

• true — Specify the three elements as the latitude in degrees, longitude in degrees, and altitude in
meters, in the geodetic frame.

Data Types: double
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point2 — Position of second point
length-3 real-valued vector

Position of the second point on a surface, specified as a length-3 real-valued vector.

If the IsEarthCentered property of the radarScenario object is specified as:

• false — Specify the three elements as the x-, y-, and z-coordinates in the reference frame of the
tracking scenario. Units are in meters,

• true — Specify the three elements as the latitude in degrees, longitude in degrees, and altitude in
meters, in the geodetic frame.

Data Types: double

Output Arguments
status — Occlusion status
true or 1 | false or 0

Occlusion status, returned as a logical 1 (true) representing occluded, or 0 (false) representing not
occluded.

Version History
Introduced in R2022a

See Also
LandSurface | SeaSurface | height
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surfacePlotterData
Data for surface plotter

Syntax
plotterData = surfacePlotterData(manager)
plotData = surfacePlotterData( ___ ,colorMap)

Description
plotterData = surfacePlotterData(manager) returns a data structure plotData that you
can use as input to the plotSurface function for plotting surfaces managed by the
SurfaceManager object manager.

plotData = surfacePlotterData( ___ ,colorMap) specifies the color map for the plot data.

Examples

Plot Surface in Theatre Plot in Radar Scenario

Create a radar scenario.

scenario = radarScenario;

Define the terrain and boundaries of two surfaces and add the two surfaces to the radar scenario.

terrain1 = randi(100,4,5);
terrain2 = randi(100,3,3);
boundary1 = [0 100;
    0 100-eps];
boundary2 = [0 100;
    100 200];
s1 = landSurface(scenario,Terrain=terrain1,Boundary=boundary1);
s2 = landSurface(scenario,Terrain=terrain2,Boundary=boundary2);

Obtain the plotter data by using the surfacePlotterData function.

plotterData = surfacePlotterData(scenario.SurfaceManager)

plotterData=1×2 struct array with fields:
    X
    Y
    Z
    C

Create a theaterPlot object and specify the axis limits of the plot.

theaterpplot = theaterPlot(ZLimits=[-50 150],YLimits=[-50 250],ZLimits=[-100 100]);

Create a surface plotter.
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plotter = surfacePlotter(theaterpplot,DisplayName="Surfaces");

Plot surfaces in the theater plot. Change view angles for better visualization.

plotSurface(plotter,plotterData)
view(-41,29)

Input Arguments
manager — Surface manager
surface manager object

Surface manager, specified as a surface manager object.

colorMap — Color Map
three-column matrix of RGB triplets

Color map used for plotting surfaces, specified as a three-column matrix of RGB triplets. An RGB
triplet is a three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities can be double or single values in the range [0, 1], or
they can be uint8 values in the range [0, 255]. For example, this matrix defines a colormap
containing five colors:

map = [0.2 0.1 0.5
       0.1 0.5 0.8

4 Objects

4-304



       0.2 0.7 0.6
       0.8 0.7 0.3
       0.9 1   0];

Color double or single RGB Triplet uint8 RGB Triplet
yellow [1 1 0] [255 255 0]
magenta [1 0 1] [255 0 255]
cyan [0 1 1] [0 255 255]
red [1 0 0] [255 0 0]
green [0 1 0] [0 255 0]
blue [0 0 1] [0 0 255]
white [1 1 1] [255 255 255]
black [0 0 0] [0 0 0]

Output Arguments
plotterData — Plotter data
P-element array of structures

Plotter data, returned as a P-element array of structures, where P is the number of surfaces saved in
the Surfaces property of the SurfaceManager object manager. Each structure has these fields:

Field Name Description
X Domain of the surface in the x-direction, returned

as an M-element real-valued vector. M is the
number of x-coordinates for defining the terrain
of the surface.

Y Domain of the surface in the y-direction, returned
as an N-element real-valued vector. N is the
number of y-coordinates for defining the terrain
of the surface.

Z Height values of the surface, returned as an N-by-
M real-valued matrix. N is the number of
elements in the Y field, and M is the number of
elements in the X field.

C Color for vertices in the terrain of the surface,
returned as an N-by-M-by-3 matrix of RGB
triplets. N is the number of elements in the Y
field, and M is the number of elements in the X
field. The plotSurface function determines the
color of a surface patch based on the color of its
first vertex.

Version History
Introduced in R2022b
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See Also
plotSurface | theaterPlot | surfacePlotter | SurfacePlotter | SurfaceManager

4 Objects

4-306



clutterRegionData
Create data structure used as input to clutter region plotter

Syntax
plotterData = clutterRegionData(cluttergen)
data = clutterRegionData(cluttergen,plotheight)

Description
plotterData = clutterRegionData(cluttergen) creates a plotter data structure
plotterData from a ClutterGenerator object cluttergen. The data structure is used as input
to the plotClutterRegion function.

data = clutterRegionData(cluttergen,plotheight) also specifies the height plotheight
of the clutter region.

Examples

Plot Clutter Region in Radar Scenario

Create a radar scenario with a radarDataGenerator object attached to a platform.

scenario = radarScenario;
rdr = radarDataGenerator(1,'no scanning', ...
    'FieldOfView',[30 30],'MountingAngles',[0 45 0]);
platform(scenario,'Sensors',rdr,'Position',[0 0 1e3]);

Enable clutter generation using the clutterGenerator.

clut = clutterGenerator(scenario,rdr);

Run the scenario for one frame.

dets = detect(scenario);

Create a theater plotter with an associated clutterRegionPlotter. Then plot the default clutter
region.

tp = theaterPlot;
regPlotter = clutterRegionPlotter(tp, ...
    "DisplayName","Radar beam footprint");
regPlotterData = clutterRegionData(clut);
plotClutterRegion(regPlotter,regPlotterData)
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Input Arguments
cluttergen — Clutter generator
ClutterGenerator object

Clutter generator, specified as a ClutterGenerator object.

plotheight — Region height
minimum height over all regions (default) | scalar

Height for all regions, specified as a scalar. Units are in meters.

Output Arguments
plotterData — Plotter data
struct

Plotter data structure, returned as a struct.
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Field Name Description
X x-coordinates of region specified as a M-by-N

matrix. Each column contains the x-coordinates
of a different clutter region. N is the number of
clutter regions.

Y y-coordinates of region specified as a M-by-N
matrix. Each column contains the y-coordinates
of a different clutter region. N is the number of
clutter regions.

RegionPlotHeight Height of the clutter region, specified as a scalar.
The same height applies to all regions.

PatchCenters Patch centers, specified as a 3-by-N matrix where
each column is a patch center position in scenario
coordinates.

The units for all fields of the struct are in meters. The RegionPlotHeight field is obtained from
the plotheight input argument.

Version History
Introduced in R2022b

See Also
theaterPlot | clutterRegionPlotter | ClutterRegionPlotter | plotClutterRegion |
ClutterGenerator

Topics
“Introduction to Radar Scenario Clutter Simulation”
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height
Height of point on surface

Syntax
hgt = height(surface,pt)
hgt = height(surface,pt,t)

Description
hgt = height(surface,pt) returns the height hgt of the point pt on the surface. This syntax
applies when the surface is a SeaSurface object or a LandSurface object.

hgt = height(surface,pt,t) returns the height hgt of the point pt on the surface at the time
t. This syntax only applies when the surface is a SeaSurface object.

Examples

Find Height of Sea Surface

Create a square sea surface area using the seaSurface object. Assume a moderate sea state with a
wind speed of about 10 m/s, a fetch of 250 km and a length of 1.0 km. Add an Elfouhaily spectrum to
the sea surface. Use the height function to determine the heights of 2 points on the map.

Create a radar scenario.

scene = radarScenario(IsEarthCentered = false);
rng('default')

Add a sea surface to the scene with an Elfouhaily spectrum.

spec = seaSpectrum(Resolution = 20);
srf = seaSurface(scene,Boundary = [-500 500; -500 500], ...
    WindSpeed = 10,Fetch = 250000,SpectralModel = spec);

Find the height at two points.

P1 = [0;0];
P2 = [30;-70];
H = height(srf,[P1 P2])

H = 1×2

   -0.9394   -0.2682

Display the sea surface properties in the surface manager.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:
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    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.SeaSurface]

mgr.Surfaces

ans = 
  SeaSurface with properties:

            WindSpeed: 10
        WindDirection: 0
                Fetch: 250000
        SpectralModel: [1x1 seaSpectrum]
    RadarReflectivity: [1x1 surfaceReflectivitySea]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]

Find Height of Land Surface

Create a radar scenario. Add a 400-by-400 m area to the scenario with two simulated hiils. Find the
height of two points.

scene = radarScenario('IsEarthCentered',false);
bnds = [-200 200; -200, 200];
x = -200:200;
y = -200:200;
[X,Y] = meshgrid(x,y);
htmap = 20*exp(-X.^2/2000 - Y.^2/2000) + 10*exp(-(X-70).^2/2000 - (Y+100).^2/2000);
surf(X,Y,htmap)
shading interp
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Find the height of the surface at two points.

P1 = [0.0; 0.0]; % Point 1
P2 = [28.0; -40.0];  % Point 2
srf = landSurface(scene,'Terrain',htmap,'Boundary',bnds)

srf = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: [401x401 double]

H = height(srf,[P1 P2])

H = 1×2

   20.0058    6.7565

Use the surface manager find the surfaces in the scenario.

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:
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    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

mgr.Surfaces

ans = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: [401x401 double]

Input Arguments
surface — Land or Sea surface
LandSurface object | SeaSurface object

Surface, specified as a LandSurface or SeaSurface object.

pt — Point on surface
2-by-N matrix of real values | 3-by-N matrix of real values

Points on surface, specified as 2-by-N matrix of real values or a 3-by-N matrix of real values, where N
is the number of points.

The coordinate system of the point depends on the value of the IsEarthCentered property of the
radar scenario object::

• false — Each column of the 2-by-N matrix represents the x- and y-coordinates of points in
meters. Each column of the 3-by-N matrix represents the x-, y-, and z-coordinates in meters. Note
that the z-coordinate is irrelevant for surface height querying.

• true — Each column of the 2-by-N matrix is the latitude in degrees and longitude in degrees, in
the geodetic frame. Each column of the 3-by-N matrix is the latitude in degrees, longitude in
degrees, and altitude in degrees, in geodetic coordinates. Note that the latitude is irrelevant for
surface height querying.

t — Simulation time
scalar

Simulation time, specified as a scalar.

Dependencies

To enable this argument, select surface as a SeaSurface object.
Data Types: double

 height

4-313



Output Arguments
hgt — Height of surface point
scalar | N-element vector of real values

Height of point, returned as a scalar or an N-element vector of real values, where N is the number of
queried positions. Units are in meters.

Version History
Introduced in R2022a

See Also
LandSurface | SeaSurface | occlusion | SurfaceManager
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seaSpectrum
Sea surface omnidirectional motion spectrum model

Description
The seaSpectrum object creates a spectrum model for use in the SpectralModel property of the
SeaSurface object.

Creation
Syntax
seaspect = seaSpectrum
seaspect = seaSpectrum(Name = Value)

Description

seaspect = seaSpectrum creates a seaSpectrum object seaspect with default property values.
The default sea surface spectrum and spreading function are based on the Elfouhaily model. The
Elfouhaily model is an omnidirectional and wind-dependent spectrum. The wave spectrum consists of
the frequency spectrum and angular spreading function. The spreading function is symmetric about
the wind direction and has both wave number and wind speed dependence.

seaspect = seaSpectrum(Name = Value) creates a seaSpectrum object with the specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1 = Value1, ..., NameN = ValueN).

Properties
SpectrumSource — Source of omnidirectional spectrum
'Auto' (default) | 'Custom'

Source of the omnidirectional wave spectrum, specified as 'Auto' or 'Custom'.

• Choosing 'Auto' creates an Elfouhaily sea spectrum. The object offers properties that tailor the
Elfouhaily sea spectrum.

• Choosing 'Custom' allows you to specify the omnidirectional wave spectrum using the
CustomSpectrum and WaveVectorSpacing properties.

Data Types: char | string

Resolution — Sea surface resolution
8 (default) | positive scalar | 1-by-2 vector of positive values

Sea surface resolution, specified as a positive scalar or as a 1-by-2 vector of positive values. The
resolution vector takes the form [resolutionX resolutionY] where resolutionX and
resolutionY denote the resolution in the x- and y- directions, respectively. If the resolution is a
scalar, the x-resolution and y-resolution is the same.
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The sea surface physical length is calculated as the difference of the limits of the Boundary property
of the SeaSurface object in the x and y dimensions. The sea surface length has samples spaced by
the Resolution property. The length should not be set below 0.02 m as the wave motion below 0.02
m is minimal. Units are in meters.
Data Types: double

CustomSpectrum — Omnidirectional wave spectrum
M-by-N matrix

Omnidirectional wave spectrum, specified as an M-by-N matrix. M and N dictate the inverse fast
Fourier transfer (IFFT) length when returning the elevation data of the sea surface in the x and y
dimensions, respectively.

The resolution for the custom case is calculated as Resolution = surface length./
size(CustomSpectrum), where surface length is the sea surface physical length, calculated as the
difference of the limits of the Boundary property of the seaSurface in the x and y dimensions.

Dependencies

To enable this property, set the value of the SpectrumSource property to 'Custom'.
Data Types: double

WaveVectorSpacing — Wave vector domain spacing
2*pi/1024 (default) | positive scalar | 1-by-2 real-valued vector

Positive wavevector domain spacing, specified as a scalar or a 1-by-2 dimension vector, [kx ky]. This
property represents the wavevector spacing in the x and y dimensions, respectively. Units are
radians/meter. This value is typically set as WaveVectorSpacing <= 2*pi/surface length where surface
length is the sea surface physical length, calculated as the difference of the limits of the Boundary
property on theseaSurface in the x and y dimensions.

Dependencies

To enable this property, set the SpectrumSource property to 'Custom'.
Data Types: double

Examples

Create Surface from Sea Spectrum

Create a 1024-by-1024 m square sea surface. Assume an NRL reflectivity model for a high sea state 6
with a wind speed of about 20 m/s and a fetch of 250 km. Set UseOcclusion in the
SurfaceManager to false.

Create a radar scenario.

scene = radarScenario;

Model the reflectivity using the NRL model.

refl = surfaceReflectivitySea(Model = 'NRL',SeaState = 6, ...
    Polarization = 'V')
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refl = 
  surfaceReflectivitySea with properties:

           Model: 'NRL'
        SeaState: 6
    Polarization: 'V'
         Speckle: 'None'

rng(2033)
spec = seaSpectrum(Resolution = 2);
bnds = [0 1024; 0 1024];
srf = seaSurface(scene,Boundary = bnds, ...
    WindSpeed = 20,Fetch = 250e3, ...
    SpectralModel = spec);
mgr = scene.SurfaceManager;
mgr.UseOcclusion = false

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 0
        Surfaces: [1x1 radar.scenario.SeaSurface]

x = linspace(srf.Boundary(1,1),srf.Boundary(1,2),1000);
y = linspace(srf.Boundary(2,1),srf.Boundary(2,2),1000);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
hts = height(srf,[Y1;X1]);
hts = reshape(hts,length(x),length(y));
surf(x,y,hts)
axis equal
shading interp
ylabel('X (m)')
xlabel('Y (m)')
zlabel('Height (m)')
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Sea Surface with Custom Wave Spectrum

Create a square sea surface with a custom wave spectrum. Import a JONSWAP wave spectrum with a
moderate sea state. The spectrum is a 64-by-64 matrix with a physical length of 512 m and a
resolution of 2 m.

scene = radarScenario(IsEarthCentered = false);

Add a sea surface to the scene with a custom spectrum

load('jonswap.mat');
spec = seaSpectrum(SpectrumSource = 'Custom', Resolution = 2, ...
    CustomSpectrum = Psi,WaveVectorSpacing = 2*pi/512)

spec = 
  seaSpectrum with properties:

       SpectrumSource: 'Custom'
       CustomSpectrum: [64x64 double]
    WaveVectorSpacing: 0.0123

srf = seaSurface(scene,Boundary = [-256 256; -256 256], ...
    SpectralModel = spec)
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srf = 
  SeaSurface with properties:

            WindSpeed: 10
        WindDirection: 0
                Fetch: Inf
        SpectralModel: [1x1 seaSpectrum]
    RadarReflectivity: [1x1 surfaceReflectivitySea]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),1000);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),1000);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
hts = height(srf,[Y1;X1]);
hts = reshape(hts,length(x),length(y));
surf(x,y,hts)
axis equal
shading interp
ylabel('X (m)')
xlabel('Y (m)')
zlabel('Height (m)')
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Version History
Introduced in R2022a

References
[1] Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark. "A Unified Directional Spectrum for

Long and Short Wind-Driven Waves." Journal of Geophysical Research: Oceans 102, no. C7
(July 15, 1997): 15781-96. https://doi.org/10.1029/97JC00467

[2] Tessendorf, Jerry . "Simulating Ocean Water." Presented at SigGraph, 1999 - 2004.

See Also
radarScenario | seareflectivity | seaSurface | SurfaceManager
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SurfaceManager
Manage surfaces in radar scenario

Description
The SurfaceManager object lists the surfaces in a radar scenario, radarScenario. You can enable
or disable occlusion by surfaces in the radar scenario. The occlusion object function determines if
any surfaces occlude the line of sight between two points. Use the height object function to query
the height of surfaces at any location in the scenario.

Creation
Use the landSurface object function to create LandSurface objects. Use seaSurface object
function to create SeaSurface objects. Obtain the SurfaceManager object from the
SurfaceManager property of the radarScenario object.

Properties
UseOcclusion — Enable line-of-sight occlusion by surfaces
true (default) | false

Enable line-of-sight occlusion by surfaces, specified as true or false.

When specified as:

• true — The scenario models the occlusion of the line-of-sight by surfaces between points. In this
case, the detect object function of the radarScenario object or the detect object function of
the Platform object accounts for surface occlusion.

Note If the IsEarthCentered property of the radarScenario object is specified as true,
selecting this option also enables horizon occlusion based on the WGS84 Earth model.

• false — The scenario does not models the occlusion of the line-of-sight due to ground surfaces or
the WGS84 Earth model.

Surfaces — Surfaces in radar scenario
array of LandSurface or SeaSurface objects

Surfaces in radar scenario, specified as an array of LandSurface and SeaSurface objects.

You can add land surfaces to a radar scenario using the landSurface and sea surfaces using the
seaSurface object function.

Object Functions
height Height of point on surface
occlusion Test for occlusion of point by a surface

 SurfaceManager

4-321



Examples

Create Land Surface from DTED File

Create a radar scenario and specify its IsEarthCentered property as true to use DTED file.

scene = radarScenario(IsEarthCentered = true);

Model the reflectivity as a constant gamma surface.

refl = surfaceReflectivityLand(Model = 'ConstantGamma',Gamma = -20);

Add a 0.1-by-0.1 degree land surface derived from a DTED file.

bdry = [39.5 39.6;-105.51 -105.41];
srf = landSurface(scene,Terrain = 'n39_w106_3arc_v2.dt1', ...
    Boundary = bdry,RadarReflectivity = refl)

srf = 
  LandSurface with properties:

    RadarReflectivity: [1x1 surfaceReflectivityLand]
      ReflectivityMap: 1
      ReferenceHeight: 0
             Boundary: [2x2 double]
              Terrain: 'n39_w106_3arc_v2.dt1'

mgr = scene.SurfaceManager

mgr = 
  SurfaceManager with properties:

    UseOcclusion: 1
        Surfaces: [1x1 radar.scenario.LandSurface]

Plot the surface height.

x = linspace(srf.Boundary(2,1),srf.Boundary(2,2),201);
y = linspace(srf.Boundary(1,1),srf.Boundary(1,2),201);
[X,Y] = meshgrid(x,y);
X1 = X(:)';
Y1 = Y(:)';
H = height(srf,[Y1;X1]);
H = reshape(H,length(x),length(y));
surf(x,y,H)
shading interp
ylabel('Latitude (deg)')
xlabel('Longitude (deg)')
zlabel('Height (m)')
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Version History
Introduced in R2022a

See Also
landSurface | LandSurface | seaSurface | SeaSurface | radarScenario
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ClutterGenerator
Clutter generator object

Description
The ClutterGenerator object specifies clutter properties and regions that control and manage
radar clutter for sensors in a radarScenario. Sensors types include radarDataGenerator and
radarTransceiver objects.

Creation
Create a clutter generator using the clutterGenerator object function. Then use the
getClutterGenerator object function to obtain information about clutter generators for radar
scenarios and radars in the scenarios. Use the ringClutterRegion object function to create clutter
regions.

Properties
Resolution — Nominal spacing of clutter patches
40 (default) | positive scalar

Nominal resolution of clutter patches, specified as a positive scalar. The nominal value is the expected
surface resolution of the radar system. Units are in meters.
Data Types: double

RangeLimit — Range limit of clutter generation
10000 (default) | positive scalar

Range limit of clutter generation, specified as a positive scalar. Clutter generation is limited to this
range when the clutter region is unbounded. Units are in meters.
Data Types: double

UseBeam — Use beam footprint as clutter region
true (default) | false

Enable the use of the beam footprint as the clutter region, specified as true or false. When true,
the mainlobe clutter return is automatically included. Use the ringClutterRegion object function
of the ClutterGenerator to create a custom region.
Data Types: logical

UseShadowing — Enable use of surface self-occlusion
true (default) | true

Enable use of surface self-occlusion when generating clutter, specified as true or false. Surface
self-occlusion is referred to as shadowing.
Data Types: logical
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Regions — Scenario clutter region
RingClutterRegion

This property is read-only.

Region of the scenario in which is generated, returned as a RingClutterRegion. There can be
multiple clutter regions.

Radar — Radar
radarDataGenerator object | radarTransceiver object

This property is read-only.

Radar objects for which clutter is generated, returned as a radarDataGenerator or a
radarTransceiver object. There can be multiple radar objects.

Object Functions
getClutterGenerator Obtain clutter generator belonging to a radar
ringClutterRegion Ring clutter region

Examples

Create Clutter Object with Two Clutter Regions

Generate clutter from a surface having two clutter regions. Start by creating a
radarDataGenerator. Use a radar frequency of 1 GHz, a 100 meter range resolution, a 5 kHz pulse
repetition frequency (PRF), and 128 pulses. The beam is symmetric with a 4 degree two-sided
beamwidth in azimuth and elevation.

fc = 1e9;
rangeRes = 100;
prf = 5e3;
numPulses = 128;
beamwidth = 4;

Use the PRF and number of pulses to calculate the nominal Doppler and range-rate resolution. The
radar will update once each coherent processing interval (CPI).

dopRes = prf/numPulses;
lambda = freq2wavelen(fc);
rangeRateRes = dop2speed(dopRes,lambda)/2;
cpiTime = numPulses/prf;

rdr = radarDataGenerator(1,'No scanning','UpdateRate',1/cpiTime, ...
    'DetectionMode','Monostatic','TargetReportFormat','Detections', ...
    'DetectionCoordinates','Scenario', ...
    'HasINS',true,'HasElevation',true,'HasFalseAlarms',false, ...
    'HasNoise',false,'HasRangeRate',true, ...
    'HasRangeAmbiguities',true,'HasRangeRateAmbiguities',true, ...
    'CenterFrequency',fc,'FieldOfView',beamwidth, ...
    'AzimuthResolution',beamwidth,'ElevationResolution', ...
    beamwidth,'RangeResolution', ...
    rangeRes,'RangeRateResolution',rangeRateRes, ...
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    'ReferenceRange',20e3,'ReferenceRCS',0, ...
    'DetectionProbability',0.9);

Create a scenario using the radarScenario object, setting the update rate to zero so that the
update interval is derived from sensors in the scene.

scenario = radarScenario('UpdateRate',0,'IsEarthCentered',false);

Now create the scenario surface. Choose a constant-gamma reflectivity model with a gamma value
appropriate for flatland. This gamma value can be found using the surfacegamma function. Using
this value, create a surfaceReflectivityLand object to add to a LandSurface using the
RadarReflectivity property.

gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand('Model','ConstantGamma', ...
    'Gamma',gammaDB);
landSurface(scenario,'RadarReflectivity',refl);

Add two clutter regions to the scenario. Use the clutterGenerator object function to construct a
clutter generator and enable clutter generation for the radar. The Resolution property defines the
nominal spacing of clutter patches. Set this to be 1/5th of the range resolution to get multiple clutter
patches per range gate. Set the range limit to 20 km. UseBeam indicates if clutter generation should
be performed automatically for the mainlobe of the antenna pattern.

cluttergen = clutterGenerator(scenario,rdr,'Resolution', ...
    rangeRes/5,'RangeLimit',20e3,'UseBeam',true);
rgn1 = ringClutterRegion(cluttergen,1000,10000,30,45);
rgn2 = ringClutterRegion(cluttergen,1000,10000,30,105);

The getClutterGenerator function displays the two ring-shaped clutter regions belonging to the
scenario.

getClutterGenerator(scenario,rdr)

ans = 
  ClutterGenerator with properties:

      Resolution: 20
      RangeLimit: 20000
         UseBeam: 1
    UseShadowing: 1
         Regions: [1x2 radar.scenario.RingClutterRegion]
           Radar: [1x1 radarDataGenerator]

Version History
Introduced in R2022a

See Also
landSurface | seaSurface | radarDataGenerator | radarTransceiver | radarScenario |
clutterGenerator | getClutterGenerator | ringClutterRegion

Topics
“Simulate Radar Detections of Surface Targets in Clutter”
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“Generate Clutter and Target Returns for MTI Radar”
“Simulating Radar Returns from Moving Sea Surfaces”
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clutterGenerator
Add clutter generator for radar

Syntax
genclutter = clutterGenerator(scenario,radar,Name=Value)

Description
genclutter = clutterGenerator(scenario,radar,Name=Value) adds a
ClutterGenerator object genclutter for the radar to the radarScenario scenario.

Examples

Create Clutter Object with Two Clutter Regions

Generate clutter from a surface having two clutter regions. Start by creating a
radarDataGenerator. Use a radar frequency of 1 GHz, a 100 meter range resolution, a 5 kHz pulse
repetition frequency (PRF), and 128 pulses. The beam is symmetric with a 4 degree two-sided
beamwidth in azimuth and elevation.

fc = 1e9;
rangeRes = 100;
prf = 5e3;
numPulses = 128;
beamwidth = 4;

Use the PRF and number of pulses to calculate the nominal Doppler and range-rate resolution. The
radar will update once each coherent processing interval (CPI).

dopRes = prf/numPulses;
lambda = freq2wavelen(fc);
rangeRateRes = dop2speed(dopRes,lambda)/2;
cpiTime = numPulses/prf;

rdr = radarDataGenerator(1,'No scanning','UpdateRate',1/cpiTime, ...
    'DetectionMode','Monostatic','TargetReportFormat','Detections', ...
    'DetectionCoordinates','Scenario', ...
    'HasINS',true,'HasElevation',true,'HasFalseAlarms',false, ...
    'HasNoise',false,'HasRangeRate',true, ...
    'HasRangeAmbiguities',true,'HasRangeRateAmbiguities',true, ...
    'CenterFrequency',fc,'FieldOfView',beamwidth, ...
    'AzimuthResolution',beamwidth,'ElevationResolution', ...
    beamwidth,'RangeResolution', ...
    rangeRes,'RangeRateResolution',rangeRateRes, ...
    'ReferenceRange',20e3,'ReferenceRCS',0, ...
    'DetectionProbability',0.9);

Create a scenario using the radarScenario object, setting the update rate to zero so that the
update interval is derived from sensors in the scene.
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scenario = radarScenario('UpdateRate',0,'IsEarthCentered',false);

Now create the scenario surface. Choose a constant-gamma reflectivity model with a gamma value
appropriate for flatland. This gamma value can be found using the surfacegamma function. Using
this value, create a surfaceReflectivityLand object to add to a LandSurface using the
RadarReflectivity property.

gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand('Model','ConstantGamma', ...
    'Gamma',gammaDB);
landSurface(scenario,'RadarReflectivity',refl);

Add two clutter regions to the scenario. Use the clutterGenerator object function to construct a
clutter generator and enable clutter generation for the radar. The Resolution property defines the
nominal spacing of clutter patches. Set this to be 1/5th of the range resolution to get multiple clutter
patches per range gate. Set the range limit to 20 km. UseBeam indicates if clutter generation should
be performed automatically for the mainlobe of the antenna pattern.

cluttergen = clutterGenerator(scenario,rdr,'Resolution', ...
    rangeRes/5,'RangeLimit',20e3,'UseBeam',true);
rgn1 = ringClutterRegion(cluttergen,1000,10000,30,45);
rgn2 = ringClutterRegion(cluttergen,1000,10000,30,105);

The getClutterGenerator function displays the two ring-shaped clutter regions belonging to the
scenario.

getClutterGenerator(scenario,rdr)

ans = 
  ClutterGenerator with properties:

      Resolution: 20
      RangeLimit: 20000
         UseBeam: 1
    UseShadowing: 1
         Regions: [1x2 radar.scenario.RingClutterRegion]
           Radar: [1x1 radarDataGenerator]

Input Arguments
scenario — Radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

radar — Radar
radarDataGenerator object | radarTransceiver object

Radar, specified as a radarDataGenerator or radarTransceiver object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Resolution = 34

Resolution — Nominal spacing of clutter patches
40 (default) | positive scalar

Nominal resolution of clutter patches, specified as a positive scalar. The nominal value is the expected
resolution ground of the radar system. Units are in meters.
Data Types: double

RangeLimit — Range limit of clutter generation
10000 (default) | positive scalar

Range limit of clutter generation, specified as a positive scalar. Clutter generation is limited to this
range when the clutter region is unbounded. Units are in meters.
Data Types: double

UseBeam — Use beam footprint as clutter region
true (default) | false

Enable use of the beam footprint as the clutter region, specified as true or false. When true, the
mainlobe clutter return is automatically included. Use the ringClutterRegion object function of
the ClutterGenerator to create a custom region.
Data Types: logical

UseShadowing — Enable use of surface self-occlusion
true (default) | true

Enable use of surface self-occlusion when generating clutter, specified as true or false. Surface
self-occlusion is referred to as shadowing.
Data Types: logical

Output Arguments
genclutter — Clutter generator
ClutterGenerator object

Clutter generator, returned as a ClutterGenerator object.

Version History
Introduced in R2022a

See Also
Objects
ClutterGenerator

Functions
landSurface | seaSurface | radarDataGenerator | radarTransceiver | radarScenario |
getClutterGenerator | ringClutterRegion
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Topics
“Simulate Radar Detections of Surface Targets in Clutter”
“Generate Clutter and Target Returns for MTI Radar”
“Simulating Radar Returns from Moving Sea Surfaces”
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getClutterGenerator
Obtain clutter generator belonging to a radar

Syntax
cluttergen = getClutterGenerator(scenario,radar)

Description
cluttergen = getClutterGenerator(scenario,radar) returns a clutter generator object
cluttergen for the radar belonging to the radar scenario scenario.

Examples

Create Clutter Object with Two Clutter Regions

Generate clutter from a surface having two clutter regions. Start by creating a
radarDataGenerator. Use a radar frequency of 1 GHz, a 100 meter range resolution, a 5 kHz pulse
repetition frequency (PRF), and 128 pulses. The beam is symmetric with a 4 degree two-sided
beamwidth in azimuth and elevation.

fc = 1e9;
rangeRes = 100;
prf = 5e3;
numPulses = 128;
beamwidth = 4;

Use the PRF and number of pulses to calculate the nominal Doppler and range-rate resolution. The
radar will update once each coherent processing interval (CPI).

dopRes = prf/numPulses;
lambda = freq2wavelen(fc);
rangeRateRes = dop2speed(dopRes,lambda)/2;
cpiTime = numPulses/prf;

rdr = radarDataGenerator(1,'No scanning','UpdateRate',1/cpiTime, ...
    'DetectionMode','Monostatic','TargetReportFormat','Detections', ...
    'DetectionCoordinates','Scenario', ...
    'HasINS',true,'HasElevation',true,'HasFalseAlarms',false, ...
    'HasNoise',false,'HasRangeRate',true, ...
    'HasRangeAmbiguities',true,'HasRangeRateAmbiguities',true, ...
    'CenterFrequency',fc,'FieldOfView',beamwidth, ...
    'AzimuthResolution',beamwidth,'ElevationResolution', ...
    beamwidth,'RangeResolution', ...
    rangeRes,'RangeRateResolution',rangeRateRes, ...
    'ReferenceRange',20e3,'ReferenceRCS',0, ...
    'DetectionProbability',0.9);

Create a scenario using the radarScenario object, setting the update rate to zero so that the
update interval is derived from sensors in the scene.
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scenario = radarScenario('UpdateRate',0,'IsEarthCentered',false);

Now create the scenario surface. Choose a constant-gamma reflectivity model with a gamma value
appropriate for flatland. This gamma value can be found using the surfacegamma function. Using
this value, create a surfaceReflectivityLand object to add to a LandSurface using the
RadarReflectivity property.

gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand('Model','ConstantGamma', ...
    'Gamma',gammaDB);
landSurface(scenario,'RadarReflectivity',refl);

Add two clutter regions to the scenario. Use the clutterGenerator object function to construct a
clutter generator and enable clutter generation for the radar. The Resolution property defines the
nominal spacing of clutter patches. Set this to be 1/5th of the range resolution to get multiple clutter
patches per range gate. Set the range limit to 20 km. UseBeam indicates if clutter generation should
be performed automatically for the mainlobe of the antenna pattern.

cluttergen = clutterGenerator(scenario,rdr,'Resolution', ...
    rangeRes/5,'RangeLimit',20e3,'UseBeam',true);
rgn1 = ringClutterRegion(cluttergen,1000,10000,30,45);
rgn2 = ringClutterRegion(cluttergen,1000,10000,30,105);

The getClutterGenerator function displays the two ring-shaped clutter regions belonging to the
scenario.

getClutterGenerator(scenario,rdr)

ans = 
  ClutterGenerator with properties:

      Resolution: 20
      RangeLimit: 20000
         UseBeam: 1
    UseShadowing: 1
         Regions: [1x2 radar.scenario.RingClutterRegion]
           Radar: [1x1 radarDataGenerator]

Input Arguments
scenario — radar scenario
radarScenario object

Radar scenario, specified as a radarScenario object.

radar — Radar
radarDataGenerator object | radarTransceiver object

Radar, specified as a radarDataGenerator or radarTransceiver object.

Output Arguments
cluttergen — Clutter generator object
ClutterGenerator object
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Clutter generator, returned as ClutterGenerator object.

Version History
Introduced in R2022a

See Also
ClutterGenerator | clutterGenerator | ringClutterRegion

Topics
“Simulate Radar Detections of Surface Targets in Clutter”
“Generate Clutter and Target Returns for MTI Radar”
“Simulating Radar Returns from Moving Sea Surfaces”
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ringClutterRegion
Ring clutter region

Syntax
region = ringClutterRegion(cluttergen,minrad,maxrad,azimuth_span,
azimuth_center)

Description
region = ringClutterRegion(cluttergen,minrad,maxrad,azimuth_span,
azimuth_center) creates a ring-shaped clutter region in the clutter generator object
cluttergen. The region ranges from a minimum radius minrad to a maximum radius maxrad and a
span of azimuth angles azimuth_span centered on azimuth_center. Clutter regions are listed in
the Regions of ClutterGenerator object.

Examples

Create Clutter Object with Two Clutter Regions

Generate clutter from a surface having two clutter regions. Start by creating a
radarDataGenerator. Use a radar frequency of 1 GHz, a 100 meter range resolution, a 5 kHz pulse
repetition frequency (PRF), and 128 pulses. The beam is symmetric with a 4 degree two-sided
beamwidth in azimuth and elevation.

fc = 1e9;
rangeRes = 100;
prf = 5e3;
numPulses = 128;
beamwidth = 4;

Use the PRF and number of pulses to calculate the nominal Doppler and range-rate resolution. The
radar will update once each coherent processing interval (CPI).

dopRes = prf/numPulses;
lambda = freq2wavelen(fc);
rangeRateRes = dop2speed(dopRes,lambda)/2;
cpiTime = numPulses/prf;

rdr = radarDataGenerator(1,'No scanning','UpdateRate',1/cpiTime, ...
    'DetectionMode','Monostatic','TargetReportFormat','Detections', ...
    'DetectionCoordinates','Scenario', ...
    'HasINS',true,'HasElevation',true,'HasFalseAlarms',false, ...
    'HasNoise',false,'HasRangeRate',true, ...
    'HasRangeAmbiguities',true,'HasRangeRateAmbiguities',true, ...
    'CenterFrequency',fc,'FieldOfView',beamwidth, ...
    'AzimuthResolution',beamwidth,'ElevationResolution', ...
    beamwidth,'RangeResolution', ...
    rangeRes,'RangeRateResolution',rangeRateRes, ...
    'ReferenceRange',20e3,'ReferenceRCS',0, ...
    'DetectionProbability',0.9);
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Create a scenario using the radarScenario object, setting the update rate to zero so that the
update interval is derived from sensors in the scene.

scenario = radarScenario('UpdateRate',0,'IsEarthCentered',false);

Now create the scenario surface. Choose a constant-gamma reflectivity model with a gamma value
appropriate for flatland. This gamma value can be found using the surfacegamma function. Using
this value, create a surfaceReflectivityLand object to add to a LandSurface using the
RadarReflectivity property.

gammaDB = surfacegamma('Flatland');
refl = surfaceReflectivityLand('Model','ConstantGamma', ...
    'Gamma',gammaDB);
landSurface(scenario,'RadarReflectivity',refl);

Add two clutter regions to the scenario. Use the clutterGenerator object function to construct a
clutter generator and enable clutter generation for the radar. The Resolution property defines the
nominal spacing of clutter patches. Set this to be 1/5th of the range resolution to get multiple clutter
patches per range gate. Set the range limit to 20 km. UseBeam indicates if clutter generation should
be performed automatically for the mainlobe of the antenna pattern.

cluttergen = clutterGenerator(scenario,rdr,'Resolution', ...
    rangeRes/5,'RangeLimit',20e3,'UseBeam',true);
rgn1 = ringClutterRegion(cluttergen,1000,10000,30,45);
rgn2 = ringClutterRegion(cluttergen,1000,10000,30,105);

The getClutterGenerator function displays the two ring-shaped clutter regions belonging to the
scenario.

getClutterGenerator(scenario,rdr)

ans = 
  ClutterGenerator with properties:

      Resolution: 20
      RangeLimit: 20000
         UseBeam: 1
    UseShadowing: 1
         Regions: [1x2 radar.scenario.RingClutterRegion]
           Radar: [1x1 radarDataGenerator]

Input Arguments
cluttergen — Clutter generator
clutter generator object

Clutter generator, specified as a ClutterGenerator object. You can create a clutter generator using
the clutterGenerator object function.

minrad — Minimum radius of ring clutter region
scalar

Minimum radius of ring clutter region, specified as a scalar. Range is defined with respect the surface
point directly below the radar. Units are in meters.
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Data Types: double

maxrad — Maximum radius of ring clutter region
scalar

Maximum radius of ring clutter region, specified as a scalar. Range is defined with respect the
surface point directly below the radar. Units are in meters.
Data Types: double

azimuth_span — Azimuth span of ring clutter region
scalar

Azimuth span of ring clutter region, specified as a scalar. Units are in degrees.

In flat-Earth scenarios, azimuth angles are defined with respect to the global x-y coordinates system,
with azimuth angle increasing counter-clockwise from the +x axis. In curved-Earth scenarios,
azimuth angle is measured clockwise from North.
Data Types: double

azimuth_center — Azimuth center of ring clutter region
scalar

Azimuth center of ring clutter region, specified as a scalar. Units are in degrees.

In flat-Earth scenarios, azimuth angles are defined with respect to the global x-y coordinates system,
with azimuth angle increasing counter-clockwise from the +x axis. In curved-Earth scenarios,
azimuth angle is measured clockwise from North.
Data Types: double

Output Arguments
cluttergen — Ring clutter region
ringClutterRegion object

Ring clutter region, returned as a RingClutterRegion object.

Version History
Introduced in R2022a

See Also
ClutterGenerator | clutterGenerator | getClutterGenerator
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twoRayChannel
Two-ray propagation channel

Description
The twoRayChannel models a narrowband two-ray propagation channel. A two-ray propagation
channel is the simplest type of multipath channel. You can use a two-ray channel to simulate
propagation of signals in a homogeneous, isotropic medium with a single reflecting boundary. This
type of medium has two propagation paths: a line-of-sight (direct) propagation path from one point to
another and a ray path reflected from the boundary. You can use this System object for short-range
radar and mobile communications applications where the signals propagate along straight paths and
the earth is assumed to be flat. You can also use this object for sonar and microphone applications.
For acoustic applications, you can choose the fields to be non-polarized and adjust the propagation
speed to be the speed of sound in air or water. You can use twoRayChannel to model propagation
from several points simultaneously.

While the System object works for all frequencies, the attenuation models for atmospheric gases and
rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The attenuation
model for fog and clouds is valid for 10–1000 GHz. Outside these frequency ranges, the System object
uses the nearest valid value.

The twoRayChannel System object applies range-dependent time delays to the signals, and as well
as gains or losses, phase shifts, and boundary reflection loss. The System object applies Doppler shift
when either the source or destination is moving.

Signals at the channel output can be kept separate or be combined — controlled by the
CombinedRaysOutput property. In the separate option, both fields arrive at the destination
separately and are not combined. For the combined option, the two signals at the source propagate
separately but are coherently summed at the destination into a single quantity. This option is
convenient when the difference between the sensor or array gains in the directions of the two paths
is not significant and need not be taken into account.

Unlike the phased.FreeSpace System object, the twoRayChannel System object does not support
two-way propagation.

To perform two-ray channel propagation:

1 Create the twoRayChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
channel = twoRayChannel
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channel = twoRayChannel(Name,Value)

Description

channel = twoRayChannel creates a two-ray propagation channel System object.

channel = twoRayChannel(Name,Value) creates a two-ray propagation channel System object
with each specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.

 twoRayChannel

4-339



Example: 20.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double
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SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double

EnablePolarization — Enable polarized fields
false (default) | true

Option to enable polarized fields, specified as false or true. Set this property to true to enable
polarization. Set this property to false to ignore polarization.
Data Types: logical

GroundReflectionCoefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Each coefficient has an absolute value less than or equal to
one. The quantity N is the number of two-ray channels. Units are dimensionless. Use this property to
model nonpolarized signals. To model polarized signals, use the GroundRelativePermittivity
property.
Example: -0.5
Dependencies

To enable this property, set EnablePolarization to false.
Data Types: double
Complex Number Support: Yes

GroundRelativePermittivity — Ground relative permittivity
15 (default) | positive real-valued scalar | real-valued 1-by-Nrow vector of positive values

Relative permittivity of the ground at the reflection point, specified as a positive real-valued scalar or
a 1-by-N real-valued row vector of positive values. The dimension N is the number of two-ray
channels. Permittivity units are dimensionless. Relative permittivity is defined as the ratio of actual
ground permittivity to the permittivity of free space. This property applies when you set the
EnablePolarization property to true. Use this property to model polarized signals. To model
nonpolarized signals, use the GroundReflectionCoefficient property.
Example: 5
Dependencies

To enable this property, set EnablePolarization to true.
Data Types: double

CombinedRaysOutput — Option to combine two rays at output
true (default) | false

Option to combine the two rays at channel output, specified as true or false. When this property is
true, the object coherently adds the line-of-sight propagated signal and the reflected path signal
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when forming the output signal. Use this mode when you do not need to include the directional gain
of an antenna or array in your simulation.
Data Types: logical

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000
Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'
Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The size of the input signal
is the number of rows in the input matrix. Any input signal longer than this number is truncated. To
process signals completely, ensure that this property value is greater than any maximum input signal
length.
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The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.

• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.

Example: 2048

Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Usage

Syntax
prop_sig = channel(sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

prop_sig = channel(sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a narrowband signal, sig, propagates through a two-ray channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can have multiple points but you cannot specify both as having multiple points. The
velocity of the signal origin is specified in origin_vel and the velocity of the signal destination is
specified in dest_vel. The dimensions of origin_vel and dest_vel must agree with the
dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a two-ray channel can be polarized or nonpolarized. For,
nonpolarized fields, such as an acoustic field, the propagating signal field, sig, is a vector or matrix.
When the fields are polarized, sig is an array of structures. Every structure element represents an
electric field vector in Cartesian form.

In the two-ray environment, there are two signal paths connecting every signal origin and destination
pair. For N signal origins (or N signal destinations), there are 2N number of paths. The signals for
each origin-destination pair do not have to be related. The signals along the two paths for any single
source-destination pair can also differ due to phase or amplitude differences.

You can keep the two signals at the destination separate or combined — controlled by the
CombinedRaysOutput property. Combined means that the signals at the source propagate
separately along the two paths but are coherently summed at the destination into a single quantity. To
use the separate option, set CombinedRaysOutput to false. To use the combined option, set
CombinedRaysOutput to true. This option is convenient when the difference between the sensor or
array gains in the directions of the two paths is not significant and need not be taken into account.
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Input Arguments

sig — Narrowband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

• Narrowband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. Each column contains a common signal propagated along both
the line-of-sight path and the reflected path. You can use this form when both path signals are
the same.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents a different channel.
Within each pair, the first column represents the signal propagated along the line-of-sight path
and the second column represents the signal propagated along the reflected path.

• Narrowband polarized signal, specified as a

• 1-by-N struct array containing complex-valued fields. Each struct contains a common
polarized signal propagated along both the line-of-sight path and the reflected path. Each
structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z). You can use this form when both path signals are the same.

• 1-by-2N struct array containing complex-valued fields. Each adjacent pair of array columns
represents a different channel. Within each pair, the first column represents the signal along
the line-of-sight path and the second column represents the signal along the reflected path.
Each structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

For nonpolarized fields, the quantity M is the number of samples of the signal and N is the number of
two-ray channels. Each channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, the struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Origin of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If origin_pos is a column vector, it takes
the form [x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has
the form [x;y;z]. Position units are meters.

origin_pos and dest_pos cannot both be specified as matrices — at least one must be a 3-by-1
column vector.
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Example: [1000;100;500]
Data Types: double

dest_pos — Destination position of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify origin_pos and dest_pos as matrices. At least one must be a 3-by-1 column
vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments

prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

• Narrowband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property
to true. Each matrix column contains the coherently combined signals from the line-of-sight
path and the reflected path.
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• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property
to false. Alternate columns of the matrix contain the signals from the line-of-sight path and
the reflected path.

• Narrowband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to true. Each column of the array contains the coherently
combined signals from the line-of-sight path and the reflected path. Each structure element
contains the electromagnetic field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to false. Alternate columns contains the signals from the
line-of-sight path and the reflected path. Each structure element contains the electromagnetic
field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within the current
input time frame. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output may not contain all contributions from the input of the
current time frame. The remaining output will appear in the next call to the object.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Scalar Field Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a signal, showing how the signals from the line-of-
sight and reflected path arrive at the receiver at different times.

Create and Plot Propagating Signal

Create a nonpolarized electromagnetic field consisting of two rectangular waveform pulses at a
carrier frequency of 100 MHz. Assume the pulse width is 10 ms and the sampling rate is 1 MHz. The
bandwidth of the pulse is 0.1 MHz. Assume a 50% duty cycle in so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to 0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a stationary
receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 1e6;
pw = 10e-6;
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pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2);
wav = waveform();
n = size(wav,1);
figure;
plot((0:(n-1)),real(wav),'b.-');
xlabel('Time (samples)')
ylabel('Waveform magnitude')

Specify the Location of Source and Receiver

Place the source and receiver about 1000 meters apart horizontally and approximately 10 km apart
vertically.

pos1 = [1000;0;10000];
pos2 = [0;100;100];
vel1 = [0;0;0];
vel2 = [0;0;0];

Compute the predicted signal delays in units of samples.

[rng,ang] = rangeangle(pos2,pos1,'two-ray');
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Create a Two-Ray Channel System Object™

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths.

channel = twoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',.9,'OperatingFrequency',fc,...
    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);

Plot the Propagated Signals

• Plot the signal propagated along the line-of-sight.
• Then, overlay a plot of the signal propagated along the reflected path.
• Finally, overlay a plot of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = 0:(n-1);
plot(delay,abs(prop_signal(:,1)),'g')
hold on
plot(delay,abs(prop_signal(:,2)),'r')
plot(delay,abs(prop_signal(:,1) + prop_signal(:,2)),'b')
hold off
legend('Line-of-sight','Reflected','Combined','Location','NorthWest')
xlabel('Delay (samples)')
ylabel('Signal Magnitude')
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The plot shows that the delay of the reflected path signal agrees with the predicted delay. The
magnitude of the coherently combined signal is less than either of the propagated signals indicating
that there is some interference between the two signals.

Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 meters above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Set Radar Waveform Parameters

Assume the pulse width is 10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.

c = physconst('LightSpeed');
fs = 10e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Up','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = twoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
about 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);
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Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object™ uses these angles to apply separate antenna gains to the two signals.

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted Waveform

n = size(wav,1);
plot((0:(n-1))/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')

sig = radiator(wav,angsTx,laxTx);

Propagate signals to receiver via two-ray channel

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object™ uses these
angles to apply separate antenna gains to the two signals.
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[~,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine received rays.

y = collector(prop_sig,angsRx,laxRx);

Plot received waveform

plot((0:(n-1))/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')

Compare Two-Ray with Free Space Propagation

Propagate a signal in a two-ray channel environment from a radar at (0,0,10) meters to a target at
(300,200,30) meters. Assume that the radar and target are stationary and that the transmitting
antenna has a cosine pattern. Compare the combined signals from the two paths with the single
signal resulting from free space propagation. Set the CombinedRaysOutput to true to produce a
combined propagated signal.

Create a Rectangular Waveform

Set the sample rate to 2 MHz.
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fs = 2e6;
waveform = phased.RectangularWaveform('SampleRate',fs);
wavfrm = waveform();

Create the Transmitting Antenna and Radiator

Set up a phased.Radiator System object™ to transmit from a cosine antenna

antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);

Specify Transmitter and Target Coordinates

posTx = [0;0;10];
posTgt = [300;200;30];
velTx = [0;0;0];
velTgt = [0;0;0];

Free Space Propagation

Compute the transmitting direction toward the target for the free-space model. Then, radiate the
signal.

[~,angFS] = rangeangle(posTgt,posTx); 
wavTx = radiator(wavfrm,angFS);

Propagate the signal to the target.

fschannel = phased.FreeSpace('SampleRate',waveform.SampleRate);
yfs = fschannel(wavTx,posTx,posTgt,velTx,velTgt);
release(radiator);

Two-Ray Propagation

Compute the two transmit angles toward the target for line-of-sight (LOS) path and reflected paths.
Compute the transmitting directions toward the target for the two rays. Then, radiate the signals.

[~,angTwoRay] = rangeangle(posTgt,posTx,'two-ray');
wavTwoRay = radiator(wavfrm,angTwoRay);

Propagate the signals to the target.

channel = twoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y2ray = channel(wavTwoRay,posTx,posTgt,velTx,velTgt);

Plot the Propagated Signals

Plot the combined signal against the free-space signal

plot(abs([y2ray yfs]))
legend('Two-ray','Free space')
xlabel('Samples')
ylabel('Signal Magnitude')
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Two-Ray Propagation of LFM Waveform

Propagate a linear FM signal in a two-ray channel. The signal propagates from a transmitter located
at (1000,10,10) meters in the global coordinate system to a receiver at (10000,200,30) meters.
Assume that the transmitter and the receiver are stationary and that they both have cosine antenna
patterns. Plot the received signal.

Set up the radar scenario. First, create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',1000000,...
    'OutputFormat','Pulses','NumPulses',2);
fs = waveform.SampleRate;
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = twoRayChannel('SampleRate',fs,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [1000;10;10];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];
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Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x direction and the receiving antenna points
near but not directly in the -x direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and radiate signals from transmitter along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect signals at the receiver. Compute the angle at which the two rays traveling from the
transmitter arrive at the receiver. The phased.Collector System object™ uses these angles to
apply separate antenna gains to the two signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot the received signals.

dt = 1/fs;
n = size(yR,1);
plot((0:(n-1))*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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Two-Ray Propagation of LFM Waveform with Atmospheric Losses

Propagate a 100 Mhz linear FM signal into a two-ray channel. Assume there is signal loss caused by
atmospheric gases and rain. The signal propagates from a transmitter located at (0,0,0) meters in
the global coordinate system to a receiver at (10000,200,30) meters. Assume that the transmitter
and the receiver are stationary and that they both have cosine antenna patterns. Plot the received
signal. Set the dry air pressure to 102.5 Pa and the rain rate to 5 mm/hr.

Set Up Radar Scenario
waveform = phased.LinearFMWaveform('SampleRate',1e6,...
    'OutputFormat','Pulses','NumPulses',2);
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = twoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95,...
    'SpecifyAtmosphere',true,'Temperature',20,...
    'DryAirPressure',102.5,'RainRate',5.0);

Set up the scene geometry giving. the transmitter and receiver positions and velocities. The
transmitter and receiver are stationary.

posTx = [0;0;0];
posRx = [10000;200;30];
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velTx = [0;0;0];
velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x-direction and the receiving antenna points
close to the –x-direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the receiver. The
phased.Collector System object™ uses these angles to apply separate antenna gains to the two
signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot Received Signal

dt = 1/waveform.SampleRate;
n = size(yR,1);
plot((0:(n-1))*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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More About
Two-Ray Propagation Paths

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel. The line-of-sight path is often called the
direct path. The second ray reflects off the boundary before propagating to point 2. According to the
Law of Reflection , the angle of reflection equals the angle of incidence. In short-range simulations
such as cellular communications systems and automotive radars, you can assume that the reflecting
surface, the ground or ocean surface, is flat.

The twoRayChannel and widebandTwoRayChannel System objects model propagation time delay,
phase shift, Doppler shift, and loss effects for both paths. For the reflected path, loss effects include
reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
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dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.

R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp
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Two-Ray Attenuation

Attenuation or path loss in the two-ray channel is the product of five components, L = Ltworay LG Lg Lc
Lr, where

• Ltworay is the two-ray geometric path attenuation
• LG is the ground reflection attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Ground Reflection and Propagation Loss

Losses occurs when a signal is reflected from a boundary. You can obtain a simple model of ground
reflection loss by representing the electromagnetic field as a scalar field. This approach also works
for acoustic and sonar systems. Let E be a scalar free-space electromagnetic field having amplitude
E0 at a reference distance R0 from a transmitter (for example, one meter). The propagating free-space
field at distance Rlos from the transmitter is

Elos = E0
R0

Rlos
eiω t − Rlos/c

for the line-of-sight path. You can express the ground-reflected E-field as

Erp = LGE0
R0
Rrp

eiω t − Rrp/c

where Rrp is the reflected path distance. The quantity LG represents the loss due to reflection at the
ground plane. To specify LG, use the GroundReflectionCoefficient property. In general, LG
depends on the incidence angle of the field. If you have empirical information about the angular
dependence of LG, you can use rangeangle to compute the incidence angle of the reflected path.
The total field at the destination is the sum of the line-of-sight and reflected-path fields.

For electromagnetic waves, a more complicated but more realistic model uses a vector representation
of the polarized field. You can decompose the incident electric field into two components. One
component, Ep, is parallel to the plane of incidence. The other component, Es, is perpendicular to the
plane of incidence. The ground reflection coefficients for these components differ and can be written
in terms of the ground permittivity and incidence angle.
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Gp =
Z1cosθ1− Z2cosθ2
Z1cosθ1 + Z2cosθ2

=
cosθ1−

Z2
Z1

cosθ2

cosθ1 +
Z2
Z1

cosθ2

Gs =
Z2cosθ1− Z1cosθ2
Z2cosθ1 + Z1cosθ2

=
cosθ2−

Z2
Z1

cosθ1

cosθ2 +
Z2
Z1

cosθ1

Z1 =
μ1
ε1

Z2 =
μ2
ε2

where Z is the impedance of the medium. Because the magnetic permeability of the ground is almost
identical to that of air or free space, the ratio of impedances depends primarily on the ratio of electric
permittivities

Gp =
ρcosθ1− cosθ2
ρcosθ1 + cosθ2

Gs =
ρcosθ2− cosθ1
ρcosθ2 + cosθ1

where the quantity ρ = ε2/ε1 is the ground relative permittivity set by the
GroundRelativePermittivity property. The angle θ1 is the incidence angle and the angle θ2 is
the refraction angle at the boundary. You can determine θ2 using Snell’s law of refraction.

After reflection, the full field is reconstructed from the parallel and perpendicular components. The
total ground plane attenuation, LG, is a combination of Gs and Gp.

When the origin and destination are stationary relative to each other, you can write the output Y of
the object as Y(t) = F(t-τ)/L. The quantity τ is the signal delay and L is the free-space path loss. The
delay τ is given by R/c. R is either the line-of-sight propagation path distance or the reflected path
distance, and c is the propagation speed. The path loss

where λ is the signal wavelength.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

4 Objects

4-360



The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,
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where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Objects
phased.FreeSpace | phased.LOSChannel | phased.RadarTarget |
phased.WidebandFreeSpace | phased.WidebandLOSChannel | widebandTwoRayChannel

 twoRayChannel

4-363



reset
System object: twoRayChannel

Reset states of System object

Syntax
reset(s2Ray)

Description
reset(s2Ray) resets the internal state of the twoRayChannel object, S. This method resets the
random number generator state if SeedSource is a property of this System object and has the value
'Property'.

Input Arguments
s2Ray — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: twoRayChannel

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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step
System object: twoRayChannel

Propagate signal from point to point using two-ray channel model

Syntax
prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a narrowband signal, sig, propagates through a two-ray channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can have multiple points but you cannot specify both as having multiple points. The
velocity of the signal origin is specified in origin_vel and the velocity of the signal destination is
specified in dest_vel. The dimensions of origin_vel and dest_vel must agree with the
dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a two-ray channel can be polarized or nonpolarized. For,
nonpolarized fields, such as an acoustic field, the propagating signal field, sig, is a vector or matrix.
When the fields are polarized, sig is an array of structures. Every structure element represents an
electric field vector in Cartesian form.

In the two-ray environment, there are two signal paths connecting every signal origin and destination
pair. For N signal origins (or N signal destinations), there are 2N number of paths. The signals for
each origin-destination pair do not have to be related. The signals along the two paths for any single
source-destination pair can also differ due to phase or amplitude differences.

You can keep the two signals at the destination separate or combined — controlled by the
CombinedRaysOutput property. Combined means that the signals at the source propagate
separately along the two paths but are coherently summed at the destination into a single quantity. To
use the separate option, set CombinedRaysOutput to false. To use the combined option, set
CombinedRaysOutput to true. This option is convenient when the difference between the sensor or
array gains in the directions of the two paths is not significant and need not be taken into account.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
channel — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: twoRayChannel

sig — Narrowband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

• Narrowband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. Each column contains a common signal propagated along both
the line-of-sight path and the reflected path. You can use this form when both path signals are
the same.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents a different channel.
Within each pair, the first column represents the signal propagated along the line-of-sight path
and the second column represents the signal propagated along the reflected path.

• Narrowband polarized signal, specified as a

• 1-by-N struct array containing complex-valued fields. Each struct contains a common
polarized signal propagated along both the line-of-sight path and the reflected path. Each
structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z). You can use this form when both path signals are the same.

• 1-by-2N struct array containing complex-valued fields. Each adjacent pair of array columns
represents a different channel. Within each pair, the first column represents the signal along
the line-of-sight path and the second column represents the signal along the reflected path.
Each structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

For nonpolarized fields, the quantity M is the number of samples of the signal and N is the number of
two-ray channels. Each channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, the struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Origin of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix
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Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If origin_pos is a column vector, it takes
the form [x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has
the form [x;y;z]. Position units are meters.

origin_pos and dest_pos cannot both be specified as matrices — at least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Destination position of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify origin_pos and dest_pos as matrices. At least one must be a 3-by-1 column
vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

 step

4-367



• Narrowband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property
to true. Each matrix column contains the coherently combined signals from the line-of-sight
path and the reflected path.

• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property
to false. Alternate columns of the matrix contain the signals from the line-of-sight path and
the reflected path.

• Narrowband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to true. Each column of the array contains the coherently
combined signals from the line-of-sight path and the reflected path. Each structure element
contains the electromagnetic field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to false. Alternate columns contains the signals from the
line-of-sight path and the reflected path. Each structure element contains the electromagnetic
field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within the current
input time frame. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output may not contain all contributions from the input of the
current time frame. The remaining output will appear in the next call to step.

Examples

Compare Two-Ray with Free Space Propagation

Propagate a signal in a two-ray channel environment from a radar at (0,0,10) meters to a target at
(300,200,30) meters. Assume that the radar and target are stationary and that the transmitting
antenna has a cosine pattern. Compare the combined signals from the two paths with the single
signal resulting from free space propagation. Set the CombinedRaysOutput to true to produce a
combined propagated signal.

Create a Rectangular Waveform

Set the sample rate to 2 MHz.

fs = 2e6;
waveform = phased.RectangularWaveform('SampleRate',fs);
wavfrm = waveform();

Create the Transmitting Antenna and Radiator

Set up a phased.Radiator System object™ to transmit from a cosine antenna

antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);

Specify Transmitter and Target Coordinates

posTx = [0;0;10];
posTgt = [300;200;30];
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velTx = [0;0;0];
velTgt = [0;0;0];

Free Space Propagation

Compute the transmitting direction toward the target for the free-space model. Then, radiate the
signal.

[~,angFS] = rangeangle(posTgt,posTx); 
wavTx = radiator(wavfrm,angFS);

Propagate the signal to the target.

fschannel = phased.FreeSpace('SampleRate',waveform.SampleRate);
yfs = fschannel(wavTx,posTx,posTgt,velTx,velTgt);
release(radiator);

Two-Ray Propagation

Compute the two transmit angles toward the target for line-of-sight (LOS) path and reflected paths.
Compute the transmitting directions toward the target for the two rays. Then, radiate the signals.

[~,angTwoRay] = rangeangle(posTgt,posTx,'two-ray');
wavTwoRay = radiator(wavfrm,angTwoRay);

Propagate the signals to the target.

channel = twoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y2ray = channel(wavTwoRay,posTx,posTgt,velTx,velTgt);

Plot the Propagated Signals

Plot the combined signal against the free-space signal

plot(abs([y2ray yfs]))
legend('Two-ray','Free space')
xlabel('Samples')
ylabel('Signal Magnitude')
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Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 meters above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Set Radar Waveform Parameters

Assume the pulse width is 10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.

c = physconst('LightSpeed');
fs = 10e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

4 Objects

4-370



waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Up','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = twoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
about 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object™ uses these angles to apply separate antenna gains to the two signals.

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted Waveform

n = size(wav,1);
plot((0:(n-1))/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')
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sig = radiator(wav,angsTx,laxTx);

Propagate signals to receiver via two-ray channel

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object™ uses these
angles to apply separate antenna gains to the two signals.

[~,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine received rays.

y = collector(prop_sig,angsRx,laxRx);

Plot received waveform

plot((0:(n-1))/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')
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Two-Ray Propagation of LFM Waveform

Propagate a linear FM signal in a two-ray channel. The signal propagates from a transmitter located
at (1000,10,10) meters in the global coordinate system to a receiver at (10000,200,30) meters.
Assume that the transmitter and the receiver are stationary and that they both have cosine antenna
patterns. Plot the received signal.

Set up the radar scenario. First, create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',1000000,...
    'OutputFormat','Pulses','NumPulses',2);
fs = waveform.SampleRate;
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = twoRayChannel('SampleRate',fs,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [1000;10;10];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];
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Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x direction and the receiving antenna points
near but not directly in the -x direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and radiate signals from transmitter along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect signals at the receiver. Compute the angle at which the two rays traveling from the
transmitter arrive at the receiver. The phased.Collector System object™ uses these angles to
apply separate antenna gains to the two signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot the received signals.

dt = 1/fs;
n = size(yR,1);
plot((0:(n-1))*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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Two-Ray Propagation of LFM Waveform with Atmospheric Losses

Propagate a 100 Mhz linear FM signal into a two-ray channel. Assume there is signal loss caused by
atmospheric gases and rain. The signal propagates from a transmitter located at (0,0,0) meters in
the global coordinate system to a receiver at (10000,200,30) meters. Assume that the transmitter
and the receiver are stationary and that they both have cosine antenna patterns. Plot the received
signal. Set the dry air pressure to 102.5 Pa and the rain rate to 5 mm/hr.

Set Up Radar Scenario
waveform = phased.LinearFMWaveform('SampleRate',1e6,...
    'OutputFormat','Pulses','NumPulses',2);
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = twoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95,...
    'SpecifyAtmosphere',true,'Temperature',20,...
    'DryAirPressure',102.5,'RainRate',5.0);

Set up the scene geometry giving. the transmitter and receiver positions and velocities. The
transmitter and receiver are stationary.

posTx = [0;0;0];
posRx = [10000;200;30];
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velTx = [0;0;0];
velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x-direction and the receiving antenna points
close to the –x-direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the receiver. The
phased.Collector System object™ uses these angles to apply separate antenna gains to the two
signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot Received Signal

dt = 1/waveform.SampleRate;
n = size(yR,1);
plot((0:(n-1))*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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widebandTwoRayChannel
Wideband two-ray propagation channel

Description
The widebandTwoRayChannel models a wideband two-ray propagation channel. A two-ray
propagation channel is the simplest type of multipath channel. You can use a two-ray channel to
simulate propagation of signals in a homogeneous, isotropic medium with a single reflecting
boundary. This type of medium has two propagation paths: a line-of-sight (direct) propagation path
from one point to another and a ray path reflected from the boundary.

You can use this System object for short-range radar and mobile communications applications where
the signals propagate along straight paths and the earth is assumed to be flat. You can also use this
object for sonar and microphone applications. For acoustic applications, you can choose nonpolarized
fields and adjust the propagation speed to be the speed of sound in air or water. You can use
widebandTwoRayChannel to model propagation from several points simultaneously.

Although the System object works for all frequencies, the attenuation models for atmospheric gases
and rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The
attenuation model for fog and clouds is valid for 10–1000 GHz. Outside these frequency ranges, the
System object uses the nearest valid value.

The widebandTwoRayChannel System object applies range-dependent time delays to the signals, as
well as gains or losses, phase shifts, and boundary reflection loss. When either the source or
destination is moving, the System object applies Doppler shifts to the signals.

Signals at the channel output can be kept separate or be combined. If you keep the signals separate,
both signals arrive at the destination separately and are not combined. If you choose to combine the
signals, the two signals from the source propagate separately but are coherently summed at the
destination into a single quantity. Choose this option when the difference between the sensor or array
gains in the directions of the two paths is insignificant.

In contrast to the phased.WidebandFreeSpace and phased.WidebandLOSChannel System
objects, this System object does not support two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your two-ray channel. See “Creation” on page 4-338.
2 Call the step method to compute the propagated signal using the properties of the

widebandTwoRayChannel System object.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

4 Objects

4-378



Construction
channel = widebandTwoRayChannel creates a two-ray propagation channel System object,
channel.

channel = widebandTwoRayChannel(Name,Value) creates a System object, channel, with
each specified property Name set to the specified Value. You can specify additional name and value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar
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Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double
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NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

EnablePolarization — Enable polarized fields
false (default) | true

Option to enable polarized fields, specified as false or true. Set this property to true to enable
polarization. Set this property to false to ignore polarization.
Data Types: logical

GroundReflectionCoefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Each coefficient has an absolute value less than or equal to
one. The quantity N is the number of two-ray channels. Units are dimensionless. Use this property to
model nonpolarized signals. To model polarized signals, use the GroundRelativePermittivity
property.
Example: -0.5

Dependencies

To enable this property, set EnablePolarization to false.
Data Types: double
Complex Number Support: Yes

GroundRelativePermittivity — Ground relative permittivity
15 (default) | positive real-valued scalar | real-valued 1-by-Nrow vector of positive values

Relative permittivity of the ground at the reflection point, specified as a positive real-valued scalar or
a 1-by-N real-valued row vector of positive values. The dimension N is the number of two-ray
channels. Permittivity units are dimensionless. Relative permittivity is defined as the ratio of actual
ground permittivity to the permittivity of free space. This property applies when you set the
EnablePolarization property to true. Use this property to model polarized signals. To model
nonpolarized signals, use the GroundReflectionCoefficient property.
Example: 5

Dependencies

To enable this property, set EnablePolarization to true.
Data Types: double

CombinedRaysOutput — Option to combine two rays at output
true (default) | false

Option to combine the two rays at channel output, specified as true or false. When this property is
true, the object coherently adds the line-of-sight propagated signal and the reflected path signal
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when forming the output signal. Use this mode when you do not need to include the directional gain
of an antenna or array in your simulation.
Data Types: logical

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000
Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'
Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The size of the input signal
is the number of rows in the input matrix. Any input signal longer than this number is truncated. To
process signals completely, ensure that this property value is greater than any maximum input signal
length.
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The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.

• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.

Example: 2048

Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Methods
reset Reset states of System object
step Propagate wideband signal from point to point using two-ray channel model

Common to All System Objects
release Allow System object property value changes

Examples

Scalar Wideband Signal Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a wideband signal, showing how the signals from
the line-of-sight path and reflected path arrive at the receiver at different times.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create and Plot Transmitted Waveform

Create a nonpolarized electromagnetic field consisting of two linear FM waveform pulses at a carrier
frequency of 100 MHz. Assume the pulse width is 20 μs and the sampling rate is 10 MHz. The
bandwidth of the pulse is 1 MHz. Assume a 50% duty cycle so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to –0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a
stationary receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 10e6;
pw = 20e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
bw = 1e6;
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waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')

Specify the Location of Source and Receiver

Place the source and receiver about 1 km apart horizontally and approximately 5 km apart vertically.

pos1 = [0;0;100];
pos2 = [1e3;0;5.0e3];
vel1 = [0;0;0];
vel2 = [0;0;0];

Create a Wideband Two-Ray Channel System Object

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths. The same signal is propagated along both paths.

channel = widebandTwoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',-0.9,'OperatingFrequency',fc,...
    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);
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[rng2,angs] = rangeangle(pos2,pos1,'two-ray');

Calculate time delays in μs.

tm = rng2/c*1e6;
disp(tm)

   16.6815   17.3357

Display the calculated propagation paths azimuth and elevation angles in degrees.

disp(angs)

         0         0
   78.4654  -78.9063

Plot the Propagated Signals

1 Plot the real part of the signal propagated along the line-of-sight path.
2 Plot the real part of the signal propagated along the reflected path.
3 Plot the real part of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = [0:(n-1)]/fs*1e6;
subplot(3,1,1)
plot(delay,real([prop_signal(:,1)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Direct Path')

subplot(3,1,2)
plot(delay,real([prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Reflected Path')

subplot(3,1,3)
plot(delay,real([prop_signal(:,1) + prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Combined Paths')
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The delay of the reflected path signal agrees with the predicted delay. The magnitude of the
coherently combined signal is less than either of the propagated signals. This result indicates that the
two signals contain some interference.

Compare Wideband Two-Ray Channel Propagation to Free Space

Compute the result of propagating a wideband LFM signal in a two-ray environment from a radar 10
meters above the origin (0,0,10) to a target at (3000,2000,2000) meters. Assume that the radar and
target are stationary and that the transmitting antenna is isotropic. Combine the signal from the two
paths and compare the signal to a signal propagating in free space. The system operates at 300 MHz.
Set the CombinedRaysOutput property to true to combine the direct path and reflected path
signals when forming the output signal.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a linear FM waveform.

fop = 300.0e6;
fs = 1.0e6;
waveform = phased.LinearFMWaveform();
x = waveform();

Specify the target position and velocity.
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posTx = [0; 0; 10];
posTgt = [3000; 2000; 2000];
velTx = [0;0;0];
velTgt = [0;0;0];

Model the free space propagation.

fschannel = phased.WidebandFreeSpace('SampleRate',waveform.SampleRate);
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);

Model two-ray propagation from the position of the radar to the target.

tworaychannel = widebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Location','best')
xlabel('Samples')
ylabel('Signal Magnitude')
hold on

Move the radar by 10 meters horizontally to a second position.

posTx = posTx + [10;0;0];
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
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legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Wideband two-ray (Position 2)','Wideband free space (Position 2)',...
    'Location','best')
hold off

The free-space propagation losses are the same for both the first and second positions of the radar.
The two-ray losses are different due to the interference effect of the two-ray paths.

Wideband Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 m above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Set Radar Waveform Parameters

Assume the pulse width is10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.
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c = physconst('LightSpeed');
fs = 20e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = phased.WidebandTwoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
approximately 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object(TM) uses these angles to apply separate antenna gains to the two signals.

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted waveform.

n = size(wav,1);
plot([0:(n-1)]/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')
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sig = radiator(wav,angsTx,laxTx);

Propagate the signals to the receiver via a two-ray channel.

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object(TM) uses
these angles to apply separate antenna gains to the two signals.

[rng1,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');
delays = rng1/c*1e6

delays = 1×2

    3.3564    3.4544

Collect and combine the received rays.

y = collector(prop_sig,angsRx,laxRx);

Plot the received waveform.

plot([0:(n-1)]/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')
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Two-Ray Propagation of Wideband LFM Waveform with Atmospheric Losses

Propagate a wideband linear FM signal in a two-ray channel. The signal bandwidth is 15% of the
carrier frequency. Assume there is signal loss caused by atmospheric gases and rain. The signal
propagates from a transmitter located at (0,0,0) meters in the global coordinate system to a
receiver at (10000,200,30) meters. Assume that the transmitter and the receiver are stationary
and that they both have cosine antenna patterns. Plot the received signal. Set the dry air pressure to
102.0 Pa and the rain rate to 5 mm/hr.

Set Radar Waveform Parameters
c = physconst('LightSpeed');
fs = 40e6;
pw = 10e-6;
pri = 2.5*pw;
PRF = 1/pri;
fc = 100e6;
bw = 15e6;
lambda = c/fc;

Set Up Radar Scenario

Create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
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    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = widebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95,...
    'SpecifyAtmosphere',true,'Temperature',20,...
    'DryAirPressure',102.5,'RainRate',5.0);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [0;0;0];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the positive x-direction and the receiving antenna
points close to the negative x-direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles at which the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate the signals to the receiver via a two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the receiver. The
phased.Collector System object™ uses these angles to apply separate antenna gains to the two
signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot Received Signal

dt = 1/waveform.SampleRate;
n = size(yR,1);
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plot([0:(n-1)]*dt*1e6,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')

More About
Two-Ray Propagation Paths

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel. The line-of-sight path is often called the
direct path. The second ray reflects off the boundary before propagating to point 2. According to the
Law of Reflection , the angle of reflection equals the angle of incidence. In short-range simulations
such as cellular communications systems and automotive radars, you can assume that the reflecting
surface, the ground or ocean surface, is flat.

The twoRayChannel and widebandTwoRayChannel System objects model propagation time delay,
phase shift, Doppler shift, and loss effects for both paths. For the reflected path, loss effects include
reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
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and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.
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R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

Two-Ray Attenuation

Attenuation or path loss in the two-ray channel is the product of five components, L = Ltworay LG Lg Lc
Lr, where

• Ltworay is the two-ray geometric path attenuation
• LG is the ground reflection attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Ground Reflection and Propagation Loss

Losses occurs when a signal is reflected from a boundary. You can obtain a simple model of ground
reflection loss by representing the electromagnetic field as a scalar field. This approach also works
for acoustic and sonar systems. Let E be a scalar free-space electromagnetic field having amplitude
E0 at a reference distance R0 from a transmitter (for example, one meter). The propagating free-space
field at distance Rlos from the transmitter is

Elos = E0
R0

Rlos
eiω t − Rlos/c

for the line-of-sight path. You can express the ground-reflected E-field as

Erp = LGE0
R0
Rrp

eiω t − Rrp/c

where Rrp is the reflected path distance. The quantity LG represents the loss due to reflection at the
ground plane. To specify LG, use the GroundReflectionCoefficient property. In general, LG
depends on the incidence angle of the field. If you have empirical information about the angular
dependence of LG, you can use rangeangle to compute the incidence angle of the reflected path.
The total field at the destination is the sum of the line-of-sight and reflected-path fields.

 widebandTwoRayChannel

4-395



For electromagnetic waves, a more complicated but more realistic model uses a vector representation
of the polarized field. You can decompose the incident electric field into two components. One
component, Ep, is parallel to the plane of incidence. The other component, Es, is perpendicular to the
plane of incidence. The ground reflection coefficients for these components differ and can be written
in terms of the ground permittivity and incidence angle.

Gp =
Z1cosθ1− Z2cosθ2
Z1cosθ1 + Z2cosθ2

=
cosθ1−

Z2
Z1

cosθ2

cosθ1 +
Z2
Z1

cosθ2

Gs =
Z2cosθ1− Z1cosθ2
Z2cosθ1 + Z1cosθ2

=
cosθ2−

Z2
Z1

cosθ1

cosθ2 +
Z2
Z1

cosθ1

Z1 =
μ1
ε1

Z2 =
μ2
ε2

where Z is the impedance of the medium. Because the magnetic permeability of the ground is almost
identical to that of air or free space, the ratio of impedances depends primarily on the ratio of electric
permittivities

Gp =
ρcosθ1− cosθ2
ρcosθ1 + cosθ2

Gs =
ρcosθ2− cosθ1
ρcosθ2 + cosθ1

where the quantity ρ = ε2/ε1 is the ground relative permittivity set by the
GroundRelativePermittivity property. The angle θ1 is the incidence angle and the angle θ2 is
the refraction angle at the boundary. You can determine θ2 using Snell’s law of refraction.

After reflection, the full field is reconstructed from the parallel and perpendicular components. The
total ground plane attenuation, LG, is a combination of Gs and Gp.

When the origin and destination are stationary relative to each other, you can write the output Y of
the object as Y(t) = F(t-τ)/L. The quantity τ is the signal delay and L is the free-space path loss. The
delay τ is given by R/c. R is either the line-of-sight propagation path distance or the reflected path
distance, and c is the propagation speed. The path loss

where λ is the signal wavelength.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
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pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
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frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.
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You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fogpl | fspl | gaspl | rangeangle | rainpl

Objects
phased.FreeSpace | phased.LOSChannel | twoRayChannel | phased.WidebandLOSChannel |
phased.WidebandFreeSpace | phased.WidebandBackscatterRadarTarget
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reset
System object: widebandTwoRayChannel

Reset states of System object

Syntax
reset(channel)

Description
reset(channel) resets the internal state of the widebandTwoRayChannel System object,
channel.

Input Arguments
channel — Wideband two-ray channel
widebandTwoRayChannel System object

Wideband two-ray channel, specified as a System object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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step
System object: widebandTwoRayChannel

Propagate wideband signal from point to point using two-ray channel model

Syntax
prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a wideband signal, sig, propagates through a two-ray channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can have multiple points but you cannot specify both as having multiple points. Specify
the velocity of the signal origin in origin_vel and the velocity of the signal destination in
dest_vel. The dimensions of origin_vel and dest_vel must agree with the dimensions of
origin_pos and dest_pos, respectively.

In the two-ray environment, two signal paths connect every signal origin and destination pair. For N
signal origins (or N signal destinations), there are 2N paths. The signals for each origin-destination
pair do not have to be identical. The signals along the two paths for any source-destination pair can
have different amplitudes or phases.

The CombinedRaysOutput property controls whether the two signals at the destination are kept
separate or combined. Combined means that the signals at the source propagate separately along the
two paths but are coherently summed at the destination into a single quantity. Separatemeans that
the two signals are not summed at the destination. To use the combined option, set
CombinedRaysOutput to true. To use the separate option, set CombinedRaysOutput to false.
The combined option is convenient when the difference between the sensor or array gains in the
directions of the two paths is not significant.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
channel — Wideband two-ray channel
System object
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Wideband two-ray channel, specified as a System object.
Example: widebandTwoRayChannel

sig — Wideband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

Electromagnetic fields propagated through a two-ray channel can be polarized or nonpolarized. For
nonpolarized fields, such as an acoustic field, the propagating signal field, sig, is a vector or matrix.
When the fields are polarized, sig is an array of structures. Every structure element contains an
array of electric field vectors in Cartesian form.

• Specify wideband nonpolarized scalar signals as a

• M-by-N complex-valued matrix. The same signal is propagated along both the line-of-sight path
and the reflected path.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents a different channel.
Within each pair, the first column represents the signal propagated along the line-of-sight path
and the second column represents the signal propagated along the reflected path.

• Specify wideband polarized signals as a

• 1-by-N struct array containing complex-valued fields. Each struct element contains an M-
by-1 column vector of electromagnetic field components (sig.X,sig.Y,sig.Z). The same
signal is propagated along both the line-of-sight path and the reflected path.

• 1-by-2N struct array containing complex-valued fields. Each pair of array columns represents
a different source-receiver channel. The first column of the pair represents the signal along the
line-of-sight path and the second column represents the signal along the reflected path. Each
structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

For nonpolarized fields, the quantity M is the number of samples of the signal and N is the number of
two-ray channels. Each channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, the struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If origin_pos is a column vector, it takes
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the form [x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has
the form [x;y;z]. Position units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields
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• Wideband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property
to true. Each matrix column contains the coherently combined signals from the line-of-sight
path and the reflected path.

• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property
to false. Alternate columns of the matrix contain the signals from the line-of-sight path and
the reflected path.

• Wideband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to true. Each column of the array contains the coherently
combined signals from the line-of-sight path and the reflected path. Each structure element
contains the electromagnetic field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to false. Alternate columns contains the signals from the
line-of-sight path and the reflected path. Each structure element contains the electromagnetic
field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within the current
input time frame. Sometimes it can take longer than the current time frame for the signal to
propagate from the origin to the destination, the output may not contain all contributions from the
input of the current time frame. In this case, the output does not need to contain all contributions
from the input of the current time frame. The remaining output appears in the next call to step.

Examples

Scalar Wideband Signal Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a wideband signal, showing how the signals from
the line-of-sight path and reflected path arrive at the receiver at different times.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create and Plot Transmitted Waveform

Create a nonpolarized electromagnetic field consisting of two linear FM waveform pulses at a carrier
frequency of 100 MHz. Assume the pulse width is 20 μs and the sampling rate is 10 MHz. The
bandwidth of the pulse is 1 MHz. Assume a 50% duty cycle so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to –0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a
stationary receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 10e6;
pw = 20e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
bw = 1e6;

 step
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waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')

Specify the Location of Source and Receiver

Place the source and receiver about 1 km apart horizontally and approximately 5 km apart vertically.

pos1 = [0;0;100];
pos2 = [1e3;0;5.0e3];
vel1 = [0;0;0];
vel2 = [0;0;0];

Create a Wideband Two-Ray Channel System Object

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths. The same signal is propagated along both paths.

channel = widebandTwoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',-0.9,'OperatingFrequency',fc,...
    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);
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[rng2,angs] = rangeangle(pos2,pos1,'two-ray');

Calculate time delays in μs.

tm = rng2/c*1e6;
disp(tm)

   16.6815   17.3357

Display the calculated propagation paths azimuth and elevation angles in degrees.

disp(angs)

         0         0
   78.4654  -78.9063

Plot the Propagated Signals

1 Plot the real part of the signal propagated along the line-of-sight path.
2 Plot the real part of the signal propagated along the reflected path.
3 Plot the real part of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = [0:(n-1)]/fs*1e6;
subplot(3,1,1)
plot(delay,real([prop_signal(:,1)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Direct Path')

subplot(3,1,2)
plot(delay,real([prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Reflected Path')

subplot(3,1,3)
plot(delay,real([prop_signal(:,1) + prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Combined Paths')

 step
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The delay of the reflected path signal agrees with the predicted delay. The magnitude of the
coherently combined signal is less than either of the propagated signals. This result indicates that the
two signals contain some interference.

Compare Wideband Two-Ray Channel Propagation to Free Space

Compute the result of propagating a wideband LFM signal in a two-ray environment from a radar 10
meters above the origin (0,0,10) to a target at (3000,2000,2000) meters. Assume that the radar and
target are stationary and that the transmitting antenna is isotropic. Combine the signal from the two
paths and compare the signal to a signal propagating in free space. The system operates at 300 MHz.
Set the CombinedRaysOutput property to true to combine the direct path and reflected path
signals when forming the output signal.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a linear FM waveform.

fop = 300.0e6;
fs = 1.0e6;
waveform = phased.LinearFMWaveform();
x = waveform();

Specify the target position and velocity.
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posTx = [0; 0; 10];
posTgt = [3000; 2000; 2000];
velTx = [0;0;0];
velTgt = [0;0;0];

Model the free space propagation.

fschannel = phased.WidebandFreeSpace('SampleRate',waveform.SampleRate);
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);

Model two-ray propagation from the position of the radar to the target.

tworaychannel = widebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Location','best')
xlabel('Samples')
ylabel('Signal Magnitude')
hold on

Move the radar by 10 meters horizontally to a second position.

posTx = posTx + [10;0;0];
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))

 step
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legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Wideband two-ray (Position 2)','Wideband free space (Position 2)',...
    'Location','best')
hold off

The free-space propagation losses are the same for both the first and second positions of the radar.
The two-ray losses are different due to the interference effect of the two-ray paths.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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pulseCompressionLibrary
Create a library of pulse compression specifications

Description
The pulseCompressionLibrary System object creates a pulse compression library. The library
contains sets of parameters that describe pulse compression operations performed on received
signals to generate their range response. You can use this library to perform matched filtering or
stretch processing. This object can process waveforms created by the pulseWaveformLibrary
object.

To make a pulse compression library

1 Create the pulseCompressionLibrary object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
complib = pulseCompressionLibrary()
complib = pulseCompressionLibrary(Name,Value)

Description

complib = pulseCompressionLibrary() System object creates a pulse compression library,
complib, with default property values.

complib = pulseCompressionLibrary(Name,Value) creates a pulse compression library with
each property Name set to a specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: complib =
pulseCompressionLibrary('SampleRate',1e9,'WaveformSpecification',
{{'Rectangular','PRF',1e4,'PulseWidth',100e-6},
{'SteppedFM','PRF',1e4}},'ProcessingSpecification',
{{'MatchedFilter','SpectrumWindow','Hann'},
{'MatchedFilter','SpectrumWindow','Taylor'}}) creates a library with two matched filters.
One is matched to a rectangular waveform and the other to a stepped FM waveform. The matched
filters use a Hann window and a Taylor window, respectively.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Waveform sample rate
1e6 (default) | positive scalar

Waveform sample rate, specified as a positive scalar. All waveforms have the same sample rate. Units
are in hertz.
Example: 100e3
Data Types: double

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

WaveformSpecification — Pulse waveforms
{{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

Each waveform specification is also a cell array containing the parameters of the waveform. The
entries in a specification cell are the pulse identifier and a set of name-value pairs specific to that
waveform.
{PulseIdentifier,Name1,Value1,Name2,Value2, ...}

This System object supports four built-in waveforms and also lets you specify custom waveforms. For
the built-in waveforms, the waveform specifier consists of a waveform identifier followed by several
name-value pairs setting the properties of the waveform. For the custom waveforms, the waveform
specifier consists of a handle to a user-define waveform function and the functions input arguments.
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Waveform Types

Pulse Type Pulse Identifier Waveform Arguments
Linear FM 'LinearFM' “Linear FM Waveform

Arguments” on page 4-414
Phase coded 'PhaseCoded' “Phase-Coded Waveform

Arguments” on page 4-416
Rectangular 'Rectangular' “Rectangular Waveform

Arguments” on page 4-417
Stepped FM 'SteppedFM' “Stepped FM Waveform

Arguments” on page 4-418
Custom Function handle “Custom Waveform Arguments”

on page 4-435

Example: {{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'Rectangular','PRF',100e3,'PulseWidth',20e-6}}

Data Types: cell

ProcessingSpecification — Pulse compression descriptions
{{'MatchedFilter','SpectrumWindow','None'},
{'StretchProcessor','RangeSpan',200,'ReferenceRange',5e3,'RangeWindow','None'
}} (default) | cell array

Pulse compression descriptions, specified as a cell array of processing specifications. Each cell
defines a different processing specification. Each processing specification is itself a cell array
containing the processing type and processing arguments.
{{Processing 1 Specification},{Processing 2 Specification},{Processing 3 Specification}, ...}

Each processing specification indicates which type of processing to apply to a waveform and the
arguments needed for processing.
{ProcessType,Name,Value,...}

The value of ProcessType is either 'MatchedFilter' or 'StretchProcessor'.

• 'MatchedFilter' – The name-value pair arguments are

• 'Coefficients',coeff – specifies the matched filter coefficients, coeff, as a column vector.
When not specified, the coefficients are calculated from the WaveformSpecification
property. For the Stepped FM waveform containing multiple pulses, coeff corresponds to
each pulse until the pulse index, idx changes.

• 'SpectrumWindow',sw – specifies the spectrum weighting window, sw, applied to the
waveform. Window values are one of 'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser',
and 'Taylor'. The default value is 'None'.

• 'SidelobeAttenuation',slb – specifies the sidelobe attenuation window, slb, of the
Chebyshev or Taylor window as a positive scalar. The default value is 30. This parameter
applies when you set 'SpectrumWindow' to 'Chebyshev' or 'Taylor'.

• 'Beta',beta – specifies the parameter, beta, that determines the Kaiser window sidelobe
attenuation as a nonnegative scalar. The default value is 0.5. This parameter applies when you
set 'SpectrumWindow' to 'Kaiser'.
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• 'Nbar',nbar – specifies the number of nearly constant level sidelobes, nbar, next to the main
lobe in a Taylor window as a positive integer. The default value is 4. This parameter applies
when you set 'SpectrumWindow' to 'Taylor'.

• 'SpectrumRange',sr – specifies the spectrum region, sr, on which the spectrum window is
applied as a 1-by-2 vector having the form [StartFrequency EndFrequency]. The default
value is [0 1.0e5]. This parameter applies when you set the 'SpectrumWindow' to any value
other than 'None'. Units are in Hz.

Both StartFrequency and EndFrequency are measured in the baseband region [-Fs/2 Fs/2].
Fs is the sample rate specified by the SampleRate property. StartFrequency cannot be
larger than EndFrequency.

• 'StretchProcessor' – The name-value pair arguments are

• 'ReferenceRange',refrng – specifies the center of the ranges of interest, refrng, as a
positive scalar. The refrng must be within the unambiguous range of one pulse. The default
value is 5000. Units are in meters.

• 'RangeSpan',rngspan – specifies the span of the ranges of interest. rngspan, as a positive
scalar. The range span is centered at the range value specified in the 'ReferenceRange'
parameter. The default value is 500. Units are in meters.

• 'RangeFFTLength',len – specifies the FFT length in the range domain, len, as a positive
integer. If not specified, the default value is same as the input data length.

• 'RangeWindow',rw specifies the window used for range processing, rw, as one of 'None',
'Hamming', 'Chebyshev', 'Hann', 'Kaiser', and 'Taylor'. The default value is 'None'.

Example: 'StretchProcessor'
Data Types: string | struct

Linear FM Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,...
'SweepDirection','Up','SweepInterval','Positive'}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
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Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

SweepBandwidth — Bandwidth of the FM sweep
1e5 (default) | positive scalar

Bandwidth of the FM sweep, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

SweepDirection — Bandwidth of the FM sweep
'Up' (default) | 'Down'

Direction of the FM sweep, specified as 'Up' or 'Down'. 'Up' corresponds to increasing frequency.
'Down' corresponds to decreasing frequency.
Data Types: char

SweepInterval — FM sweep interval
'Positive' (default) | 'Symmetric'

FM sweep interval, specified as 'Positive' or 'Symmetric'. If you set this property value to
'Positive', the waveform sweeps the interval between 0 and B, where B is the SweepBandwidth
argument value. If you set this property value to 'Symmetric', the waveform sweeps the interval
between –B/2 and B/2.
Example: 'Symmetric'
Data Types: char

Envelope — Envelope function
'Rectangular' (default) | 'Gaussian'

Envelope function, specified as 'Rectangular' or 'Gaussian'.
Example: 'Gaussian'
Data Types: char

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
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Data Types: double

Phase-Coded Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu',
'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

Code — Type of phase modulation code
'Frank' (default) | 'P1' | 'P2''Px' | 'Zadoff-Chu' | 'P3' | 'P4' | 'Barker'

Type of phase modulation code, specified as 'Frank', 'P1', 'P2', 'Px', 'Zadoff-Chu', 'P3',
'P4', or 'Barker'.
Example: 'P1'
Data Types: char

SequenceIndex — Zadoff-Chu sequence index
1 (default) | positive integer

Sequence index used for the Zadoff-Chu code, specified as a positive integer. The value of
SequenceIndex must be relatively prime to the value of NumChips.
Example: 3

Dependencies

To enable this name-value pair, set the Code property to 'Zadoff-Chu'.
Data Types: double

ChipWidth — Chip duration
1e-5 (default) | positive scalar

Chip duration, specified as a positive scalar. Units are in seconds. See “Chip Restrictions” on page 4-
443 for restrictions on chip sizes.
Example: 30e-3
Data Types: double

NumChips — Number of chips in waveform
4 (default) | positive integer
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Number of chips in waveform, specified as a positive integer. See “Chip Restrictions” on page 4-443
for restrictions on chip sizes.
Example: 3
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Rectangular Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'Rectangular','PRF',10e3,'PulseWidth',100e-6}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar
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Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Stepped FM Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'SteppedFM','PRF',10e-4}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

NumSteps — Number of frequency steps in waveform
5 (default) | positive integer

Number of frequency steps in waveform, specified as a positive integer.
Example: 3
Data Types: double

FrequencyStep — Linear frequency step size
20e3 (default) | positive scalar

Linear frequency step size, specified as a positive scalar.
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Example: 100.0
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Custom Waveform Arguments

You can create a custom waveform from a user-defined function. The first input argument of the
function must be the sample rate. For example, specify a hyperbolic waveform function,

function wav = HyperbolicFM(fs,prf,pw,freq,bw,fcent),

where fs is the sample rate and prf, pw, freq, bw, and fcent are other waveform arguments. The
function must have at least one output argument, wav, to return the samples of each pulse. This
output must be a column vector. There can be other outputs returned following the waveform
samples.

Then, create a waveform specification using a function handle instead of the waveform identifier. The
first cell in the waveform specification must be a function handle. The remaining cells contain all
function input arguments except the sample rate. Specify all input arguments in the order they are
passed into the function.

waveformspec = {@HyperbolicFM,prf,pw,freq,bw,fcent}

See “Add Custom Waveform to Pulse Waveform Library” on page 4-441 for an example that uses a
custom waveform.

Usage

Syntax
[Y,rng] = pulselib(X,idx)

Description

[Y,rng] = pulselib(X,idx) returns samples of a compressed pulse waveform, Y, specified by its
index, idx, in the library. RNG denotes the ranges corresponding to Y.

Input Arguments

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
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Data Types: double

idx — Index of processing specification in pulse compression library
positive integer

Index of the processing specification in the pulse compression library, specified as a positive integer.
Data Types: double

Output Arguments

Y — Output signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Output signal, returned as a complex-valued M-by-L matrix, complex-valued M-by-N matrix, or a
complex-valued M-by-N-by-L array. M denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams. The number of
dimensions of Y matches the number of dimensions of X.

When matched filtering is performed, M is equal to the number of rows in X. When stretch processing
is performed and you specify a value for the RangeFFTLength name-value pair, M is set to the value
of RangeFFTLength. When you do not specify RangeFFTLength, M is equal to the number of rows
in X.
Data Types: double

rng — Sample range
real-valued length-M vector

Sample ranges, returned as a real-valued length-M vector where M is the number of rows of Y.
Elements of this vector denote the ranges corresponding to the rows of Y.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to pulseCompressionLibrary
plotResponse Plot range response from pulse compression library

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Range Processing of Two Waveforms

Create a rectangular waveform and a linear FM waveform. Use the processing methods in the pulse
compression library to range-process the waveforms. Use matched filtering for the rectangular
waveform and stretch processing for the linear FM waveform.

Create two waveforms using the pulseWaveformLibrary System object™. The sampling frequency
is 1 MHz and the pulse repetition frequency for both waveforms is 1 kHz. The pulse width is also the
same at 50 microsec.

fs = 1.0e6;
prf = 1e3;
pw = 50e-6;
waveform1 = {'Rectangular','PRF',prf,'PulseWidth',pw};
waveform2 = {'LinearFM','PRF',prf,'PulseWidth',pw,...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
pulselib = pulseWaveformLibrary('WaveformSpecification',...
    {waveform1,waveform2},'SampleRate',fs);

Retrieve the waveforms for processing by the pulse compression library.

rectwav = pulselib(1);
lfmwav = pulselib(2);

Create the compression processing library using the pulseCompressionLibrary System object™
with two processing specifications. The first processing specification is matched filtering and the
second is stretch processing.

mf = getMatchedFilter(pulselib,1);
procspec1 = {'MatchedFilter','Coefficients',mf};
procspec2 = {'StretchProcessor','ReferenceRange',5000,...
    'RangeSpan',200,'RangeWindow','Hamming'};
comprlib = pulseCompressionLibrary( ...,
    'WaveformSpecification',{waveform1,waveform2}, ...
    'ProcessingSpecification',{procspec1,procspec2}, ...
    'SampleRate',fs,'PropagationSpeed',physconst('Lightspeed'));

Process both waveforms.

rect_out = comprlib(rectwav,1);
lfm_out = comprlib(lfmwav,2);
nsamp = fs/prf;
t = [0:(nsamp-1)]/fs;

plot(t*1000,real(rect_out))
hold on
plot(t*1000,real(lfm_out))
hold off
title('Pulse Compression Output')
xlabel('Time (millsec)')
ylabel('Amplitude')
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Range Response for Three Targets

Plot the range response of an LFM signal hitting three targets at ranges of 2000, 4000, and 5500
meters. Assuming the maximum range of the radar is 10 km, determine the pulse repetition interval
from the maximum range.

% Create the pulse waveform.
rmax = 10.0e3;
c = physconst('Lightspeed');
pri = 2*rmax/c;
fs = 1e6;
pri = ceil(pri*fs)/fs;
prf = 1/pri;
nsamp = pri*fs;
rxdata = zeros(nsamp,1);
t1 = 2*2000/c;
t2 = 2*4000/c;
t3 = 2*5500/c;
idx1 = floor(t1*fs);
idx2 = floor(t2*fs);
idx3 = floor(t3*fs);
lfm = phased.LinearFMWaveform('PulseWidth',10/fs,'PRF',prf, ...
    'SweepBandwidth',(30*fs)/40);
w = lfm();
%%
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% Imbed the waveform part of the pulse into the received signal.
x = w(1:11);
rxdata(idx1:idx1+10) = x;
rxdata(idx2:idx2+10) = x;
rxdata(idx3:idx3+10) = x;

%%
% Create the pulse waveform library.
w1 = {'LinearFM','PulseWidth',10/fs,'PRF',prf,...
    'SweepBandwidth',(30*fs)/40};
wavlib = pulseWaveformLibrary('SampleRate',fs,'WaveformSpecification',{w1});
wav = wavlib(1);
%%
% Generate the range response signal.
p1 = {'MatchedFilter','Coefficients',getMatchedFilter(wavlib,1),'SpectrumWindow','None'};
idx = 1;
complib = pulseCompressionLibrary( ...
    'WaveformSpecification',{w1}, ...
    'ProcessingSpecification',{p1}, ...
    'SampleRate',fs, ...
    'PropagationSpeed',c);
y = complib(rxdata,1);
%%
% Plot range response of processed data
plotResponse(complib,rxdata,idx,'Unit','mag');
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More About
Pulse Repetition Frequency Restrictions

The PRF property must satisfy these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval.

• The ratio of SampleRate to PRF must be an integer. This condition expresses the requirement
that the number of samples in one pulse repetition interval is an integer.

Chip Restrictions

The values of the ChipWidth and NumChips properties must satisfy these constraints:

• The product of PRF, ChipWidth, and NumChips must be less than or equal to one. This condition
expresses the requirement that the sum of the durations of all chips is less than one pulse
repetition interval.

• The product of SampleRate and ChipWidth must be an integer. This condition expresses the
requirement that the number of samples in a chip must be an integer.

The table shows additional constraints on the number of chips for different code types.

If the Code Property Is ... Then the NumChips Property Must Be...
'Frank', 'P1', or 'Px' A perfect square.
'P2' An even number that is a perfect square.
'Barker' 2, 3, 4, 5, 7, 11, or 13

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The plotResponse object function is not supported for code generation.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Apps
Pulse Waveform Analyzer
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Objects
phased.LinearFMWaveform | phased.RectangularWaveform | phased.PhaseCodedWaveform
| phased.SteppedFMWaveform | pulseWaveformLibrary | phased.RangeResponse |
phased.RangeDopplerResponse | phased.MatchedFilter | phased.StretchProcessor
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plotResponse
Plot range response from pulse compression library

Syntax
plotResponse(complib,X,idx)
plotResponse( ___ ,pulseidx)
plotResponse( ___ ,'Unit',unit)

Description
plotResponse(complib,X,idx) plots the range response of the input waveform, X, using the idx
processing specification.

plotResponse( ___ ,pulseidx) also specifies the index, pulseidx, of the pulse to plot.

plotResponse( ___ ,'Unit',unit) plots the response in the units specified by unit.

Examples

Range Response for Three Targets

Plot the range response of an LFM signal hitting three targets at ranges of 2000, 4000, and 5500
meters. Assuming the maximum range of the radar is 10 km, determine the pulse repetition interval
from the maximum range.

% Create the pulse waveform.
rmax = 10.0e3;
c = physconst('Lightspeed');
pri = 2*rmax/c;
fs = 1e6;
pri = ceil(pri*fs)/fs;
prf = 1/pri;
nsamp = pri*fs;
rxdata = zeros(nsamp,1);
t1 = 2*2000/c;
t2 = 2*4000/c;
t3 = 2*5500/c;
idx1 = floor(t1*fs);
idx2 = floor(t2*fs);
idx3 = floor(t3*fs);
lfm = phased.LinearFMWaveform('PulseWidth',10/fs,'PRF',prf, ...
    'SweepBandwidth',(30*fs)/40);
w = lfm();
%%
% Imbed the waveform part of the pulse into the received signal.
x = w(1:11);
rxdata(idx1:idx1+10) = x;
rxdata(idx2:idx2+10) = x;
rxdata(idx3:idx3+10) = x;
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%%
% Create the pulse waveform library.
w1 = {'LinearFM','PulseWidth',10/fs,'PRF',prf,...
    'SweepBandwidth',(30*fs)/40};
wavlib = pulseWaveformLibrary('SampleRate',fs,'WaveformSpecification',{w1});
wav = wavlib(1);
%%
% Generate the range response signal.
p1 = {'MatchedFilter','Coefficients',getMatchedFilter(wavlib,1),'SpectrumWindow','None'};
idx = 1;
complib = pulseCompressionLibrary( ...
    'WaveformSpecification',{w1}, ...
    'ProcessingSpecification',{p1}, ...
    'SampleRate',fs, ...
    'PropagationSpeed',c);
y = complib(rxdata,1);
%%
% Plot range response of processed data
plotResponse(complib,rxdata,idx,'Unit','mag');

Input Arguments
complib — Pulse compression library
phased.PulseCompressionLibrary System object
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Pulse compression library, specified as a phased.PulseCompressionLibrary System object .

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
Data Types: double

idx — Index of processing specification in pulse compression library
positive integer

Index of processing specification in the pulse waveform library, specified as a positive integer.
Example: 3
Data Types: double

pulseidx — Stepped FM waveform subpulse
1 (default) | positive integer

Stepped FM waveform subpulse, specified as a positive integer. This index selects which subpulses of
a stepped-FM waveform to plot. This argument only applies to stepped-FM waveforms.
Example: 5
Data Types: double

unit — Plot units
'db' (default) | 'mag' | 'pow'

Plot units, specified as 'db', 'mag', or 'pow'. who

• 'db' – plot the response power in dB.
• 'mag' – plot the magnitude of the response.
• 'pow' – plot the response power.

Example: 'mag'
Data Types: char | string

Version History
Introduced in R2018b
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pulseWaveformLibrary
Create library of pulse waveforms

Description
The pulseWaveformLibrary System object creates a library of pulse waveforms. The waveforms in
the library can be of different types or be of the same type with different parameters. You can use this
library to transmit different kinds of pulses during a simulation.

To make a waveform library

1 Create the pulseWaveformLibrary object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pulselib = pulseWaveformLibrary
pulselib = pulseWaveformLibrary(Name,Value)

Description

pulselib = pulseWaveformLibrary System object creates a library of pulse waveforms,
pulselib, with default property values. The default consists of a rectangular waveform and a linear
FM waveform.

pulselib = pulseWaveformLibrary(Name,Value) creates a pulse waveform library with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: pulselib =
pulseWaveformLibrary('SampleRate',1e9,'WaveformSpecification',
{{'Rectangular','PRF',1e4,'PulseWidth',100e-6},{'SteppedFM','PRF',1e4}})
creates a library containing one rectangular waveform and one stepped-FM waveform, both sampled
at 1 GHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Waveform sample rate
1e6 (default) | positive scalar

Waveform sample rate, specified as a positive scalar. All waveforms have the same sample rate. Units
are in hertz.
Example: 100e3
Data Types: double

WaveformSpecification — Pulse waveforms
{{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

Each waveform specification is also a cell array containing the parameters of the waveform. The
entries in a specification cell are the pulse identifier and a set of name-value pairs specific to that
waveform.
{PulseIdentifier,Name1,Value1,Name2,Value2, ...}

This System object supports four built-in waveforms and also lets you specify custom waveforms. For
the built-in waveforms, the waveform specifier consists of a waveform identifier followed by several
name-value pairs setting the properties of the waveform. For the custom waveforms, the waveform
specifier consists of a handle to a user-define waveform function and the functions input arguments.

Waveform Types

Waveform type Waveform identifier Waveform arguments
Linear FM 'LinearFM' “Linear FM Waveform

Arguments” on page 4-430
Phase coded 'PhaseCoded' “Phase-Coded Waveform

Arguments” on page 4-432
Rectangular 'Rectangular' “Rectangular Waveform

Arguments” on page 4-433
Stepped FM 'SteppedFM' “Stepped FM Waveform

Arguments” on page 4-434
Custom Function handle “Custom Waveform Arguments”

on page 4-435

Example: {{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'Rectangular','PRF',100e3,'PulseWidth',20e-6}}

Data Types: cell

Linear FM Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,...
'SweepDirection','Up','SweepInterval','Positive'}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

SweepBandwidth — Bandwidth of the FM sweep
1e5 (default) | positive scalar

Bandwidth of the FM sweep, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

SweepDirection — Bandwidth of the FM sweep
'Up' (default) | 'Down'

Direction of the FM sweep, specified as 'Up' or 'Down'. 'Up' corresponds to increasing frequency.
'Down' corresponds to decreasing frequency.
Data Types: char

SweepInterval — FM sweep interval
'Positive' (default) | 'Symmetric'

FM sweep interval, specified as 'Positive' or 'Symmetric'. If you set this property value to
'Positive', the waveform sweeps the interval between 0 and B, where B is the SweepBandwidth
argument value. If you set this property value to 'Symmetric', the waveform sweeps the interval
between –B/2 and B/2.

 pulseWaveformLibrary

4-431



Example: 'Symmetric'
Data Types: char

Envelope — Envelope function
'Rectangular' (default) | 'Gaussian'

Envelope function, specified as 'Rectangular' or 'Gaussian'.
Example: 'Gaussian'
Data Types: char

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Phase-Coded Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu',
'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

Code — Type of phase modulation code
'Frank' (default) | 'P1' | 'P2''Px' | 'Zadoff-Chu' | 'P3' | 'P4' | 'Barker'

Type of phase modulation code, specified as 'Frank', 'P1', 'P2', 'Px', 'Zadoff-Chu', 'P3',
'P4', or 'Barker'.
Example: 'P1'
Data Types: char

SequenceIndex — Zadoff-Chu sequence index
1 (default) | positive integer

Sequence index used for the Zadoff-Chu code, specified as a positive integer. The value of
SequenceIndex must be relatively prime to the value of NumChips.
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Example: 3

Dependencies

To enable this name-value pair, set the Code property to 'Zadoff-Chu'.
Data Types: double

ChipWidth — Chip duration
1e-5 (default) | positive scalar

Chip duration, specified as a positive scalar. Units are in seconds. See “Chip Restrictions” on page 4-
443 for restrictions on chip sizes.
Example: 30e-3
Data Types: double

NumChips — Number of chips in waveform
4 (default) | positive integer

Number of chips in waveform, specified as a positive integer. See “Chip Restrictions” on page 4-443
for restrictions on chip sizes.
Example: 3
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Rectangular Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'Rectangular','PRF',10e3,'PulseWidth',100e-6}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar
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Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Stepped FM Waveform Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: {'SteppedFM','PRF',10e-4}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 4-442 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar
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Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

NumSteps — Number of frequency steps in waveform
5 (default) | positive integer

Number of frequency steps in waveform, specified as a positive integer.
Example: 3
Data Types: double

FrequencyStep — Linear frequency step size
20e3 (default) | positive scalar

Linear frequency step size, specified as a positive scalar.
Example: 100.0
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Custom Waveform Arguments

You can create a custom waveform from a user-defined function. The first input argument of the
function must be the sample rate. For example, specify a hyperbolic waveform function,

function wav = HyperbolicFM(fs,prf,pw,freq,bw,fcent),

where fs is the sample rate and prf, pw, freq, bw, and fcent are other waveform arguments. The
function must have at least one output argument, wav, to return the samples of each pulse. This
output must be a column vector. There can be other outputs returned following the waveform
samples.

Then, create a waveform specification using a function handle instead of the waveform identifier. The
first cell in the waveform specification must be a function handle. The remaining cells contain all
function input arguments except the sample rate. Specify all input arguments in the order they are
passed into the function.

waveformspec = {@HyperbolicFM,prf,pw,freq,bw,fcent}

See “Add Custom Waveform to Pulse Waveform Library” on page 4-441 for an example that uses a
custom waveform.
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Usage

Syntax
waveform = pulselib(idx)

Description

waveform = pulselib(idx) returns samples of a waveform, waveform, specified by its index,
idx, in the library.

Input Arguments

idx — Index of the waveform in the waveform library
positive integer

Index of the waveform in the waveform library, specified as a positive integer.
Example: 2
Data Types: double

Output Arguments

waveform — Waveform samples
complex-valued vector

Waveform samples, returned as a complex-valued vector.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to pulseWaveformLibrary
getMatchedFilter Matched filter coefficients for pulse waveform
plot Plot waveform from waveform library

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Obtain and Plot Phase-Coded Waveform from Waveform Library

Construct a waveform library consisting of three waveforms. The library contains a rectangular, a
linear FM, and a phase-coded waveform. Then, obtain and plot the real and imaginary parts of the
phase-coded waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth', 50e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',50e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu', ...
    'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Extract the waveform from the library.

wav3 = wavlib(3);

Plot the waveform using the plot method.

plot(wavlib,3,'PlotType','complex')
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Plot Stepped FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the real parts of the first three pulses of
the stepped-fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up', ...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the first three pulses of the waveform using the plot method.

plot(wavlib,3,'PulseIdx',1)

plot(wavlib,3,'PulseIdx',2)
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plot(wavlib,3,'PulseIdx',3)
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Plot Matched Filter Coefficients of Two Pulses

This example shows how to put two waveforms into a waveform library and how to extract and plot
their matched filter coefficients.

Create a pulse library consisting of a rectangular and a linear FM waveform.

waveform1 = {'Rectangular','PRF',10e3 'PulseWidth',50e-6};
waveform2 = {'LinearFM','PRF',10e3,'PulseWidth',50e-6,'SweepBandwidth',1e5, ...
    'SweepDirection','Up','SweepInterval', 'Positive'};
pulsesib = pulseWaveformLibrary('SampleRate',1e6,...
    'WaveformSpecification',{waveform1,waveform2});

Retrieve the matched filter coefficients for each waveform and plot their real parts.

coeff1 = getMatchedFilter(pulsesib,1,1);
subplot(2,1,1)
stem(real(coeff1))
title('Matched filter coefficients, real part')
coeff2 = getMatchedFilter(pulsesib,2,1);
subplot(2,1,2)
stem(real(coeff2))
title('Matched filter coefficients, real part')
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Add Custom Waveform to Pulse Waveform Library

Define a custom hyperbolic FM waveform and add it to a pulseWaveformLibrary System object
together with a linear FM waveform. Plot the hyperbolic waveform.

Specify the hyperbolic FM waveform parameters. The pulse width is 75 ms and the pulse repetition
interval is 100 ms. The center frequency is 500 Hz and the bandwidth is 400 Hz.

fs = 50e3;
pri = 0.1;
prf = 1/pri;
pw = 0.075;
bw = 400.0;
fcent = 500.0;

Create a pulse waveform library consisting of a hyperbolic FM waveform and a linear FM waveform.

pulselib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{{@HyperbolicFM,prf,pw,bw,fcent}, ...
    {'LinearFM','PRF',prf,'PulseWidth',pw, ...
    'SweepBandwidth',bw,'SweepDirection','Up',...
    'SweepInterval','Positive'}});

Plot the complex hyperbolic FM waveform.
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plot(pulselib,1,'PlotType','complex')

Define the Hyperbolic FM waveform function.

function y = HyperbolicFM(fs,prf,pw,bw,fcent)
pri = 1/prf;
t = [0:1/fs:pri]';
idx = find(t <= pw);
fl = fcent - bw/2;
fh = fcent + bw/2;
y = zeros(size(t));
arg = 2*pi*fl*fh/bw*pw*log(1.0 - bw*t(idx)/fh/pw);
y(idx) = exp(1i*arg);
end

More About
Pulse Repetition Frequency Restrictions

The PRF property must satisfy these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval.

• The ratio of SampleRate to PRF must be an integer. This condition expresses the requirement
that the number of samples in one pulse repetition interval is an integer.
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Chip Restrictions

The values of the ChipWidth and NumChips properties must satisfy these constraints:

• The product of PRF, ChipWidth, and NumChips must be less than or equal to one. This condition
expresses the requirement that the sum of the durations of all chips is less than one pulse
repetition interval.

• The product of SampleRate and ChipWidth must be an integer. This condition expresses the
requirement that the number of samples in a chip must be an integer.

The table shows additional constraints on the number of chips for different code types.

If the Code Property Is ... Then the NumChips Property Must Be...
'Frank', 'P1', or 'Px' A perfect square
'P2' An even number that is a perfect square
'Barker' 2, 3, 4, 5, 7, 11, or 13

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The plot object function is not supported.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Apps
Pulse Waveform Analyzer

Objects
phased.LinearFMWaveform | phased.RectangularWaveform | phased.PhaseCodedWaveform
| phased.SteppedFMWaveform | pulseCompressionLibrary
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getMatchedFilter
Matched filter coefficients for pulse waveform

Syntax
coeff = getMatchedFilter(pulselib,idx)
coeff = getMatchedFilter(pulselib,idx,pidx)

Description
coeff = getMatchedFilter(pulselib,idx) returns matched filter coefficients, coeff, for the
waveform specified by the index, idx, in the waveform library, pulselib.

coeff = getMatchedFilter(pulselib,idx,pidx) also specifies the pulse index, pidx, of a
stepped FM waveform.

Examples

Plot Matched Filter Coefficients of Two Pulses

This example shows how to put two waveforms into a waveform library and how to extract and plot
their matched filter coefficients.

Create a pulse library consisting of a rectangular and a linear FM waveform.

waveform1 = {'Rectangular','PRF',10e3 'PulseWidth',50e-6};
waveform2 = {'LinearFM','PRF',10e3,'PulseWidth',50e-6,'SweepBandwidth',1e5, ...
    'SweepDirection','Up','SweepInterval', 'Positive'};
pulsesib = pulseWaveformLibrary('SampleRate',1e6,...
    'WaveformSpecification',{waveform1,waveform2});

Retrieve the matched filter coefficients for each waveform and plot their real parts.

coeff1 = getMatchedFilter(pulsesib,1,1);
subplot(2,1,1)
stem(real(coeff1))
title('Matched filter coefficients, real part')
coeff2 = getMatchedFilter(pulsesib,2,1);
subplot(2,1,2)
stem(real(coeff2))
title('Matched filter coefficients, real part')
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Input Arguments
pulselib — Waveform library
phased.PulseWaveformLibrary System object

Pulse waveform library, specified as a phased.PulseWaveformLibrary System object.

idx — Waveform index
1 (default) | positive integer

Waveform index, specified as a positive integer. The index specifies which waveform coefficients to
return.
Data Types: double

pidx — Pulse index
1 (default) | positive integer

Pulse index, specified as a positive integer. The index specifies which pulse matched-filter coefficients
to return. This argument applies only to stepped FM waveforms.
Data Types: double
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Output Arguments
coeff — Matched filter coefficients
complex-valued vector | complex-valued matrix

Matched filter coefficients, specified as a complex-valued vector or complex-valued matrix. For the
stepped FM pulse, the output is a complex-valued matrix. Each matrix column corresponds to a step
in the waveform. For all other waveforms, the output is a column vector.
Data Types: double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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plot
Plot waveform from waveform library

Syntax
plot(pulselib,idx)
plot(pulselib,idx,'PlotType',Type)
plot( ___ ,'PulseIdx',pidx)
plot( ___ ,LineSpec)
hndl = plot( ___ )

Description
plot(pulselib,idx) plots the real part of the waveform specified by idx belonging to the pulse
waveform library, pulselib.

plot(pulselib,idx,'PlotType',Type) also specifies whether to plot the real and/or imaginary
parts of the waveform using the ('PlotType',Type) name-value pair argument.

plot( ___ ,'PulseIdx',pidx) also specifies the index, pidx, of the pulse to plot using the
('PulseIdx',pidx) name-value pair argument.

plot( ___ ,LineSpec) specifies the line color, line style, or marker options. These options are the
same options found in the MATLAB plot function. When both real and imaginary plots are specified,
the LineSpec applies to both subplots. This argument is always the last input to the method.

hndl = plot( ___ ) returns the line handle, hndl, in the figure.

Examples

Plot Linear FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular
waveform, one linear FM waveform, and one stepped-FM waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up', ...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the linear FM waveform using the plot method.

plot(wavlib,2)
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Obtain and Plot Phase-Coded Waveform from Waveform Library

Construct a waveform library consisting of three waveforms. The library contains a rectangular, a
linear FM, and a phase-coded waveform. Then, obtain and plot the real and imaginary parts of the
phase-coded waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth', 50e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',50e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu', ...
    'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Extract the waveform from the library.

wav3 = wavlib(3);

Plot the waveform using the plot method.

plot(wavlib,3,'PlotType','complex')
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Plot Stepped FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the real parts of the first three pulses of
the stepped-fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up', ...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the first three pulses of the waveform using the plot method.

plot(wavlib,3,'PulseIdx',1)
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plot(wavlib,3,'PulseIdx',2)
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plot(wavlib,3,'PulseIdx',3)
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Plot Linear FM Waveform With Dotted Lines

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the linear FM waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = pulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the waveform using the plot method.

plot(wavlib,2,':')
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Input Arguments
pulselib — Waveform library
pulseWaveformLibrary object System object

Waveform library, specified as a pulseWaveformLibrary System object.

idx — Index of waveform in pulse waveform library
positive integer

Index of waveform in pulse waveform library, specified as a positive integer.
Example: 3
Data Types: double

Type — Plot type
'real' (default) | 'imag' | 'complex'

Plot type, specified as 'real', 'imag',or 'complex'. Use this argument in the 'Type' name-value
pair.
Data Types: char | string

pidx — Index of plot to pulse
1 (default) | positive integer
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Index of plot to pulse, specified as a positive integer. Use this argument in the 'PulseIdx' name-
value pair. This argument only affects the stepped-FM waveform.
Data Types: double

LineSpec — Line color, style, and marker options
'b' (default) | character vector

Line color, style, and marker options, specified as a character vector. These options are the same as
for the MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.
Example: 'ko'
Data Types: char

Name-Value Pair Arguments
Example: 'PlotType','imag'

PlotType — Plot real or imaginary components of waveform
'real' (default) | 'imag' | 'complex'

Components of waveform, specified as 'real', 'imag', or 'complex'.
Example: 'complex'
Data Types: char

PulseIdx — Plot stepped FM waveform subpulse
1 (default) | positive integer

Plot stepped FM waveform subpulse, specified as a positive integer. This argument only affects the
stepped-FM waveform.
Example: 5
Data Types: double

Output Arguments
hndl — Handles of lines in figure
scalar | 2-by-1 real-valued vector

Handle of lines in figure, returned as a scalar or 2-by-1 real-valued vector. For the case when both
real and imaginary plots are specified, the vector includes handles to the lines in both subplots, in the
form of [RealLineHandle;ImagLineHandle].

Version History
Introduced in R2021a

See Also
plot
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barrageJammer

Barrage jammer

Description
The barrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page 4-455.
2 Call step to compute the jammer output according to the properties of barrageJammer. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = barrageJammer creates a barrage jammer System object, H. This object generates a complex
white Gaussian noise jamming signal.

H = barrageJammer(Name,Value) creates object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = barrageJammer(E,Name,Value) creates a barrage jammer object, H, with the ERP property
set to E and other specified property Names set to the specified Values.

Properties
ERP

Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the jamming signal as a positive scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

Specify whether the number of samples of the jamming signal comes from the SamplesPerFrame
property of this object or from an input argument in step. Values of this property are:
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'Property' The SamplesPerFrame property of this object specifies the
number of samples of the jamming signal.

'Input port' An input argument in each invocation of step specifies the
number of samples of the jamming signal.

Default: 'Property'

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal as a positive integer. This property
applies when you set the SamplesPerFrameSource property to 'Property'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox™ software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random number generator for noise generation
step Generate noise jamming signal

Common to All System Objects
release Allow System object property value changes
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Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the magnitude of the
jammer output. barrageJammer uses a random number generator. Plots can vary from run-to-run.

jammer = barrageJammer('ERP',1000);
plot(abs(jammer()))
xlabel('Samples')
ylabel('Magnitude')

Version History
Introduced in R2021a

References

[1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Platform | phased.RadarTarget
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reset
System object: barrageJammer

Reset random number generator for noise generation

Syntax
reset(H)

Description
reset(H) resets the states of the barrageJammer object, H. This method resets the random number
generator state if the SeedSource property is set to 'Property'.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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step
System object: barrageJammer

Generate noise jamming signal

Syntax
Y = step(H)
Y = step(H,N)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) returns a column vector, Y, that is a complex white Gaussian noise jamming signal.
The power of the jamming signal is specified by the ERP property. The length of the jamming signal is
specified by the SamplesPerFrame property. This syntax is available when the
SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax is available when the
SamplesPerFrameSource property is 'Input port'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the magnitude of the
jammer output. barrageJammer uses a random number generator. Plots can vary from run-to-run.

jammer = barrageJammer('ERP',1000);
plot(abs(jammer()))
xlabel('Samples')
ylabel('Magnitude')
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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backscatterBicyclist
Backscatter radar signals from bicyclist

Description
The backscatterBicyclist object simulates backscattered radar signals reflected from a moving
bicyclist. The bicyclist consists of both the bicycle and its rider. The object models the motion of the
bicyclist and computes the sum of all reflected signals from multiple discrete scatterers on the
bicyclist. The model ignores internal occlusions within the bicyclist. The reflected signals are based
on a multi-scatterer model developed from a 77 GHz radar system.

Scatterers are located on five major bicyclist components:

• Bicycle frame and rider
• Bicycle pedals
• Upper and lower legs of the rider
• Front wheel
• Back wheel

Excluding the wheels, there are 114 scatterers on the bicyclist. The wheels contain scatterers on the
rim and spokes. The number of scatterers on the wheels depends on the number of spokes per wheel.
The number of spokes is specified using the NumWheelSpokes property.

You can obtain the current bicyclist position and velocity by calling the move object function. Calling
this function also updates the position and velocity for the next time epoch. To obtain the reflected
signal, call the reflect object function. You can plot the instantaneous position of the bicyclist using
the plot object function.

Creation

Syntax
bicyclist = backscatterBicyclist
bicyclist = backscatterBicyclist(Name,Value,...)

Description

bicyclist = backscatterBicyclist creates a backscatterBicyclist object, bicyclist,
having default property values.

bicyclist = backscatterBicyclist(Name,Value,...) creates a backscatterBicyclist
object, bicyclist, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any
unspecified properties take default values. For example,

bicyclist = backscatterBicyclist( ...
              'NumWheelSpokes',18,'Speed',10.0, ...
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              'InitialPosition',[0;0;0],'InitialHeading',90, ...
              'GearTransmissionRatio',5.5);

models a bicycle with 18 spokes on each wheel that is moving along the positive y-axis at 10 meters
per second. The gear transmission ratio of 5.5 indicates that there are 5.5 wheel rotations for each
pedal rotation. The bicyclist is heading along the y-axis.

This figure illustrates a bicyclist starting to turn left.

Properties
NumWheelSpokes — Number of spokes per wheel
20 (default) | positive integer

Number of spokes per wheel of the bicycle, specified as a positive integer from 3 to 50, inclusive.
Data Types: double

GearTransmissionRatio — Ratio of wheel rotations to pedal rotations
1.5 (default) | positive scalar
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Ratio of wheel rotations to pedal rotations, specified as a positive scalar. The gear ratio must be in the
range from 0.5 through 6. Units are dimensionless.
Data Types: double

OperatingFrequency — Carrier frequency of narrowband signals
77e9 (default) | positive scalar

Carrier frequency of the narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 900e6
Data Types: double

InitialPosition — Initial position of bicyclist
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the bicyclist, specified as a 3-by-1 real-valued vector in the form of [x;y;z] in global
coordinates. Units are in meters. The initial position corresponds to the location of the origin of the
bicycle coordinates. The origin is at the center of mass of the scatterers of the default bicyclist
configuration projected onto the ground.
Data Types: double

InitialHeading — Initial heading of bicyclist
0 (default) | scalar

Initial heading of bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Heading is with respect to global coordinates. Units are in degrees.
Data Types: double

Speed — Speed of bicyclist
4 (default) | nonnegative scalar

Speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to a maximum
of 60 m/s (216 kph). Speed is defined with respect to global coordinates. Units are in meters per
second.
Data Types: double

Coast — Set bicycle coasting state
false (default) | true

Set bicycle coasting state, specified as false or true. If set to true, the bicyclist is not pedaling,
but the wheels are still rotating (freewheeling). If set to false, the bicyclist is pedaling, and the
GearTransmissionRatio determines the wheel rotations to pedal rotations.
Data Types: logical

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
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Data Types: double

AzimuthAngles — Radar cross-section azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Radar cross-section azimuth angles, specified as a 1-by-P or P-by-1 real-valued vector. This property
defines the azimuth coordinates of each column of the radar cross-section matrix specified by the
RCSPattern property. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Radar cross-section elevation angles
0 (default) | scalar | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Radar cross-section elevation angles, specified as a 1-by-Q or Q-by-1 real-valued vector. This property
defines the elevation coordinates of each row of the radar cross-section matrix specified by the
RCSPattern property. Q must be greater than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

RCSPattern — Radar cross-section pattern
1-by-361 real-valued matrix (default) | Q-by-P real-valued vector | 1-by-P real-valued vector

Radar cross-section (RCS) pattern, specified as a Q-by-P real-valued matrix or a 1-by-P real-valued
vector. Matrix rows represent constant elevation, and columns represent constant azimuth. Q is the
length of the vector defined by the ElevationAngles property. P is the length of the vector defined
by the AzimuthAngles property. Units are in square meters.

You can also specify the pattern as a 1-by-P real-valued vector of azimuth angles for a single
elevation.

The default value of this property is a 1-by-361 matrix containing values derived from 77 GHz radar
measurements of a bicyclist. The default values of AzimuthAngles and ElevationAngles
correspond to the default RCS matrix.
Example: [1,.5;.5,1]
Data Types: double

Object Functions

Specific to This Object
getNumScatterers Number of scatterers on bicyclist
move Position, velocity, and orientation of moving bicyclist
plot Display locations of scatterers on bicyclist
reflect Reflected signal from moving bicyclist

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300 MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace( ...
    'OperatingFrequency',fc, ...
    'SampleRate',fs, ...
    'TwoWayPropagation',true);

Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Display Micro-Doppler Shift from Moving Bicyclist

Display a spectrogram showing the micro-Doppler effect on radar signals reflected from the
scatterers on a moving bicyclist target. A stationary radar transmits 1000 pulses of an FMCW radar
wave with a bandwidth of 250 MHz and of 1 μsec duration. The radar operates at 24 GHz. The
bicyclist starts 5 m from the radar and moves away at 4 m/s.

Set up the waveform, channel, transmitter, receiver, and platform System objects.

bw = 250e6;
fs = 2*bw;
fc = 24e9;
c = physconst('Lightspeed');
tm = 1e-6;
wav = phased.FMCWWaveform('SampleRate',fs,'SweepTime',tm, ...
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    'SweepBandwidth',bw);
chan = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'TwoWayPropagation',true,'SampleRate',fs);
radarplt = phased.Platform('InitialPosition',[0;0;0], ...
    'OrientationAxesOutputPort',true);
trx = phased.Transmitter('PeakPower',1,'Gain',25);
rcvx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);

Create a bicyclist object moving at 4 meters/second.

bicyclistSpeed = 4;
bicyclist = backscatterBicyclist('InitialPosition',[5;0;0],'Speed',bicyclistSpeed, ...
    'PropagationSpeed',c,'OperatingFrequency',fc,'InitialHeading',0.0);
lambda = c/fc;
fmax = 2*bicyclist.GearTransmissionRatio*bicyclistSpeed/lambda;
tsamp = 1/(2*fmax);

Loop over 1000 pulses. Find the angle of incidence of the radar. Propagate the wave to each
scatterer, and then reflect the wave from the scatterers back to the radar.

npulse = 1000;
xr = complex(zeros(round(fs*tm),npulse));
for m = 1:npulse
    [posr,velr,axr] = radarplt(tsamp);
    [post,velt,axt] = move(bicyclist,tsamp,0);
    [~,angrt] = rangeangle(posr,post,axt);
    x = trx(wav());
    xt = chan(repmat(x,1,size(post,2)),posr,post,velr,velt);
    xr(:,m) = rcvx(reflect(bicyclist,xt,angrt));
end

Process the arriving signals. First, dechirp the signal and then pass the signal into a Kaiser-windowed
short-time Fourier transform.

xd = conj(dechirp(xr,x));
M = 128;
beta = 6;
w = kaiser(M,beta);
R = floor(1.7*(M-1)/(beta+1));
noverlap = M - R;
[S,F,T] = stft(sum(xd),1/tsamp,'Window',w,'FFTLength',M*2, ...
    'OverlapLength',noverlap);
maxval = max(10*log10(abs(S)));
pcolor(T,-F*lambda/2,10*log10(abs(S))-maxval);
shading flat;
colorbar
xlabel('Time (sec)')
ylabel('Speed (m/s)')
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Backscatter Bicyclist With Custom RCS Pattern

Create a custom RCS pattern to use with the backscatterBicyclist object.

The RCS pattern is computed from cosines raised to the fourth power. Plot the pattern.

az = [-180:180];
el = [-90:90];
caz = cosd(az').^4;
cel = cosd(el).^4;
rcs = (caz*cel)';
imagesc(az,el,rcs)
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar
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bicyclist = backscatterBicyclist( ...
    'NumWheelSpokes',18,'Speed',10.0, ...
    'InitialPosition',[0;0;0],'InitialHeading',90, ...
    'GearTransmissionRatio',5.5,'AzimuthAngles',az, ...
    'ElevationAngles',el,'RCSPattern',rcs);

Algorithms
Bicycle Model

The bicyclist consists of five primary components: bicycle frame and rider, pedals, rider legs, front
wheel, and rear wheel. Each component contains many scatterers. All components move with a
velocity determined by the specified speed and heading properties. In addition, the legs, pedals, and
wheels undergo cyclical motion determined by the speed.

Motion of Scatterers on Frame and Rider

Scatterers on the frame and rider are fixed with respect to the bicyclist and move with the ego
velocity

where v is the speed of the bicyclist specified by the Speed property and H is the heading specified
by the InitialHeading property. These properties can be changed by calling the move function.

This figure shows the location of the scatterers on the bicycle frame and rider.
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Motion of Scatterers on Pedals

Scatterers on the pedals move with the bicyclist but can also revolve around the crank spindle with a
radius of rotation Rped. There are two possible motions of the pedals depending upon whether the
bicycle is coasting (freewheeling) or not coasting:

• When the bicycle is coasting, the pedals do not revolve around the crank spindle and the velocity
of the pedal scatterers equals the bicyclist velocity. Their positions relative to the bicyclist are
fixed. Coasting is turned on by setting the Coast property to true or by setting the coast
argument of the move object function to true. The speed of the pedal is

• When the bicycle is not coasting, the rider is pedaling. The angular velocity of the pedals is
related to the angular velocity of the wheels by

where G is the gear ratio defined by the GearTransmissionRatio property. The speed of a
pedal scatterer equals the rotational speed of the pedal multiplied by the distance from pedal to
crank spindle. The vector form of this relationship is:

The velocity of the pedal with respect to the bicyclist is then

Coasting is turned off by setting the Coast property to false or by setting the coast argument
of the move object function to false.

This figure shows the locations of the pedal scatterers.
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Motion of Scatterers on Riders Legs

Scatterers on the upper and lower legs of the rider move with the bicycle with an added cyclical
motion. There are two possible motions of the legs depending upon whether the bicycle is coasting or
not coasting:

• When the bicycle is coasting, the legs are not moving with the respect to the bicycle and the
scatterers move with the velocity of the bicyclist. Coasting is turned on by setting the Coast
property to true or by setting the coast argument of the move object function to true.

• When the bicycle is not coasting, the upper and lower legs execute reciprocating motion. The
upper legs partially rotate around the hip of the rider. The foot is attached to the pedal and rotates
with the pedal. The knee connects the lower and upper legs. The locations of the foot and hips of
the rider determine the locations of the knees and the motion of the scatterers on the legs.

Coasting is turned off by setting the Coast property to false or by setting the coast argument
of the move object function to false.

This figure shows the locations of the scatterers on the upper and lower legs of the rider.
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Motion of Scatterers on Bicycle Wheels

Scatterers are on the spokes and rims of the wheels and revolve around the wheel axle at varying
distances, rspk, from the axle. The velocity of the scatterers in the bicyclist frame of reference is

The absolute velocity of a spoke or rim scatterer is

This figure shows the locations of the scatterers on the wheel rims and spokes.
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Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the incident angle of
the reflected radiation. The backscatterBicyclist object uses a simplified RCS model: the RCS
pattern of an individual scatterer equals the total bicyclist pattern divided by the number of
scatterers. The value of the RCS is computed from the RCS pattern evaluated at an average over all
scatterers of the azimuth and elevation incident angles. Therefore, the RCS value is the same for all
scatterers. You can specify the RCS pattern using the RCSPattern property of the
backscatterBicyclist object or use the default value.

Version History
Introduced in R2021a

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getNumScatterers | move | plot | reflect | phased.BackscatterSonarTarget |
phased.BackscatterRadarTarget | phased.WidebandBackscatterRadarTarget |
phased.RadarTarget | backscatterPedestrian
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getNumScatterers
Number of scatterers on bicyclist

Syntax
N = getNumScatterers(bicyclist)

Description
N = getNumScatterers(bicyclist) returns the number of scatterers, N, on the bicyclist.

Examples

Find Number of Bicyclist Scatterers

Use the getNumScatterers object function to find the number of scatterers on a bicyclist with 25
spokes. Create the backscatterBicyclist object and then call getNumScatterers.

fc = 77e9;
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',25, ...
    'InitialPosition',[5;0;0]);
N = getNumScatterers(bicyclist)

N = 359

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

Output Arguments
N — Number of scatterers
positive integer

Number of scatterers on bicyclist, returned as a positive integer.

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
move | plot | reflect
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move
Position, velocity, and orientation of moving bicyclist

Syntax
[bpos,bvel,bax] = move(bicyclist,T,angh)
[bpos,bvel,bax] = move(bicyclist,T,angh,speed)
[bpos,bvel,bax] = move(bicyclist,T,angh,speed,coast)

Description
[bpos,bvel,bax] = move(bicyclist,T,angh) returns the current positions, bpos, and current
velocities, bvel, of the scatterers and the current orientation axes, bax, of the bicyclist. The
positions, velocities, and axes are then updated for the next time interval T. angh specifies the
heading angle of the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed) also specifies the speed of the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed,coast) also specifies the coasting state,
coast, of the bicyclist.

Examples

Display Bicyclist Scatterer Positions

Plot the positions of all bicyclist scatterers. Assume there are 15 spokes per wheel.

Create a backscatterBicyclist object for a radar system operating at 77 GHz and having a
bandwidth of 300 MHz. The sampling rate is twice the bandwidth. The bicyclist is initially 5 meters
away from the radar.

bw = 300e6;
fs = 2*bw;
fc = 77e9;
rpos = [0;0;0];
bpos = [5;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos);

Obtain the initial position of the scatterers and advance the motion by 1 second.

[bpos,bvel,bax] = move(bicyclist,1,0);

Obtain the number of scatterers and the indices of the wheel scatterers.

N = getNumScatterers(bicyclist);
Nsw = (N-114+1)/2;
idxfrontwheel = (114:(114 + Nsw - 1));
idxrearwheel = (114 + Nsw):N;
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Plot the locations of the scatterers.

plot3(bpos(1,1:90),bpos(2,1:90),bpos(3,1:90), ...
    'LineStyle','none','Color',[0.5,0,0],'Marker','.')
axis equal
hold on
plot3(bpos(1,91:99),bpos(2,91:99),bpos(3,91:99), ...
    'LineStyle','none','Color',[0,0,0.7],'Marker','.')
plot3(bpos(1,100:113),bpos(2,100:113),bpos(3,100:113), ...
    'LineStyle','none','Color',[0,0,0],'Marker','.')
plot3(bpos(1,idxfrontwheel),bpos(2,idxfrontwheel),bpos(3,idxfrontwheel), ...
    'LineStyle','none','Color',[0,0.5,0],'Marker','.')
plot3(bpos(1,idxrearwheel),bpos(2,idxrearwheel),bpos(3,idxrearwheel), ...
    'LineStyle','none','Color',[0.5,0.5,0.5],'Marker','.')
hold off
legend('Frame and rider','Pedals','Rider legs','Front wheel','Rear wheel')

Model Bicyclist Moving along Arc

Display an animation of a bicyclist riding in a quarter circle. Use the default property values of the
backscatterBicyclist object. The motion is updated at 30 millisecond intervals for 500 steps.

dt = 0.03;
M = 500;
angstep = 90/M;
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bicycle = backscatterBicyclist;

for m = 1:M
    [bpos,bvel,bang] = move(bicycle,dt,angstep*m);
    plot(bicycle)
end

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

T — Duration of next motion interval
scalar

Duration of next motion interval, specified as a positive scalar. The scatterer positions and velocities
and bicyclist orientation are updated over this time duration. Units are in seconds.
Example: 0.75
Data Types: double

angh — Bicyclist heading
0.0 | scalar
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Heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

speed — Bicyclist speed
value Speed property (default) | nonnegative scalar

Bicyclist speed, specified as a nonnegative scalar. The motion model limits the speed to 60 m/s. Units
are in meters per second. Alternatively, you can specify the bicyclist speed using the Speed property
of the backscatterBicyclist object.
Example: 8
Data Types: double

coast — Set bicyclist coasting state
value of Coast property (default) | false | true

Set bicyclist coasting state, specified as false or true. If set to true, the bicyclist is not pedaling,
but the wheels are still rotating (freewheeling). If set to false, the bicyclist is pedaling, and the
GearTransmissionRatio determines the ratio of wheel rotations to pedal rotations. Alternatively,
you can specify the bicyclist coasting state using the Coast property of the
backscatterBicyclist object.
Data Types: logical

Output Arguments
bpos — Positions of bicyclist scatterers
real-valued 3-by-N matrix

Positions of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column represents the
Cartesian position, [x;y;z], of one of the bicyclist scatterers. N represents the number of scatterers
and can be obtained using the getNumScatterers object function. Units are in meters. See “Bicycle
Scatterer Indices” on page 4-484 for the column representing the position of each scatterer.
Data Types: double

bvel — Velocities of bicyclist scatterers
real-valued 3-by-N matrix

Velocities of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column represents the
Cartesian velocity, [vx;vy;vz], of one of the bicyclist scatterers. N represents the number of scatterers
and can be obtained using the getNumScatterers object function. Units are in meters per second.
See “Bicycle Scatterer Indices” on page 4-484for the column representing the velocity of each
scatterer.
Data Types: double

bax — Orientation axes of bicyclist
real-valued 3-by-3 matrix

Orientation axes of bicyclist, returned as a real-valued 3-by-3 matrix. Units are dimensionless.
Data Types: double
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More About
Bicycle Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getNumScatterers | plot | reflect
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plot
Display locations of scatterers on bicyclist

Syntax
plot(bicyclist)
fhndl = plot(bicyclist)
fhndl = plot(bicyclist,'Parent',ax)

Description
plot(bicyclist) displays the positions of all scatterers on a bicyclist at the current time. To
display the current position of the bicyclist, call the plot object function after calling the move object
function. Calling plot before any call to move displays the bicyclist at the origin.

fhndl = plot(bicyclist) returns the figure handle of the display window.

fhndl = plot(bicyclist,'Parent',ax) also specifies the plot axes for the bicyclist plot.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300 MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace( ...
    'OperatingFrequency',fc, ...
    'SampleRate',fs, ...
    'TwoWayPropagation',true);
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Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

ax — Plot axes
axes handle

Plot axes, specified as an axes handle.
Data Types: double
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Output Arguments
fhndl — figure handle
figure handle

Figure handle of plot window.

Version History
Introduced in R2019b

See Also
getNumScatterers | move | reflect
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reflect
Reflected signal from moving bicyclist

Syntax
Y = reflect(bicyclist,X,ang)

Description
Y = reflect(bicyclist,X,ang) returns the total reflected signal, Y, from a bicyclist. The total
reflected signal is the sum of all reflected signals from the bicyclist scatterers. X represents the
incident signals at each scatterer. ang defines the directions of the incident and reflected signals with
respect to the each scatterers.

The reflected signal strength depends on the value of the radar cross-section at the incident angle.
This simplified model uses the same value for all scatterers.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300 MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace( ...
    'OperatingFrequency',fc, ...
    'SampleRate',fs, ...
    'TwoWayPropagation',true);
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Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

X — Incident radar signals
complex-valued M-by-N matrix

Incident radar signals on each bicyclist scatterer, specified as a complex-valued M-by-N matrix. M is
the number of samples in the signal. N is the number of point scatterers on the bicyclist and is
determined partly from the number of spokes in each wheel, Nws. See “Bicycle Scatterer Indices” on
page 4-494 for the column representing the incident signal at each scatterer.
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The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

ang — Directions of incident signals
real-valued 2-by-P matrix

Directions of incident signals on the bicyclist scatterers, specified as a real-valued 2-by-N matrix. N
equals the number of columns in X. Each column of Ang specifies the incident direction of the signal
to a scatterer taking the form of an azimuth-elevation pair, [AzimuthAngle;ElevationAngle]. Units are
in degrees. See “Bicycle Scatterer Indices” on page 4-494 for the column representing the incident
direction at each scatterer.
Data Types: double

Output Arguments
Y — Total reflected radar signals
complex-valued M-by-1 column vector

Total reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
number of samples in the input signal, X.
Data Types: double
Complex Number Support: Yes

More About
Bicycle Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1
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Algorithms
Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the incident angle of
the reflected radiation. The backscatterBicyclist object uses a simplified RCS model: the RCS
pattern of an individual scatterer equals the total bicyclist pattern divided by the number of
scatterers. The value of the RCS is computed from the RCS pattern evaluated at an average over all
scatterers of the azimuth and elevation incident angles. Therefore, the RCS value is the same for all
scatterers. You can specify the RCS pattern using the RCSPattern property of the
backscatterBicyclist object or use the default value.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getNumScatterers | move | plot
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backscatterPedestrian
Backscatter radar signals from pedestrian

Description
backscatterPedestrian creates an object that simulates signals reflected from a walking pedestrian.
The pedestrian walking model coordinates the motion of 16 body segments to simulate natural
motion. The model also simulates the radar reflectivity of each body segment. From this model, you
can obtain the position and velocity of each segment and the total backscattered radiation as the
body moves.

After creating the pedestrian, you can move the pedestrian by calling the move object function. To
obtain the reflected signal, call the reflect object function. You can plot the instantaneous position
of the body segments using the plot object function.

Creation

Syntax
pedestrian = backscatterPedestrian
pedestrian = backscatterPedestrian(Name,Value,...)

Description

pedestrian = backscatterPedestrian creates a pedestrian target model object, pedestrian.
The pedestrian model includes 16 body segments – left and right feet, left and right lower legs, left
and right upper legs, left and right hip, left and right lower arms, left and right upper arms, left and
right shoulders, neck, and head.

pedestrian = backscatterPedestrian(Name,Value,...) creates a pedestrian object,
pedestrian, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any
unspecified properties take default values. For example,

pedestrian = backscatterPedestrian( ...
              'Height',2,'WalkingSpeed',0.5, ...
              'InitialPosition',[0;0;0],'InitialHeading',90);

models a two-meter tall woman or man moving along the positive y-axis at one-half meter per second.

Properties
Height — Height of pedestrian
1.65 (default) | positive scalar

Height of pedestrian, specified as a positive scalar. Units are in meters.
Data Types: double
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WalkingSpeed — Walking speed of pedestrian
1.4 times pedestrian height (default) | non-negative scalar

Walking speed of pedestrian, specified as a non-negative scalar. The motion model limits the walking
speed to 1.4 times the pedestrian height set in the Height property. Units are in meters per second.
Data Types: double

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Carrier frequency
300e6 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

InitialPosition — Initial position of pedestrian
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the pedestrian, specified as a 3-by-1 real-valued vector in the form of [x;y;z].
Units are in meters.
Data Types: double

InitialHeading — Initial heading of pedestrian
0 (default) | scalar

Initial heading of pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-
axis towards y-axis. Units are in degrees.
Data Types: double

Object Functions

Specific to This Object
move Position and velocity of walking pedestrian
reflect Reflected signal from walking pedestrian
plot Display stick figure showing the positions of all body segments of pedestrian

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
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reset Reset internal states of System object

Examples

Reflected Signal from Moving Pedestrian

Compute the reflected radar signal from a pedestrian moving along the x-axis away from the origin.
The radar operates at 24 GHz and is located at the origin. The pedestrian is initially 100 meters from
the radar. Transmit a linear FM waveform having a 300 MHz bandwidth. The reflected signal is
captured at the moment the pedestrian starts to move and at two seconds into the motion.

Create a linear FM waveform and a free space channel to propagate the waveform.

c = physconst('Lightspeed');
bw = 300.0e6;
fs = bw;
fc = 24.0e9;
wav = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw);
x = wav();
channel = phased.FreeSpace('OperatingFrequency',fc,'SampleRate',fs, ...
    'TwoWayPropagation',true);

Create the pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with
initial heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is
walking at 0.5 meters per second.

pedest = backscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',0.5);

The first call to the move function returns the initial position, initial velocity, and initial orientation of
all body segments and then advances the pedestrian motion two seconds ahead.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit the first pulse to the pedestrian. Create 16 replicas of the signal and propagate them to the
positions of the pedestrian body segments. Use the rangeangle function to compute the arrival
angle of each replica at the corresponding body segment. Then use the reflect function to return
the coherent sum of all the reflected signals from the body segments at the pedestrian initial position.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y0 = reflect(pedest,xp,ang);

Obtain the position, velocity, and orientation of each body segment then advance the pedestrian
motion another two seconds.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit and propagate the second pulse to the new position of the pedestrian.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y1 = reflect(pedest,xp,ang);
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Match-filter and plot both of the reflected pulses. The plot shows the increased delay of the matched
filter output as the pedestrian walks away.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(wav));
ymf = filter([y0 y1]);
t = (0:size(ymf,1)-1)/fs;
plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Match-Filtered Reflected Signals')
legend('Signal 1','Signal 2')

Zoom in and show the time delays for each signal.

plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Matched-Filtered Reflected Signals')
axis([50.65 50.7 0 .0026])
legend('Signal 1','Signal 2')
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Plot Arm Motion of Walking Pedestrian

Create a pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with initial
heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is walking at
1.5 meters per second.

fc = 24.0e9;
pedest = backscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',1.5);

Obtain and plot the detailed motion of the right and left lower arms of the pedestrian by capturing
their positions every 1/10th of a second.

blla = zeros(3,100);
brla = blla;
t = zeros(1,100);
T = .1;
for k = 1:100
    [bppos,bpvel,bpax] = move(pedest,T,0);
    blla(:,k) = bppos(:,9);
    brla(:,k) = bppos(:,10);
    t(k) = T*(k-1);
end
plot(t,brla(1,:),t,blla(1,:))
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title('Pedestrian Arm Motion')
xlabel('Time (sec)')
ylabel('Distance (m)')
legend('Right Lower Arm','Left Lower Arm')

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
backscatterPedestrian object with default values except for height which is 1.7 meters. Advance
and display the pedestrian position every 3 milliseconds. First, the pedestrian moves along the
positive x-axis, then along the positive y-axis, along the negative x-axis, and finally along the negative
y-axis to return to the starting point.

ped = backscatterPedestrian('Height',1.7);
dt = 0.003;
N = 3600;
for m = 1:N
    if (m < N/4)
        angstep = 0.0;
    end
    if (m >= N/4)
        angstep = 90.0;
    end
    if (m >= N/2)
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        angstep = 180.0;
    end
    if (m >= 3*N/4)
        angstep = 270.0;
    end
    move(ped,dt,angstep);
    plot(ped)
end

Version History
Introduced in R2019a

References
[1] Victor Chen, The Micro-Doppler Effect in Radar, Artech House, 2011.

[2] Ronan Boulic, Nadia Magnenat-Thalmann, Daniel Thalmann, A Global Human Walking Model with
Real-time Kinematic Personification, The Visual Computer: International Journal of Computer
Graphics, Vol. 6, Issue 6, Dec 1990.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
move | reflect | plot | phased.BackscatterSonarTarget |
phased.BackscatterRadarTarget | phased.WidebandBackscatterRadarTarget |
phased.RadarTarget
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move
Position and velocity of walking pedestrian

Syntax
[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH)

Description
[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH) returns the position, BPPOS, velocity,
BPVEL, and orientation axes, BPAX, of body segments of a moving pedestrian. The object then
simulates the walking motion for the next duration, specified in T. ANGH specifies the current heading
angle.

Examples

Reflected Signal from Moving Pedestrian

Compute the reflected radar signal from a pedestrian moving along the x-axis away from the origin.
The radar operates at 24 GHz and is located at the origin. The pedestrian is initially 100 meters from
the radar. Transmit a linear FM waveform having a 300 MHz bandwidth. The reflected signal is
captured at the moment the pedestrian starts to move and at two seconds into the motion.

Create a linear FM waveform and a free space channel to propagate the waveform.

c = physconst('Lightspeed');
bw = 300.0e6;
fs = bw;
fc = 24.0e9;
wav = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw);
x = wav();
channel = phased.FreeSpace('OperatingFrequency',fc,'SampleRate',fs, ...
    'TwoWayPropagation',true);

Create the pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with
initial heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is
walking at 0.5 meters per second.

pedest = backscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',0.5);

The first call to the move function returns the initial position, initial velocity, and initial orientation of
all body segments and then advances the pedestrian motion two seconds ahead.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit the first pulse to the pedestrian. Create 16 replicas of the signal and propagate them to the
positions of the pedestrian body segments. Use the rangeangle function to compute the arrival
angle of each replica at the corresponding body segment. Then use the reflect function to return
the coherent sum of all the reflected signals from the body segments at the pedestrian initial position.
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radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y0 = reflect(pedest,xp,ang);

Obtain the position, velocity, and orientation of each body segment then advance the pedestrian
motion another two seconds.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit and propagate the second pulse to the new position of the pedestrian.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y1 = reflect(pedest,xp,ang);

Match-filter and plot both of the reflected pulses. The plot shows the increased delay of the matched
filter output as the pedestrian walks away.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(wav));
ymf = filter([y0 y1]);
t = (0:size(ymf,1)-1)/fs;
plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Match-Filtered Reflected Signals')
legend('Signal 1','Signal 2')
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Zoom in and show the time delays for each signal.

plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Matched-Filtered Reflected Signals')
axis([50.65 50.7 0 .0026])
legend('Signal 1','Signal 2')

Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

T — Duration of next walking interval
scalar

Duration of next walking interval, specified as a positive scalar. Units are in seconds.
Example: 0.75
Data Types: double

ANGH — Pedestrian heading
scalar
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Heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

Output Arguments
BPPOS — Positions of body segments
real-valued 3-by-16 matrix

Positions of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian position, [x;y;z], of one of 16 body segments. Units are in meters. See “Body Segment
Indices” on page 2-17 for the column representing the position of each body segment.
Data Types: double

BPVEL — Velocity of body segments
real-valued 3-by-16 matrix

Velocity of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian velocity vector, [vx;vy;vz], of one of 16 body segments. Units are in meters per second.
See “Body Segment Indices” on page 2-17 for the column representing the velocity of each body
segment.
Data Types: double

BPAX — Orientation of body segments
real-valued 3-by-3-by-16 array

Orientation axes of body segments, returned as a real-valued 3-by-3-by-16 array. Each page
represents the 3-by-3 orientation axes of one of 16 body segments. Units are dimensionless. See
“Body Segment Indices” on page 2-17 for the page representing the orientation of each body
segment.
Data Types: double

More About
Body Segment Indices

Body segment indices define which columns in BPPOS and BPVEL contain the position and velocity
data for a specific body segment. The indices also point to the page of BPAX containing the
orientation matrix for a specific body segment. For example, column three of BPPOS contains the 3-D
position of the left lower leg. Page three of BPAX contains the orientation matrix of the left lower leg.
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Body Segment Index
Left foot 1
Right foot 2
Left lower leg 3
Right lower leg 4
Left upper leg 5
Right upper leg 6
Left hip 7
Right hip 8
Left lower arm 9
Right lower arm 10
Left upper arm 11
Right upper arm 12
Left shoulder 13
Right shoulder 14
Head 15
Torso 16

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
backscatterPedestrian | reflect | plot
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plot
Display stick figure showing the positions of all body segments of pedestrian

Syntax
plot(pedestrian)
fhndl = plot(pedestrian)

Description
plot(pedestrian) displays a stick figure showing the positions of all body segments of a
pedestrian. The lines of the figure represent body segments while the dots represent the joints
connecting body segments.

fhndl = plot(pedestrian) returns the figure handle of the display window.

Examples

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
backscatterPedestrian object with default values except for height which is 1.7 meters. Advance
and display the pedestrian position every 3 milliseconds. First, the pedestrian moves along the
positive x-axis, then along the positive y-axis, along the negative x-axis, and finally along the negative
y-axis to return to the starting point.

ped = backscatterPedestrian('Height',1.7);
dt = 0.003;
N = 3600;
for m = 1:N
    if (m < N/4)
        angstep = 0.0;
    end
    if (m >= N/4)
        angstep = 90.0;
    end
    if (m >= N/2)
        angstep = 180.0;
    end
    if (m >= 3*N/4)
        angstep = 270.0;
    end
    move(ped,dt,angstep);
    plot(ped)
end
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Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target, specified as a backscatterPedestrian object.

Output Arguments
fhndl — figure handle
figure handle

Figure handle of plot window

Version History
Introduced in R2019b

See Also
backscatterPedestrian | move | reflect
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Topics
“Reflected Signal from Moving Pedestrian” on page 4-498
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reflect
Reflected signal from walking pedestrian

Syntax
Y = reflect(pedestrian,X,ANG)

Description
Y = reflect(pedestrian,X,ANG) returns the reflected signal, Y, from incident signals, X, on a
pedestrian. The reflected signal is the sum of signals from all body segments. ANG defines the
directions of the incident and reflected signals with respect to the body segments.

Examples

Reflected Signal from Moving Pedestrian

Compute the reflected radar signal from a pedestrian moving along the x-axis away from the origin.
The radar operates at 24 GHz and is located at the origin. The pedestrian is initially 100 meters from
the radar. Transmit a linear FM waveform having a 300 MHz bandwidth. The reflected signal is
captured at the moment the pedestrian starts to move and at two seconds into the motion.

Create a linear FM waveform and a free space channel to propagate the waveform.

c = physconst('Lightspeed');
bw = 300.0e6;
fs = bw;
fc = 24.0e9;
wav = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw);
x = wav();
channel = phased.FreeSpace('OperatingFrequency',fc,'SampleRate',fs, ...
    'TwoWayPropagation',true);

Create the pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with
initial heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is
walking at 0.5 meters per second.

pedest = backscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',0.5);

The first call to the move function returns the initial position, initial velocity, and initial orientation of
all body segments and then advances the pedestrian motion two seconds ahead.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit the first pulse to the pedestrian. Create 16 replicas of the signal and propagate them to the
positions of the pedestrian body segments. Use the rangeangle function to compute the arrival
angle of each replica at the corresponding body segment. Then use the reflect function to return
the coherent sum of all the reflected signals from the body segments at the pedestrian initial position.
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radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y0 = reflect(pedest,xp,ang);

Obtain the position, velocity, and orientation of each body segment then advance the pedestrian
motion another two seconds.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit and propagate the second pulse to the new position of the pedestrian.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y1 = reflect(pedest,xp,ang);

Match-filter and plot both of the reflected pulses. The plot shows the increased delay of the matched
filter output as the pedestrian walks away.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(wav));
ymf = filter([y0 y1]);
t = (0:size(ymf,1)-1)/fs;
plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Match-Filtered Reflected Signals')
legend('Signal 1','Signal 2')
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Zoom in and show the time delays for each signal.

plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Matched-Filtered Reflected Signals')
axis([50.65 50.7 0 .0026])
legend('Signal 1','Signal 2')

Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

X — Incident radar signals
complex-valued M-by-16 matrix

Incident radar signals on each body segment, specified as a complex-valued M-by-16 matrix. M is the
number of samples in the signal. See “Body Segment Indices” on page 4-515 for the column
representing the incident signal at each body segment.
Data Types: double
Complex Number Support: Yes

4 Objects

4-514



ANG — Directions of incident signals
real-valued 2-by-16 matrix

Directions of incident signals on the body segments, specified as a real-valued 2-by-16 matrix. Each
column of ANG specifies the incident direction of the signal to the corresponding body part. Each
column takes the form of an azimuth-elevation pair, [AzimuthAngle;ElevationAngle]. Units are
in degrees. See “Body Segment Indices” on page 4-515 for the column representing the incident
direction at each body segment.
Data Types: double

Output Arguments
Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
same number of samples as in the input signal, X.
Data Types: double
Complex Number Support: Yes

More About
Body Segment Indices

Body segment indices define which columns in X and ANG contain the data for a specific body
segment. For example, column 3 of X contains sample data for the left lower leg. Column 3 of ANG
contains the arrival angle of the signal at the left lower leg.
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Body Segment Index
Left foot 1
Right foot 2
Left lower leg 3
Right lower leg 4
Left upper leg 5
Right upper leg 6
Left hip 7
Right hip 8
Left lower arm 9
Right lower arm 10
Left upper arm 11
Right upper arm 12
Left shoulder 13
Right shoulder 14
Head 15
Torso 16

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
backscatterPedestrian | move | plot
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constantGammaClutter
Simulate constant gamma clutter

Description
The constantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 4-517.
2 Call step to simulate the clutter return for your system according to the properties of

constantGammaClutter. The behavior of step is specific to each object in the toolbox.

The clutter simulation that constantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = constantGammaClutter creates a constant gamma clutter simulation System object, H. This
object simulates the clutter return of a monostatic radar system using the constant gamma model.

H = constantGammaClutter(Name,Value) creates a constant gamma clutter simulation object,
H, with additional options specified by one or more Name,Value pair arguments. Name is a property
name on page 4-517, and Value is the corresponding value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

Properties
Sensor

Handle of sensor
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Specify the sensor as an antenna element object or as an array object whose Element property value
is an antenna element object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

Gamma

Terrain gamma value

Specify the γ value used in the constant γ clutter model, as a scalar in decibels. The γ value depends
on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |. When you set this
property to 'Flat', the earth is assumed to be a flat plane. When you set this property to 'Curved',
the earth is assumed to be a sphere.

Default: 'Flat'

ClutterMinRange

Minimum range of clutter region (m)

Minimum range at which to computer clutter returns, specified as a positive scalar. The minimum
range must be nonnegative. This value is ignored if it less than the value of PlatformHeight. Units
are in meters.

Default: 0

ClutterMaxRange

Maximum range of clutter region (m)

Specify the maximum range at which to compute clutter returns. for the clutter simulation as a
positive scalar. The maximum range must be greater than the value specified in the
PlatformHeight property. Units are in meters.

Default: 5000

ClutterAzimuthCenter

Azimuth center of clutter region (deg)

The azimuth angle in the ground plane about which clutter patches are generated. Patches are
generated symmetrically about this angle.

Default: 0

ClutterAzimuthSpan

Azimuth span of clutter region (deg)
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Specify the coverage in azimuth (in degrees) of the clutter region as a positive scalar. The clutter
simulation covers a region having the specified azimuth span, symmetric around
ClutterAzimuthCenter. Typically, all clutter patches have their azimuth centers within the region,
but the PatchAzimuthSpan value can cause some patches to extend beyond the region.

Default: 60

PatchAzimuthSpan

Azimuth span of clutter patches (deg)

Specify the azimuth span (in degrees) of each clutter patch as a positive scalar.

Default: 1

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After the
coherence time elapses, the step method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random numbers are never updated.

Default: inf

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.
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You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you set the
OutputFormat property to 'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the NumPulses property.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the 'Samples' option more convenient
because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1
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NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. Typically, you
use the number of samples in one pulse. This property applies only when you set the OutputFormat
property to 'Samples'.

Default: 100

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz.

Default: 3e8

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax. Set this
property to false omit the transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also specify the TransmitERP property.

Default: false

WeightsInputPort

Enable weights input

Set this property to true to input weights.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as a positive
scalar. This property applies only when you set the TransmitSignalInputPort property to false.

Default: 5000

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a nonnegative
scalar.

Default: 300
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PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. The default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the radar antenna
or antenna array. Azimuth angle must be between –180 and 180 degrees. Elevation angle must be
between –90 and 90 degrees.

Default: [90;0]

MountingAngles

Sensor mounting angles (deg)

Specify a 3-element vector that gives the intrinsic yaw, pitch, and roll of the sensor frame from the
inertial frame. The 3 elements define the rotations around the z, y, and x axes respectively, in that
order. The first rotation, rotates the body axes around the z-axis. Because these angles define
intrinsic rotations, the second rotation is performed around the y-axis in its new position resulting
from the previous rotation. The final rotation around the x-axis is performed around the x-axis as
rotated by the first two rotations in the intrinsic system.

Default: [0 0 0]

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'

Seed

Seed for random number generator
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Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random numbers and time count for clutter simulation
step Simulate clutter using constant gamma model

Common to All System Objects
release Allow System object property value changes

Examples

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a four-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;
mountingAng = [depang,0,0];

Create the clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
tpower = 5000.0;
clutter = constantGammaClutter('Sensor',array,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
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    'ClutterAzimuthSpan',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)

Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not use the TransmitERP property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
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and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
ula = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1.0e3;
direction = [90;0];
speed = 2.0e3;
depang = 30;
mountingAng = [depang,0,0];

Create the clutter simulation object and configure it to accept an transmit signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
clutter = constantGammaClutter('Sensor',ula,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an input argument.
The software computes the effective transmitted power of the signal. The transmit signal is a
rectangular waveform with a pulse width of 2 μs.

tpower = 5.0e3;
pw = 2.0e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ula,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)
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Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
barrageJammer | gpuConstantGammaClutter | surfacegamma | uv2azel | phitheta2azel

Topics
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”
“Clutter Modeling”
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reset
System object: constantGammaClutter

Reset random numbers and time count for clutter simulation

Syntax
reset(H)

Description
reset(H) resets the states of the constantGammaClutter object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'. This method
resets the elapsed coherence time. Also, if the PRF property is a vector, the next call to step uses the
first PRF value in the vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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step
System object: constantGammaClutter

Simulate clutter using constant gamma model

Syntax
Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,X,WS)
Y = step(H,PRFIDX)
Y = step(H,X,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) computes the collected clutter return at each sensor. This syntax is available when you
set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output of the
transmitter while it is on during a given pulse. This syntax is available when you set the
TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,WS) uses WS as weights applied to each element within each subarray. To use this
syntax, set the Sensor property to an array that supports subarrays and set the SubarraySteering
property of the array to 'Custom'.

Y = step(H,PRFIDX) uses the index, PRFIDX, to select the PRF from a predetermined list of PRFs
specified by the PRF property. To enable this syntax, set the PRFSelectionInputPort to true.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available when you
configure H so that H.TransmitSignalInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input Arguments
H

Constant gamma clutter object.
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X

Transmit signal, specified as a column vector.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 degrees and 180 degrees, and the elevation angle must be between –90 degrees and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray Element Weights

Sensor Array Subarray Weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray When subarrays do not have the same dimensions
and sizes, you can specify subarray weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.

PRFIDX

Index of pulse repetition frequency, specified as a positive integer. The index selects one of the
entries specified in the PRF property as the PRF for the next transmission.
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Example: 3

Dependencies

To enable this argument, set the PRFSelectionInputPort to true.

Output Arguments
Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. If H.Sensor contains
subarrays, M is the number of subarrays in the radar system. Otherwise it is the number of sensors.
When you set the OutputFormat property to 'Samples', N is defined by the NumSamples property.
When you set the OutputFormat property to 'Pulses', N is the total number of samples in the next
L pulses. In this case, L is defined by the NumPulses property.

Examples

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a four-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;
mountingAng = [depang,0,0];

Create the clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
tpower = 5000.0;
clutter = constantGammaClutter('Sensor',array,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
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    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)

Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not use the TransmitERP property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
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and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
ula = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1.0e3;
direction = [90;0];
speed = 2.0e3;
depang = 30;
mountingAng = [depang,0,0];

Create the clutter simulation object and configure it to accept an transmit signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
clutter = constantGammaClutter('Sensor',ula,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an input argument.
The software computes the effective transmitted power of the signal. The transmit signal is a
rectangular waveform with a pulse width of 2 μs.

tpower = 5.0e3;
pw = 2.0e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ula,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)
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Tips
The clutter simulation that constantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Topics
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”
“Clutter Modeling”
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gpuConstantGammaClutter

Simulate constant-gamma clutter using GPU

Description
The gpuConstantGammaClutter object simulates clutter, performing the computations on a GPU.

Note To use this object, you must install a Parallel Computing Toolbox license and have access to an
appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel Computing Toolbox).

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 4-536.
2 Call step to simulate the clutter return for your system according to the properties of

gpuConstantGammaClutter. The behavior of step is specific to each object in the toolbox.

The clutter simulation that constantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = gpuConstantGammaClutter creates a constant-gamma clutter simulation System object, H.
This object simulates the clutter return of a monostatic radar system using the constant gamma
model.

H = gpuConstantGammaClutter(Name,Value) creates a constant gamma clutter simulation
object, H, with additional options specified by one or more Name,Value pair arguments. Name is a
property name on page 4-537, and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.
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Properties
Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element property value
is an antenna element object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

Gamma

Terrain gamma value

Specify the γ value used in the constant γ clutter model, as a scalar in decibels. The γ value depends
on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |. When you set this
property to 'Flat', the earth is assumed to be a flat plane. When you set this property to 'Curved',
the earth is assumed to be a sphere.

Default: 'Flat'

ClutterMinRange

Minimum range of clutter region (m)

Minimum range at which to computer clutter returns, specified as a positive scalar. The minimum
range must be nonnegative. This value is ignored if it less than the value of PlatformHeight. Units
are in meters.

Default: 0

ClutterMaxRange

Maximum range of clutter region (m)

Specify the maximum range at which to compute clutter returns. for the clutter simulation as a
positive scalar. The maximum range must be greater than the value specified in the
PlatformHeight property. Units are in meters.

Default: 5000

ClutterAzimuthCenter

Azimuth center of clutter region (deg)

The azimuth angle in the ground plane about which clutter patches are generated. Patches are
generated symmetrically about this angle.
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Default: 0

ClutterAzimuthSpan

Azimuth span of clutter patches (deg)

Specify the coverage in azimuth (in degrees) of the clutter region as a positive scalar. The clutter
simulation covers a region having the specified azimuth span, symmetric around
ClutterAzimuthCenter. Typically, all clutter patches have their azimuth centers within the region,
but the PatchAzimuthSpan value can cause some patches to extend beyond the region.

Default: 60

PatchAzimuthSpan

Azimuth span of clutter patches (deg)

Specify the azimuth span (in degrees) of each clutter patch as a positive scalar.

Default: 1

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After the
coherence time elapses, the step method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random numbers are never updated.

Default: inf

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:
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• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you set the
OutputFormat property to 'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the NumPulses property.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the 'Samples' option more convenient
because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output
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Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. Typically, you
use the number of samples in one pulse. This property applies only when you set the OutputFormat
property to 'Samples'.

Default: 100

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz.

Default: 3e8

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax. Set this
property to false omit the transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also specify the TransmitERP property.

Default: false

WeightsInputPort

Enable weights input

Set this property to true to input weights.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as a positive
scalar. This property applies only when you set the TransmitSignalInputPort property to false.

Default: 5000

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a nonnegative
scalar.
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Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. The default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the radar antenna
or antenna array. Azimuth angle must be between –180 and 180 degrees. Elevation angle must be
between –90 and 90 degrees.

Default: [90;0]

MountingAngles

Sensor mounting angles (deg)

Specify a 3-element vector that gives the intrinsic yaw, pitch, and roll of the sensor frame from the
inertial frame. The 3 elements define the rotations around the z, y, and x axes respectively, in that
order. The first rotation, rotates the body axes around the z-axis. Because these angles define
intrinsic rotations, the second rotation is performed around the y-axis in its new position resulting
from the previous rotation. The final rotation around the x-axis is performed around the x-axis as
rotated by the first two rotations in the intrinsic system.

Default: [0 0 0]

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'
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Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods
reset Reset random numbers and time count for clutter simulation
step Simulate clutter using constant gamma model

Common to All System Objects
release Allow System object property value changes

Examples

GPU Clutter Simulation of Radar System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30∘.

Nele = 4;
c = physconst('Lightspeed');
fc = 300e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;
mountingAng = [0,30,0];

Create the GPU clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60∘.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
tpower = 5000;
clutter = gpuConstantGammaClutter('Sensor',array, ...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf, ...
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    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat' ,...
    'TransmitERP',tpower,'PlatformHeight',height, ...
    'PlatformSpeed',speed,'PlatformDirection',direction, ...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax, ...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property', ...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array, ...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),'NormalizeDoppler',true);

The results are not identical to the results obtained by using constantGammaClutter because of
differences between CPU and GPU computations.
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GPU Clutter Simulation With Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not specify the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
speed = 2000;
mountingAng = [0,30,0];

Create the GPU clutter simulation object and configure it to take a transmitted signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
clutter = gpuConstantGammaClutter('Sensor',ha,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property','Seed',40547);

Simulate the clutter return for 10 pulses. At each object call, pass the transmit signal as an input
argument. The software automatically computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 μs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter(X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ha,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
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plotResponse(response,shiftdim(clsig(20,:,:)),...
    'NormalizeDoppler',true);

The results are not identical to the results obtained by using constantGammaClutter because of
differences between CPU and GPU computations.

Random Number Comparison Between GPU and CPU

In most cases, it does not matter that the GPU and CPU use different random numbers. Sometimes,
you may need to reproduce the same stream on both GPU and CPU. In such cases, you can set up the
two global streams so they produce identical random numbers. Both GPU and CPU support the
combined multiple recursive generator (mrg32k3a) with the NormalTransform parameter set to
'Inversion'.

Define a seed value to use for both the GPU stream and the CPU stream.

seed = 7151;

Create a CPU random number stream that uses the combined multiple recursive generator and the
chosen seed value. Then, use this stream as the global stream for random number generation on the
CPU.

stream_cpu = RandStream('CombRecursive','Seed',seed, ...
    'NormalTransform','Inversion');
RandStream.setGlobalStream(stream_cpu);
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Create a GPU random number stream that uses the combined multiple recursive generator and the
same seed value. Then, use this stream as the global stream for random number generation on the
GPU.

stream_gpu = parallel.gpu.RandStream('CombRecursive','Seed',seed, ...
    'NormalTransform','Inversion');
parallel.gpu.RandStream.setGlobalStream(stream_gpu);

Generate clutter on both the CPU and the GPU, using the global stream on each platform.

clutter_cpu = constantGammaClutter('SeedSource','Auto');
clutter_gpu = gpuConstantGammaClutter('SeedSource','Auto');
cl_cpu = clutter_cpu();
cl_gpu = clutter_gpu();

Check that the element-wise differences between the CPU and GPU results are negligible.

maxdiff = max(max(abs(cl_cpu - cl_gpu)))

maxdiff = 3.4027e-18

eps

ans = 2.2204e-16

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
barrageJammer | surfacegamma | uv2azel | phitheta2azel
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Topics
Acceleration of Clutter Simulation Using GPU and Code Generation
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“Clutter Modeling”
“GPU Computing” (Parallel Computing Toolbox)
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reset
System object: gpuConstantGammaClutter

Reset random numbers and time count for clutter simulation

Syntax
reset(H)

Description
reset(H) resets the states of the gpuConstantGammaClutter object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'. This method
resets the elapsed coherence time. Also, if the PRF property is a vector, the next call to step uses the
first PRF value in the vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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step
System object: gpuConstantGammaClutter

Simulate clutter using constant gamma model

Syntax
Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,WS)
Y = step(H,PRFIDX)
Y = step(H,X,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) computes the collected clutter return at each sensor. This syntax is available when you
set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output of the
transmitter while it is on during a given pulse. This syntax is available when you set the
TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,WS) uses WS as weights applied to each element within each subarray. To use this
syntax, set the Sensor property to an array that supports subarrays and set the SubarraySteering
property of the array to 'Custom'.

Y = step(H,PRFIDX) uses the index, PRFIDX, to select the PRF from a predetermined list of PRFs
specified by the PRF property. To enable this syntax, set the PRFSelectionInputPort to true.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available when you
configure H so that H.TransmitSignalInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input Arguments
H

Constant gamma clutter object.
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X

Transmit signal, specified as a column vector of data type double. The System object handles data
transfer between the CPU and GPU.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 degrees and 180 degrees, and the elevation angle must be between –90 degrees and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray Element Weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray When subarrays do not have the same dimensions
and sizes, you can specify subarray weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
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PRFIDX

Index of pulse repetition frequency, specified as a positive integer. The index selects one of the
entries specified in the PRF property as the PRF for the next transmission.
Example: 4

Dependencies

To enable this argument, set the PRFSelectionInputPort to true.

Output Arguments
Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. If H.Sensor contains
subarrays, M is the number of subarrays in the radar system. Otherwise it is the number of sensors.
When you set the OutputFormat property to 'Samples', N is defined by the NumSamples property.
When you set the OutputFormat property to 'Pulses', N is the total number of samples in the next
L pulses. In this case, L is defined by the NumPulses property.

Examples

GPU Clutter Simulation of Radar System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30∘.

Nele = 4;
c = physconst('Lightspeed');
fc = 300e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;
mountingAng = [0,30,0];

Create the GPU clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60∘.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
tpower = 5000;
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clutter = gpuConstantGammaClutter('Sensor',array, ...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf, ...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat' ,...
    'TransmitERP',tpower,'PlatformHeight',height, ...
    'PlatformSpeed',speed,'PlatformDirection',direction, ...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax, ...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property', ...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array, ...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),'NormalizeDoppler',true);

The results are not identical to the results obtained by using constantGammaClutter because of
differences between CPU and GPU computations.
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GPU Clutter Simulation With Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not specify the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
speed = 2000;
mountingAng = [0,30,0];

Create the GPU clutter simulation object and configure it to take a transmitted signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
clutter = gpuConstantGammaClutter('Sensor',ha,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'MountingAngles',mountingAng,'ClutterMaxRange',Rmax,...
    'ClutterAzimuthSpan',Azcov,'SeedSource','Property','Seed',40547);

Simulate the clutter return for 10 pulses. At each object call, pass the transmit signal as an input
argument. The software automatically computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 μs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter(X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.
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response = phased.AngleDopplerResponse('SensorArray',ha,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),...
    'NormalizeDoppler',true);

The results are not identical to the results obtained by using constantGammaClutter because of
differences between CPU and GPU computations.

Tips
The clutter simulation that constantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Topics
Acceleration of Clutter Simulation Using GPU and Code Generation
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“Clutter Modeling”
“GPU Computing” (Parallel Computing Toolbox)
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geoTrajectory

Waypoint trajectory in geodetic coordinates

Description
The geoTrajectory System object generates trajectories based on waypoints in geodetic
coordinates. When you create the System object, you can specify the time of arrival, velocity, and
orientation at each waypoint. The geoTrajectory System object involves three coordinate systems.
For more details, see “Coordinate Frames in Geo Trajectory” on page 4-563.

To generate an Earth-centered waypoint trajectory in geodetic coordinates:

1 Create the geoTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
trajectory = geoTrajectory(Waypoints,TimeOfArrival)
trajectory = geoTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description

trajectory = geoTrajectory(Waypoints,TimeOfArrival) returns a geoTrajectory
System object, trajectory, based on the specified geodetic waypoints, Waypoints, and the
corresponding time, TimeOfArrival.

trajectory = geoTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each creation
argument or property Name to the specified Value. Unspecified properties and creation arguments
have default or inferred values.
Example: trajectory = geoTrajectory([10,10,1000;10,11,1100],[0,3600]) creates a
geodetic waypoint trajectory System object, geojectory, that moves one degree in longitude and
100 meters in altitude in one hour.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

You can specify Waypoints and TimeOfArrival as value-only arguments or name-value pairs.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
1 (default) | positive scalar

Sample rate of the trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive integer

Number of samples per output frame, specified as a positive integer.

Tunable: Yes
Data Types: double

Waypoints — Positions in geodetic coordinates [deg deg m]
[0 0 0] (default) | N-by-3 matrix

Positions in geodetic coordinates, specified as an N-by-3 matrix. N is the number of waypoints. In
each row, the three elements represent the latitude in degrees, longitude in degrees, and altitude
above the WGS84 reference ellipsoid in meters of the geodetic waypoint. When N = 1, the trajectory
is at a stationary position.
Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
Inf (default) | N-element column vector of nonnegative increasing numbers

Time at each waypoint in seconds, specified as an N-element column vector. The number of samples,
N, must be the same as the number of samples (rows) defined by Waypoints. If the trajectory is
stationary (only one waypoint specified in the Waypoints property), then the specified property
value for TimeOfArrival is ignored and the default value, Inf, is used.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double

Velocities — Velocity in local reference frame at each waypoint (m/s)
[0 0 0] (default) | N-by-3 matrix
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Velocity in the local reference frame at each waypoint in meters per second, specified as an N-by-3
matrix. The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

• If you do not specify the velocity, the object infers velocities from waypoints.
• If you specify the velocity as a non-zero value, the object obtains the course of the trajectory

accordingly.

Data Types: double

Course — Angle between velocity direction and North (degree)
N-element vector of scalars

Angle between the velocity direction and the North direction, specified as an N-element vector of
scalars in degrees. The number of samples, N, must be the same as the number of samples (rows)
defined by Waypoints. If neither Velocities nor Course is specified, course is inferred from the
waypoints.

Dependencies

To set this property, do not specify the Velocities property during object creation.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If you do not specify the
property, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

Dependencies

To set this property, do not specify the Velocities property during object creation.
Data Types: double

Climbrate — Climb rate at each waypoint (m/s)
N-element real vector

Climb rate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.

Dependencies

To set this property, do not specify the Velocities property during object creation.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or as a 3-by-3-
by-N array of real numbers in which each 3-by-3 array is a rotation matrix. The number of
quaternions or rotation matrices, N, must be the same as the number of samples (rows) defined by
Waypoints.
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Each quaternion or rotation matrix is a frame rotation from the local reference frame (NED or ENU)
at the waypoint to the body frame of the platform on the trajectory.
Data Types: quaternion | double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle aligns with the direction of motion. If specified as false, the pitch angle is set to
zero.

Dependencies

To set this property, the Orientation property must not be specified during object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align the roll angle to counteract the centripetal force, specified as true or false. When specified
as true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, do not specify the Orientation property during object creation.

ReferenceFrame — Local reference frame of trajectory
'NED' (default) | 'ENU'

Local reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-
Up). The local reference frame corresponds to the current waypoint of the trajectory. The velocity,
acceleration, and orientation of the platform are reported in the local reference frame. For more
details, see “Coordinate Frames in Geo Trajectory” on page 4-563.

Usage

Syntax
[positionLLA,orientation,velocity,acceleration,angularVelocity,ecef2ref] =
trajectory()

Description

[positionLLA,orientation,velocity,acceleration,angularVelocity,ecef2ref] =
trajectory() outputs a frame of trajectory data based on specified creation arguments and
properties, where trajectory is a geoTrajectory object.

Output Arguments

positionLLA — Geodetic positions in latitude, longitude, and altitude (deg deg m)
M-by-3 matrix
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Geodetic positions in latitude, longitude, and altitude, returned as an M-by-3 matrix. In each row, the
three elements represent the latitude in degrees, longitude in degrees, and altitude above the WGS84
reference ellipsoid in meters of the geodetic waypoint.

M is specified by the SamplesPerFrame property.
Data Types: double

orientation — Orientation in local reference coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local reference coordinate system, returned as an M-by-1 quaternion column
vector or as a 3-by-3-by-M real array in which each 3-by-3 array is a rotation matrix.

Each quaternion or rotation matrix is a frame rotation from the local reference frame (NED or ENU)
to the body frame.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local reference coordinate system (m/s)
M-by-3 matrix

Velocity in the local reference coordinate system in meters per second, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local reference coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local reference coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local reference coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local reference coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

ecef2ref — Orientation of local reference frame with respect to ECEF frame
M-element quaternion column vector | 3-by-3-by-M real array

Orientation of the local reference frame with respect to the ECEF (Earth-Centered-Earth-Fixed)
frame, returned as an M-by-1 quaternion column vector or as a 3-by-3-by-M real array in which
each 3-by-3 array is a rotation matrix.
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Each quaternion or 3-by-3 rotation matrix is a frame rotation from the ECEF frame to the local
reference frame (NED or ENU) corresponding to the current waypoint.

M is specified by the SamplesPerFrame property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to geoTrajectory
lookupPose Obtain pose of geodetic trajectory for a certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create geoTrajectory and Look Up Pose

Create a geoTrajectory with starting LLA at [15 15 0] and ending LLA at [75 75 100]. Set the flight
time to ten hours. Sample the trajectory every 1000 seconds.

startLLA = [15 15 0];
endLLA = [75 75 100];
timeOfTravel = [0 3600*10];
sampleRate  = 0.001;

trajectory = geoTrajectory([startLLA;endLLA],timeOfTravel,'SampleRate',sampleRate);

Output the LLA waypoints of the trajectory.

positionsLLA = startLLA;
while ~isDone(trajectory)
    positionsLLA = [positionsLLA;trajectory()];  
end
positionsLLA

positionsLLA = 37×3

   15.0000   15.0000         0
   16.6667   16.6667    2.7778
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   18.3333   18.3333    5.5556
   20.0000   20.0000    8.3333
   21.6667   21.6667   11.1111
   23.3333   23.3333   13.8889
   25.0000   25.0000   16.6667
   26.6667   26.6667   19.4444
   28.3333   28.3333   22.2222
   30.0000   30.0000   25.0000
      ⋮

Look up the Cartesian waypoints of the trajectory in the ECEF frame by using the lookupPose
function.

sampleTimes = 0:1000:3600*10;
n = length(sampleTimes);
positionsCart = lookupPose(trajectory,sampleTimes,'ECEF');

Visualize the results in the ECEF frame.

figure()
km = 1000;
plot3(positionsCart(1,1)/km,positionsCart(1,2)/km,positionsCart(1,3)/km, 'b*');
hold on;
plot3(positionsCart(end,1)/km,positionsCart(end,2)/km,positionsCart(end,3)/km, 'bo');
plot3(positionsCart(:,1)/km,positionsCart(:,2)/km,positionsCart(:,3)/km,'b');

plot3([0 positionsCart(1,1)]/km,[0 positionsCart(1,2)]/km,[0 positionsCart(1,3)]/km,'k:');
plot3([0 positionsCart(end,1)]/km,[0 positionsCart(end,2)]/km,[0 positionsCart(end,3)]/km,'k:');
xlabel('x (km)'); ylabel('y (km)'); zlabel('z (km)');
legend('Start position','End position', 'Trajectory')
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Algorithms
Coordinate Frames in Geo Trajectory

The geoTrajectory System object involves three coordinate frames:

• ECEF (Earth-Centered-Earth-Fixed) frame
• Local reference frame: local NED (North-East-Down) or ENU (East-North-Up) frame
• Target body frame

The figure shows an Earth-centered trajectory with two waypoints highlighted. The figures uses the
NED local reference frame as an example, but you can certainly use the ENU local reference frame.
In the figure,

• Ex, Ey, and Ez are the three axes of the ECEF frame, which is fixed on the Earth.
• Bx, By, and Bz are the three axes of the target body frame, which is fixed on the target.

• N, E, and D are the three axes of the local NED frame. The figure highlights two local NED
reference frames, N1-E1-D1 and N2-E2-D2. The origin of each local NED frame is the Earth surface
point corresponding to the trajectory waypoint based on the WGS84 ellipsoid model. The
horizontal plane of the local NED frame is tangent to the WGS84 ellipsoid model's surface.
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λ and ϕ are the geodetic longitude and latitude, respectively. The orientation of the target by using
the NED local frame convention is defined as the rotation from the local NED frame to the target's
body frame, such as the rotation from N1-E1-D1 to Bx-By-Bz.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
waypointTrajectory | kinematicTrajectory
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lookupPose
Obtain pose of geodetic trajectory for a certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity,ecef2ref] =
lookupPose(traj,sampleTimes)
[ ___ ] = lookupPose(traj,sampleTimes,coordinateSystem)

Description
[position,orientation,velocity,acceleration,angularVelocity,ecef2ref] =
lookupPose(traj,sampleTimes) returns the pose information of the waypoint trajectory at the
specified sample times. If any sample time is beyond the duration of the trajectory, the corresponding
pose information is returned as NaN.

[ ___ ] = lookupPose(traj,sampleTimes,coordinateSystem) additionally enables you to
specify the format of the position output.

Examples

Create geoTrajectory and Look Up Pose

Create a geoTrajectory with starting LLA at [15 15 0] and ending LLA at [75 75 100]. Set the flight
time to ten hours. Sample the trajectory every 1000 seconds.

startLLA = [15 15 0];
endLLA = [75 75 100];
timeOfTravel = [0 3600*10];
sampleRate  = 0.001;

trajectory = geoTrajectory([startLLA;endLLA],timeOfTravel,'SampleRate',sampleRate);

Output the LLA waypoints of the trajectory.

positionsLLA = startLLA;
while ~isDone(trajectory)
    positionsLLA = [positionsLLA;trajectory()];  
end
positionsLLA

positionsLLA = 37×3

   15.0000   15.0000         0
   16.6667   16.6667    2.7778
   18.3333   18.3333    5.5556
   20.0000   20.0000    8.3333
   21.6667   21.6667   11.1111
   23.3333   23.3333   13.8889
   25.0000   25.0000   16.6667
   26.6667   26.6667   19.4444
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   28.3333   28.3333   22.2222
   30.0000   30.0000   25.0000
      ⋮

Look up the Cartesian waypoints of the trajectory in the ECEF frame by using the lookupPose
function.

sampleTimes = 0:1000:3600*10;
n = length(sampleTimes);
positionsCart = lookupPose(trajectory,sampleTimes,'ECEF');

Visualize the results in the ECEF frame.

figure()
km = 1000;
plot3(positionsCart(1,1)/km,positionsCart(1,2)/km,positionsCart(1,3)/km, 'b*');
hold on;
plot3(positionsCart(end,1)/km,positionsCart(end,2)/km,positionsCart(end,3)/km, 'bo');
plot3(positionsCart(:,1)/km,positionsCart(:,2)/km,positionsCart(:,3)/km,'b');

plot3([0 positionsCart(1,1)]/km,[0 positionsCart(1,2)]/km,[0 positionsCart(1,3)]/km,'k:');
plot3([0 positionsCart(end,1)]/km,[0 positionsCart(end,2)]/km,[0 positionsCart(end,3)]/km,'k:');
xlabel('x (km)'); ylabel('y (km)'); zlabel('z (km)');
legend('Start position','End position', 'Trajectory')
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Input Arguments
traj — Geodetic trajectory
geoTrajectory object

Geodetic trajectory, specified as a geoTrajectory object.

sampleTimes — Sample times
K-element vector of nonnegative scalar

Sample times in seconds, specified as an K-element vector of nonnegative scalars.

coordinateSystem — Coordinate system to report positions
'LLA' (default) | 'ECEF'

Coordinate system to report positions, specified as:

• 'LLA' — Report positions as latitude in degrees, longitude in degrees, and altitude above the
WGS84 reference ellipsoid in meters.

• 'ECEF' — Report positions as Cartesian coordinates in the ECEF (Earth-Centered-Earth-Fixed)
coordinate frame in meters.

.

Output Arguments
position — Positions in local reference coordinate system (deg deg m)
K-by-3 matrix

Geodetic positions in local reference coordinate system, returned as a K-by-3 matrix. K is the number
of SampleTimes.

• When the coordinateSystem input is specified as 'LLA', the three elements in each row
represent the latitude in degrees, longitude in degrees, and altitude above the WGS84 reference
ellipsoid in meters of the geodetic waypoint.

• When the coordinateSystem input is specified as 'ECEF', the three elements in each row
represent the Cartesian position coordinates in the ECEF (Earth-Centered-Earth-Fixed) coordinate
frame in meters.

Data Types: double

orientation — Orientation in local reference coordinate system
K-element quaternion column vector | 3-by-3-by-K real array

Orientation in the local reference coordinate system, returned as a K-by-1 quaternion column
vector or as a 3-by-3-by-K real array in which each 3-by-3 matrix is a rotation matrix.

Each quaternion or rotation matrix is a frame rotation from the local reference frame (NED or ENU)
at the waypoint to the body frame of the target on the trajectory.

K is the number of SampleTimes.
Data Types: double
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velocity — Velocity in local reference coordinate system (m/s)
K-by-3 matrix

Velocity in the local reference coordinate system in meters per second, returned as an M-by-3 matrix.

K is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local reference coordinate system (m/s2)
K-by-3 matrix

Acceleration in the local reference coordinate system in meters per second squared, returned as an
M-by-3 matrix.

K is the number of SampleTimes.
Data Types: double

angularVelocity — Angular velocity in local reference coordinate system (rad/s)
K-by-3 matrix

Angular velocity in the local reference coordinate system in radians per second, returned as a K-by-3
matrix.

K is the number of SampleTimes.
Data Types: double

ecef2ref — Orientation of reference frame with respect to ECEF frame
K-element quaternion column vector | 3-by-3-by-M real array

Orientation of the reference frame with respect to the ECEF (Earth-Centered-Earth-Fixed) frame,
returned as a K-by-1 quaternion column vector or as a 3-by-3-by-K real array, in which each 3-by-3
matrix is a rotation matrix.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the ECEF frame to the local
reference frame (NED or ENU) at the current trajectory position.

K is the number of SampleTimes.
Data Types: double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
geoTrajectory
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kinematicTrajectory
Rate-driven trajectory generator

Description
The kinematicTrajectory System object generates trajectories using specified acceleration and
angular velocity.

To generate a trajectory from rates:

1 Create the kinematicTrajectory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
trajectory = kinematicTrajectory
trajectory = kinematicTrajectory(Name,Value)

Description

trajectory = kinematicTrajectory returns a System object, trajectory, that generates a
trajectory based on acceleration and angular velocity.

trajectory = kinematicTrajectory(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: trajectory = kinematicTrajectory('SampleRate',200,'Position',[0,1,10])
creates a kinematic trajectory System object, trajectory, with a sample rate of 200 Hz and the
initial position set to [0,1,10].

Properties
If a property is tunable, you can change its value at any time.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Position — Position state in local navigation coordinate system (m)
[0 0 0] (default) | 3-element row vector
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Position state in the local navigation coordinate system in meters, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Velocity — Velocity state in local navigation coordinate system (m/s)
[0 0 0] (default) | 3-element row vector

Velocity state in the local navigation coordinate system in m/s, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Orientation — Orientation state in local navigation coordinate system
quaternion(1,0,0,0) (default) | scalar quaternion | 3-by-3 real matrix

Orientation state in the local navigation coordinate system, specified as a scalar quaternion or 3-by-3
real matrix. The orientation is a frame rotation from the local navigation coordinate system to the
current body frame.

Tunable: Yes
Data Types: quaternion | single | double

AccelerationSource — Source of acceleration state
'Input' (default) | 'Property'

Source of acceleration state, specified as 'Input' or 'Property'.

• 'Input' –– specify acceleration state as an input argument to the kinematic trajectory object
• 'Property' –– specify acceleration state by setting the Acceleration property

Tunable: No
Data Types: char | string

Acceleration — Acceleration state (m/s2)
[0 0 0] (default) | three-element row vector

Acceleration state in m/s2, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AccelerationSource to 'Property'.
Data Types: single | double

AngularVelocitySource — Source of angular velocity state
'Input' (default) | 'Property'

Source of angular velocity state, specified as 'Input' or 'Property'.
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• 'Input' –– specify angular velocity state as an input argument to the kinematic trajectory object
• 'Property' –– specify angular velocity state by setting the AngularVelocity property

Tunable: No
Data Types: char | string

AngularVelocity — Angular velocity state (rad/s)
[0 0 0] (default) | three-element row vector

Angular velocity state in rad/s, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AngularVelocitySource to 'Property'.
Data Types: single | double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive integer

Number of samples per output frame, specified as a positive integer.

Tunable: No

Dependencies

To enable this property, set AngularVelocitySource to 'Property' and AccelerationSource to
'Property'.
Data Types: single | double

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity) outputs the trajectory state and then updates the
trajectory state based on bodyAcceleration and bodyAngularVelocity.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Input'.
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[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity) outputs the trajectory state and then updates the trajectory state based on
bodyAngularAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Property'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration) outputs the trajectory state and then updates the trajectory state based on
bodyAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Input'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs the trajectory state and then updates the trajectory state.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Property'.

Input Arguments

bodyAcceleration — Acceleration in body coordinate system (m/s2)
N-by-3 matrix

Acceleration in the body coordinate system in meters per second squared, specified as an N-by-3
matrix.

N is the number of samples in the current frame.

bodyAngularVelocity — Angular velocity in body coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the body coordinate system in radians per second, specified as an N-by-3 matrix.

N is the number of samples in the current frame.

Output Arguments

position — Position in local navigation coordinate system (m)
N-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

orientation — Orientation in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N real array

Orientation in the local navigation coordinate system, returned as an N-by-1 quaternion column
vector or a 3-by-3-by-N real array. Each quaternion or 3-by-3 rotation matrix is a frame rotation from
the local navigation coordinate system to the current body coordinate system.

N is the number of samples in the current frame.
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Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

acceleration — Acceleration in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an N-
by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions

Specific to kinematicTrajectory
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm

Examples

Create Default kinematicTrajectory

Create a default kinematicTrajectory System object™ and explore the relationship between
input, properties, and the generated trajectories.

trajectory = kinematicTrajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
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                 Position: [0 0 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

By default, the kinematicTrajectory object has an initial position of [0 0 0] and an initial velocity
of [0 0 0]. Orientation is described by a quaternion one (1 + 0i + 0j + 0k).

The kinematicTrajectory object maintains a visible and writable state in the properties
Position, Velocity, and Orientation. When you call the object, the state is output and then
updated.

For example, call the object by specifying an acceleration and angular velocity relative to the body
coordinate system.

bodyAcceleration = [5,5,0];
bodyAngularVelocity = [0,0,1];
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

orientation = quaternion
     1 + 0i + 0j + 0k

velocity = 1×3

     0     0     0

acceleration = 1×3

     5     5     0

angularVelocity = 1×3

     0     0     1

The position, orientation, and velocity output from the trajectory object correspond to the state
reported by the properties before calling the object. The trajectory state is updated after being
called and is observable from the properties:

trajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [2.5000e-04 2.5000e-04 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0.0500 0.0500 0]
       AccelerationSource: 'Input'
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    AngularVelocitySource: 'Input'

The acceleration and angularVelocity output from the trajectory object correspond to the
bodyAcceleration and bodyAngularVelocity, except that they are returned in the navigation
coordinate system. Use the orientation output to rotate acceleration and angularVelocity
to the body coordinate system and verify they are approximately equivalent to bodyAcceleration
and bodyAngularVelocity.

rotatedAcceleration = rotatepoint(orientation,acceleration)

rotatedAcceleration = 1×3

     5     5     0

rotatedAngularVelocity = rotatepoint(orientation,angularVelocity)

rotatedAngularVelocity = 1×3

     0     0     1

The kinematicTrajectory System object™ enables you to modify the trajectory state through the
properties. Set the position to [0,0,0] and then call the object with a specified acceleration and
angular velocity in the body coordinate system. For illustrative purposes, clone the trajectory
object before modifying the Position property. Call both objects and observe that the positions
diverge.

trajectoryClone = clone(trajectory);
trajectory.Position = [0,0,0];

position = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

clonePosition = trajectoryClone(bodyAcceleration,bodyAngularVelocity)

clonePosition = 1×3
10-3 ×

    0.2500    0.2500         0

Create Oscillating Trajectory

This example shows how to create a trajectory oscillating along the North axis of a local NED
coordinate system using the kinematicTrajectory System object™.

Create a default kinematicTrajectory object. The default initial orientation is aligned with the
local NED coordinate system.

traj = kinematicTrajectory
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traj = 

  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [0 0 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

Define a trajectory for a duration of 10 seconds consisting of rotation around the East axis (pitch) and
an oscillation along North axis of the local NED coordinate system. Use the default
kinematicTrajectory sample rate.

fs = traj.SampleRate;
duration = 10;

numSamples = duration*fs;

cyclesPerSecond = 1;
samplesPerCycle = fs/cyclesPerSecond;
numCycles = ceil(numSamples/samplesPerCycle);
maxAccel = 20;

triangle = [linspace(maxAccel,1/fs-maxAccel,samplesPerCycle/2), ...
    linspace(-maxAccel,maxAccel-(1/fs),samplesPerCycle/2)]';
oscillation = repmat(triangle,numCycles,1);
oscillation = oscillation(1:numSamples);

accNED = [zeros(numSamples,2),oscillation];

angVelNED = zeros(numSamples,3);
angVelNED(:,2) = 2*pi;

Plot the acceleration control signal.

timeVector = 0:1/fs:(duration-1/fs);

figure(1)
plot(timeVector,oscillation)
xlabel('Time (s)')
ylabel('Acceleration (m/s)^2')
title('Acceleration in Local NED Coordinate System')
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Generate the trajectory sample-by-sample in a loop. The kinematicTrajectory System object
assumes the acceleration and angular velocity inputs are in the local sensor body coordinate system.
Rotate the acceleration and angular velocity control signals from the NED coordinate system to the
sensor body coordinate system using rotateframe and the Orientation state. Update a 3-D plot
of the position at each time. Add pause to mimic real-time processing. Once the loop is complete,
plot the position over time. Rotating the accNED and angVelNED control signals to the local body
coordinate system assures the motion stays along the Down axis.

figure(2)
plotHandle = plot3(traj.Position(1),traj.Position(2),traj.Position(3),'bo');
grid on
xlabel('North')
ylabel('East')
zlabel('Down')
axis([-1 1 -1 1 0 1.5])
hold on

q = ones(numSamples,1,'quaternion');
for ii = 1:numSamples
     accBody = rotateframe(traj.Orientation,accNED(ii,:));
     angVelBody = rotateframe(traj.Orientation,angVelNED(ii,:));

    [pos(ii,:),q(ii),vel,ac] = traj(accBody,angVelBody);

    set(plotHandle,'XData',pos(ii,1),'YData',pos(ii,2),'ZData',pos(ii,3))

    pause(1/fs)
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end

figure(3)
plot(timeVector,pos(:,1),'bo',...
     timeVector,pos(:,2),'r.',...
     timeVector,pos(:,3),'g.')
xlabel('Time (s)')
ylabel('Position (m)')
title('NED Position Over Time')
legend('North','East','Down')
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Convert the recorded orientation to Euler angles and plot. Although the orientation of the platform
changed over time, the acceleration always acted along the North axis.

figure(4)
eulerAngles = eulerd(q,'ZYX','frame');
plot(timeVector,eulerAngles(:,1),'bo',...
     timeVector,eulerAngles(:,2),'r.',...
     timeVector,eulerAngles(:,3),'g.')
axis([0,duration,-180,180])
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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Generate a Coil Trajectory

This example shows how to generate a coil trajectory using the kinematicTrajectory System
object™.

Create a circular trajectory for a 1000 second duration and a sample rate of 10 Hz. Set the radius of
the circle to 5000 meters and the speed to 80 meters per second. Set the climb rate to 100 meters
per second and the pitch to 15 degrees. Specify the initial orientation as pointed in the direction of
motion.

duration = 1000; % seconds
fs = 10;         % Hz
N = duration*fs; % number of samples

radius = 5000;   % meters
speed = 80;      % meters per second
climbRate = 50;  % meters per second
initialYaw = 90; % degrees
pitch = 15;      % degrees

initPos = [radius, 0, 0];
initVel = [0, speed, climbRate];
initOrientation = quaternion([initialYaw,pitch,0],'eulerd','zyx','frame');

trajectory = kinematicTrajectory('SampleRate',fs, ...
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    'Velocity',initVel, ...
    'Position',initPos, ...
    'Orientation',initOrientation);

Specify a constant acceleration and angular velocity in the body coordinate system. Rotate the body
frame to account for the pitch.

accBody = zeros(N,3);
accBody(:,2) = speed^2/radius;
accBody(:,3) = 0.2;

angVelBody = zeros(N,3);
angVelBody(:,3) = speed/radius;

pitchRotation = quaternion([0,pitch,0],'eulerd','zyx','frame');
angVelBody = rotateframe(pitchRotation,angVelBody);
accBody = rotateframe(pitchRotation,accBody);

Call trajectory with the specified acceleration and angular velocity in the body coordinate system.
Plot the position, orientation, and speed over time.

[position, orientation, velocity] = trajectory(accBody,angVelBody);

eulerAngles = eulerd(orientation,'ZYX','frame');
speed = sqrt(sum(velocity.^2,2));

timeVector = (0:(N-1))/fs;

figure(1)
plot3(position(:,1),position(:,2),position(:,3))
xlabel('North (m)')
ylabel('East (m)')
zlabel('Down (m)')
title('Position')
grid on
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figure(2)
plot(timeVector,eulerAngles(:,1),...
     timeVector,eulerAngles(:,2),...
     timeVector,eulerAngles(:,3))
axis([0,duration,-180,180])
legend('Yaw (Rotation Around Down)','Pitch (Rotation Around East)','Roll (Rotation Around North)')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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figure(3)
plot(timeVector,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
title('Speed')
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Generate Spiraling Circular Trajectory with No Inputs

Define a constant angular velocity and constant acceleration that describe a spiraling circular
trajectory.

Fs = 100;
r = 10;
speed = 2.5;
initialYaw = 90;

initPos = [r 0 0];
initVel = [0 speed 0];
initOrient = quaternion([initialYaw 0 0], 'eulerd', 'ZYX', 'frame');

accBody = [0 speed^2/r 0.01];
angVelBody = [0 0 speed/r];

Create a kinematic trajectory object.

traj = kinematicTrajectory('SampleRate',Fs, ...
    'Position',initPos, ...
    'Velocity',initVel, ...
    'Orientation',initOrient, ...
    'AccelerationSource','Property', ...
    'Acceleration',accBody, ...
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    'AngularVelocitySource','Property', ...
    'AngularVelocity',angVelBody);

Call the kinematic trajectory object in a loop and log the position output. Plot the position over time.

N = 10000;
pos = zeros(N, 3);
for i = 1:N
    pos(i,:) = traj();
end

plot3(pos(:,1), pos(:,2), pos(:,3))
title('Position')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
waypointTrajectory | platform | radarScenario
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waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories using specified waypoints. When
you create the System object, you can optionally specify the time of arrival, velocity, and orientation
at each waypoint. See “Algorithms” on page 4-617 for more details.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a
trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the Waypoints
that the generated trajectory passes through and the TimeOfArrival at each waypoint.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each
creation argument or property Name to the specified Value. Unspecified properties and creation
arguments have default or inferred values.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and TimeOfArrival
creation arguments. You can specify Waypoints and TimeOfArrival as value-only arguments or
name-value pairs.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: Yes
Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.

Tip To let the trajectory wait at a specific waypoint, simply repeat the waypoint coordinate in two
consecutive rows.

Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double
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Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each waypoint in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.
The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory. If the velocity is specified as zero, the object infers the course of the trajectory from
adjacent waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified in object creation.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

• To render forward motion, specify positive ground speed values.
• To render backward motion, specify negative ground speed values.
• To render reverse motion, separate positive and negative groundspeed values by a zero

groundspeed value.

Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

ClimbRate — Climb rate at each waypoint (m/s)
N-element real vector

Climb Rate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.
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Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. Each quaternion must have a norm of 1. Each 3-by-3 rotation matrix must be
an orthonormal matrix. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

ReferenceFrame — Reference frame of trajectory
'NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
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Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.

Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table
lookupPose Obtain pose information for certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory

trajectory = waypointTrajectory

trajectory = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
    TimeOfArrival     Waypoints 
    _____________    ___________
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          0          0    0    0
          1          0    0    0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each
waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

waypoints = [0,0,0; ... % Initial position
             0,1,0; ...
             1,1,0; ...
             1,0,0; ...
             0,0,0];    % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
                          45,0,0; ...
                          135,0,0; ...
                          225,0,0; ...
                          0,0,0], ...
                          'eulerd','ZYX','frame');

trajectory = waypointTrajectory(waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on
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In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off
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Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
plot(toa,eulerAngles(:,1),'ko', ...
     toa,eulerAngles(:,2),'bd', ...
     toa,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')
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   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),'ko', ...
     t,eulerAngles(:,2),'bd', ...
     t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

               % Time, Waypoint, Orientation
trajectoryInfo = [0,   0,0,0,    0,0,0; ... % Initial position
                  0.1, 0,0.1,0,  0,0,0; ...

                  0.9, 0,0.9,0,  0,0,0; ...
                  1,   0,1,0,    45,0,0; ...
                  1.1, 0.1,1,0,  90,0,0; ...

                  1.9, 0.9,1,0,  90,0,0; ...
                  2,   1,1,0,    135,0,0; ...
                  2.1, 1,0.9,0,  180,0,0; ...

                  2.9, 1,0.1,0,  180,0,0; ...
                  3,   1,0,0,    225,0,0; ...
                  3.1, 0.9,0,0,  270,0,0; ...

                  3.9, 0.1,0,0,  270,0,0; ...
                  4,   0,0,0,    270,0,0];    % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
    'TimeOfArrival',trajectoryInfo(:,1), ...
    'Orientation',quaternion(trajectoryInfo(:,5:end),'eulerd','ZYX','frame'), ...
    'SampleRate',100);
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Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count+1;
end
hold off

The trajectory output now appears more square-like, especially around the vertices with waypoints.

 waypointTrajectory

4-599



Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),'ko', ...
                   t,eulerAngles(:,2),'bd', ...
                   t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be
within preset bounds.
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Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constraints matrix to
quaternions when specifying the Orientation property.

          % Arrival, Waypoints, Orientation
constraints = [0,    20,20,0,    90,0,0;
               3,    50,20,0,    90,0,0;
               4,    58,15.5,0,  162,0,0;
               5.5,  59.5,0,0    180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

  4x3 table

    TimeOfArrival         Waypoints            Orientation   
    _____________    ____________________    ________________

           0           20      20       0    {1x1 quaternion}
           3           50      20       0    {1x1 quaternion}
           4           58    15.5       0    {1x1 quaternion}
         5.5         59.5       0       0    {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')
title('Position')
axis([20,65,0,25])
xlabel('North')
ylabel('East')
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)
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   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],'ZYX','frame');
plot(timeVector,eulerAngles(:,1), ...
     timeVector,eulerAngles(:,2), ...
     timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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figure(3)
plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down','Location','southwest')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on
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Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,'r','LineWidth',2);
plot(xLowerBound,yLowerBound,'r','LineWidth',2)
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To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

            % Time,  Waypoint,     Orientation
constraints = [0,    20,20,0,      90,0,0;
               1.5,  35,20,0,      90,0,0;
               2.5   45,20,0,      90,0,0;
               3,    50,20,0,      90,0,0;
               3.3,  53,19.5,0,    108,0,0;
               3.6,  55.5,18.25,0, 126,0,0;
               3.9,  57.5,16,0,    144,0,0;
               4.2,  59,14,0,      162,0,0;
               4.5,  59.5,10,0     180,0,0;
               5,    59.5,5,0      180,0,0;
               5.5,  59.5,0,0      180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')

count = 1;
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while ~isDone(trajectory)
   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'gd')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,'ZYX','frame');
plot(timeVector(2:end),eulerAngles(:,1), ...
     timeVector(2:end),eulerAngles(:,2), ...
     timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)
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plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on
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Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Generate Racetrack Trajectory Using waypointTrajectory

Consider a racetrack trajectory as the following.
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The four corner points of the trajectory are (0,0,0), (20,0,0), (20,5,0) and (0,5,0) in meters,
respectively. Therefore, specify the waypoints of a loop as:

wps = [0 0 0;
      20 0 0;
      20 5 0;
      0  5 0;
      0  0 0];

Assume the trajectory has a constant speed of 2 m/s, and thus the velocities at the five waypoints are:

vels = [2 0 0;
        2 0 0;
       -2 0 0;
       -2 0 0;
        2 0 0];

The time of arrival for the five waypoints is:

t = cumsum([0 20/2 5*pi/2/2 20/2 5*pi/2/2]');

The orientation of the trajectory at the five waypoints are:

eulerAngs = [0 0 0;
             0 0 0;
           180 0 0;
           180 0 0;
             0 0 0]; % Angles in degrees.
% Convert Euler angles to quaternions.
quats = quaternion(eulerAngs,'eulerd','ZYX','frame');

Specify the sample rate as 100 for smoothing trajectory lines.

fs = 100;
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Construct the waypointTrajectory.

traj = waypointTrajectory(wps,'SampleRate',fs, ...
        'Velocities',vels,...
        'TimeOfArrival',t,...
        'Orientation',quats);

Sample and plot the trajectory.

[pos, orient, vel, acc, angvel] = traj();
i = 1;

spf = traj.SamplesPerFrame;
while ~isDone(traj)
    idx = (i+1):(i+spf);
    [pos(idx,:), orient(idx,:), ...
        vel(idx,:), acc(idx,:), angvel(idx,:)] = traj();
    i = i+spf;
end

Plot the trajectory and the specified waypoints.

plot(pos(:,1),pos(:,2), wps(:,1),wps(:,2), '--o')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
legend({'Trajectory', 'Waypoints'})
axis equal
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Algorithms
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints. The trajectory connects the waypoints through an interpolation that assumes the gravity
direction expressed in the trajectory reference frame is constant. Generally, you can use
waypointTrajectory to model platform or vehicle trajectories within a hundreds of kilometers
distance span.

The planar path of the trajectory (the x-y plane projection) consists of piecewise, clothoid curves. The
curvature of the curve between two consecutive waypoints varies linearly with the curve length
between them. The tangent direction of the path at each waypoint is chosen to minimize
discontinuities in the curvature, unless the course is specified explicitly via the Course property or
implicitly via the Velocities property. Once the path is established, the object uses cubic Hermite
interpolation to compute the location of the vehicle throughout the path as a function of time and the
planar distance traveled.

The normal component (z-component) of the trajectory is subsequently chosen to satisfy a shape-
preserving piecewise spline (PCHIP) unless the climb rate is specified explicitly via the ClimbRate
property or the third column of the Velocities property. Choose the sign of the climb rate based on
the selected ReferenceFrame:

• When an 'ENU' reference frame is selected, specifying a positive climb rate results in an
increasing value of z.

• When an 'NED' reference frame is selected, specifying a positive climb rate results in a decreasing
value of z.

You can define the orientation of the vehicle through the path in two primary ways:

• If the Orientation property is specified, then the object uses a piecewise-cubic, quaternion
spline to compute the orientation along the path as a function of time.

• If the Orientation property is not specified, then the yaw of the vehicle is always aligned with
the path. The roll and pitch are then governed by the AutoBank and AutoPitch property values,
respectively.

AutoBank AutoPitch Description
false false The vehicle is always level

(zero pitch and roll). This is
typically used for large
marine vessels.

false true The vehicle pitch is aligned
with the path, and its roll is
always zero. This is typically
used for ground vehicles.

true false The vehicle pitch and roll are
chosen so that its local z-axis
is aligned with the net
acceleration (including
gravity). This is typically used
for rotary-wing craft.
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AutoBank AutoPitch Description
true true The vehicle roll is chosen so

that its local transverse plane
aligns with the net
acceleration (including
gravity). The vehicle pitch is
aligned with the path. This is
typically used for two-wheeled
vehicles and fixed-wing
aircraft.

Version History
Introduced in R2021a

Specify wait and reverse motion for waypoint trajectory

You can now specify wait and reverse motion using the waypointTrajectory System object.

• To let the trajectory wait at a specific waypoint, simply repeat the waypoint coordinate in two
consecutive rows when specifying the Waypoints property.

• To render reverse motion, separate positive (forward) and negative (backward) groundspeed
values by a zero value in the GroundSpeed property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
platform | radarScenario
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perturb
Apply perturbations to object

Syntax
offsets = perturb(obj)

Description
offsets = perturb(obj) applies the perturbations defined on the object, obj and returns the
offset values. You can define perturbations on the object by using the perturbations function.

Examples

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})
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perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         
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Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)

ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.
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Input Arguments
obj — Object for perturbation
objects

Object for perturbation, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• kinematicTrajectory
• geoTrajectory
• insSensor
• radarEmitter
• radarDataGenerator

Output Arguments
offsets — Property offsets
array of structure

Property offsets, returned as an array of structures. Each structure contains these fields:

Field Name Description
Property Name of perturbed property
Offset Offset values applied in the perturbation
PerturbedValue Property values after the perturbation

Version History
Introduced in R2021a

See Also
perturbations
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perturbations
Perturbation defined on object

Syntax
perturbs = perturbations(obj)
perturbs = perturbations(obj,property)
perturbs = perturbations(obj,property,'None')
perturbs = perturbations(obj,property,'Selection',values,probabilities)
perturbs = perturbations(obj,property,'Normal',mean,deviation)
perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit)
perturbs = perturbations(obj,property,'Uniform',minVal,maxVal)
perturbs = perturbations(obj,property,'Custom',perturbFcn)

Description
perturbs = perturbations(obj) returns the list of property perturbations, perturbs, defined
on the object, obj. The returned perturbs lists all the perturbable properties. If any property is not
perturbed, then its corresponding Type is returned as "Null" and its corresponding Value is
returned as {Null,Null}.

perturbs = perturbations(obj,property) returns the current perturbation applied to the
specified property.

perturbs = perturbations(obj,property,'None') defines a property that must not be
perturbed.

perturbs = perturbations(obj,property,'Selection',values,probabilities) defines
the property perturbation offset drawn from a set of values that have corresponding
probabilities.

perturbs = perturbations(obj,property,'Normal',mean,deviation) defines the
property perturbation offset drawn from a normal distribution with specified mean and standard
deviation.

perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit) defines the property perturbation offset drawn from a normal
distribution with specified mean, standard deviation, lower limit, and upper limit.

perturbs = perturbations(obj,property,'Uniform',minVal,maxVal) defines the
property perturbation offset drawn from a uniform distribution on an interval [minVal, maxValue].

perturbs = perturbations(obj,property,'Custom',perturbFcn) enables you to define a
custom function, perturbFcn, that draws the perturbation offset value.

Examples
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Default Perturbation Properties of waypointTrajectory

Create a waypointTrajectory object.

traj = waypointTrajectory;

Show the default perturbation properties using the perturbations method.

perturbs = perturbations(traj)

perturbs=2×3 table
       Property         Type           Value       
    _______________    ______    __________________

    "Waypoints"        "None"    {[NaN]}    {[NaN]}
    "TimeOfArrival"    "None"    {[NaN]}    {[NaN]}

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)
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ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
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     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Input Arguments
obj — Object to be perturbed
objects
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Object to be perturbed, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• kinematicTrajectory
• geoTrajectory
• insSensor
• radarEmitter
• radarDataGenerator

property — Perturbable property
property name

Perturbable property, specified as a property name. Use perturbations to obtain a full list of
perturbable properties for the specified obj.

values — Perturbation offset values
n-element cell array of property values

Perturbation offset values, specified as an n-element cell array of property values. The function
randomly draws the perturbation value for the property from the cell array based on the values'
corresponding probabilities specified in the probabilities input.

probabilities — Drawing probabilities for each perturbation value
n-element array of nonnegative scalar

Drawing probabilities for each perturbation value, specified as an n-element array of nonnegative
scalars, where n is the number of perturbation values provided in the values input. The sum of all
elements must be equal to one.

For example, you can specify a series of perturbation value-probability pair as {x1,x2,…,xn} and
{p1,p2,…,pn}, where the probability of drawing xi is pi (i = 1, 2, …,n).

mean — Mean of normal or truncated normal distribution
scalar | vector | matrix

Mean of normal or truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of mean must be compatible with the corresponding property that you perturb.

deviation — Standard deviation of normal or truncated normal distribution
nonnegative scalar | vector of nonnegative scalar | matrix of nonnegative scalar

Standard deviation of normal or truncated normal distribution, specified as a nonnegative scalar,
vector of nonnegative scalars, or matrix of nonnegative scalars. The dimension of deviation must
be compatible with the corresponding property that you perturb.

lowerLimit — Lower limit of truncated normal distribution
scalar | vector | matrix

Lower limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of lowerLimit must be compatible with the corresponding property that you perturb.

upperLimit — Upper limit of truncated normal distribution
scalar | vector | matrix
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Upper limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of upperLimit must be compatible with the corresponding property that you perturb.

minVal — Minimum value of uniform distribution interval
scalar | vector | matrix

Minimum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of minVal must be compatible with the corresponding property that you perturb.

maxVal — Maximum value of uniform distribution interval
scalar | vector | matrix

Maximum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of maxVal must be compatible with the corresponding property that you perturb.

perturbFcn — Perturbation function
function handle

Perturbation function, specified as a function handle. The function must have this syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the property.

Output Arguments
perturbs — Perturbations defined on object
table of perturbation property

Perturbations defined on the object, returned as a table of perturbation properties. The table has
three columns:

• Property — Property names.
• Type — Type of perturbations, returned as "None", "Selection", "Normal",

"TruncatedNormal", "Uniform", or "Custom".
• Value — Perturbation values, returned as a cell array.

More About
Specify Perturbation Distributions

You can specify the distribution for the perturbation applied to a specific property.

• Selection distribution — The function defines the perturbation offset as one of the specified values
with the associated probability. For example, if you specify the values as [1 2] and specify the
probabilities as [0.7 0.3], then the perturb function adds an offset value of 1 to the property
with a probability of 0.7 and add an offset value of 2 to the property with a probability of 0.3.
Use selection distribution when you only want to perturb the property with a number of discrete
values.

• Normal distribution — The function defines the perturbation offset as a value drawn from a normal
distribution with the specified mean and standard deviation (or covariance). Normal distribution is
the most commonly used distribution since it mimics the natural perturbation of parameters in
most cases.
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• Truncated normal distribution — The function defines the perturbation offset as a value drawn
from a truncated normal distribution with the specified mean, standard deviation (or covariance),
lower limit, and upper limit. Different from the normal distribution, the values drawn from a
truncated normal distribution are truncated by the lower and upper limit. Use truncated normal
distribution when you want to apply a normal distribution, but the valid values of the property are
confined in an interval.

• Uniform distribution — The function defines the perturbation offset as a value drawn from a
uniform distribution with the specified minimum and maximum values. All the values in the
interval (specified by the minimum and maximum values) have the same probability of realization.

• Custom distribution — Customize your own perturbation function. The function must have this
syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the
property.

This figure shows probability density functions for a normal distribution, a truncated normal
distribution, and a uniform distribution, respectively.

Version History
Introduced in R2021a

See Also
perturb
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waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times of arrival,
velocities, and orientation for the trajectory System object.

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation properties:
Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival. If the
Velocities property is set during construction, the trajectory information table additionally returns
velocities. If the Orientation property is set during construction, the trajectory information table
additionally returns orientation.

Version History
Introduced in R2021a

See Also
Objects
waypointTrajectory

Functions
lookupPose | perturbations | perturb

4 Objects

4-630



lookupPose
Obtain pose information for certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes)

Description
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes) returns the pose information of the waypoint trajectory at the specified sample
times. If any sample time is beyond the duration of the trajectory, the corresponding pose information
is returned as NaN.

Input Arguments
traj — Waypoint trajectory
waypointTrajectory object

Waypoint trajectory, specified as a waypointTrajectory object.

sampleTimes — Sample times
M-element vector of nonnegative scalar

Sample times in seconds, specified as an M-element vector of nonnegative scalars.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the sampleTimes input.
Data Types: double
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velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the sampleTimes input.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

Version History
Introduced in R2021a

See Also
Objects
waypointTrajectory

Functions
waypointInfo | perturbations | perturb
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radarEmitter
Radar signals and interferences generator

Description
The radarEmitter System object creates an emitter to simulate radar emissions. You can use the
radarEmitter object in a scenario that detects and tracks moving and stationary platforms.
Construct a scenario using radarScenario.

A radar emitter changes the look angle between updates by stepping the mechanical and electronic
position of the beam in increments of the angular span specified in the FieldOfView property. The
radar scans the total region in azimuth and elevation defined by the radar mechanical and electronic
scan limits, MechanicalScanLimits and ElectronicScanLimits, respectively. If the scan limits
for azimuth or elevation are set to [0 0], then no scanning is performed along that dimension for
that scan mode. If the maximum mechanical scan rate for azimuth or elevation is set to zero, then no
mechanical scanning is performed along that dimension.

To generate radar detections:

1 Create the radarEmitter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
emitter = radarEmitter(EmitterIndex)

emitter = radarEmitter(EmitterIndex,'No scanning')
emitter = radarEmitter(EmitterIndex,'Raster')
emitter = radarEmitter(EmitterIndex,'Rotator')
emitter = radarEmitter(EmitterIndex,'Sector')

emitter = radarEmitter( ___ ,Name,Value)

Description

emitter = radarEmitter(EmitterIndex) creates a radar emitter object with default property
values.

emitter = radarEmitter(EmitterIndex,'No scanning') is a convenience syntax that
creates a radarEmitter that stares along the radar antenna boresight direction. No mechanical or
electronic scanning is performed. This syntax sets the ScanMode property to 'No scanning'.

emitter = radarEmitter(EmitterIndex,'Raster') is a convenience syntax that creates a
radarEmitter object that mechanically scans a raster pattern. The raster span is 90° in azimuth
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from –45° to +45° and in elevation from the horizon to 10° above the horizon. See “Convenience
Syntaxes” on page 4-645 for the properties set by this syntax.

emitter = radarEmitter(EmitterIndex,'Rotator') is a convenience syntax that creates a
radarEmitter object that mechanically scans 360° in azimuth by mechanically rotating the antenna
at a constant rate. When you set HasElevation to true, the radar antenna mechanically points
towards the center of the elevation field of view. See “Convenience Syntaxes” on page 4-645 for the
properties set by this syntax.

emitter = radarEmitter(EmitterIndex,'Sector') is a convenience syntax to create a
radarEmitter object that mechanically scans a 90° azimuth sector from –45° to +45°. Setting
HasElevation to true, points the radar antenna towards the center of the elevation field of view.
You can change the ScanMode to 'Electronic' to electronically scan the same azimuth sector. In
this case, the antenna is not mechanically tilted in an electronic sector scan. Instead, beams are
stacked electronically to process the entire elevation spanned by the scan limits in a single dwell. See
“Convenience Syntaxes” on page 4-645 for the properties set by this syntax.

emitter = radarEmitter( ___ ,Name,Value) sets properties using one or more name-value
pairs after all other input arguments. Enclose each property name in quotes. For example,
radarEmitter('CenterFrequency',2e6) creates a radar emitter creates detections in the
emitter Cartesian coordinate system and has a maximum detection range of 200 meters. If you
specify the emitter index using the EmitterIndex property, you can omit the EmitterIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

EmitterIndex — Unique sensor identifier
positive integer

Unique emitter identifier, specified as a positive integer. When creating a radarEmitter system
object, you must either specify the EmitterIndex as the first input argument in the creation syntax,
or specify it as the value for the EmitterIndex property in the creation syntax.
Example: 2
Data Types: double

UpdateRate — Emitter update rate
1 (default) | positive scalar

Emitter update rate, specified as a positive scalar. The emitter generates new emissions at intervals
defined by the reciprocal of the UpdateRate property. This interval must be an integer multiple of
the simulation time interval defined in radarScenario. Any update requested from the emitter
between update intervals contains no emissions. Units are in hertz.
Example: 5
Data Types: double
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MountingLocation — Emitter location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Emitter location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the emitter with respect to the platform origin. The default value specifies that the
emitter origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of emitter
[0 0 0] (default) | 3-element real-valued vector

Orientation of the emitter with respect to the platform, specified as a three-element real-valued
vector. Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the
body axes of the platform to the emitter axes. The three elements define the rotations around the z, y,
and x axes respectively, in that order. The first rotation rotates the platform axes around the z-axis.
The second rotation rotates the carried frame around the rotated y-axis. The final rotation rotates
carried frame around the carried x-axis. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view
azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

ScanMode — Scanning mode of radar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning'

Scanning mode of radar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', or 'No scanning'.
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Scan Modes

ScanMode Purpose
'Mechanical' The radar scans mechanically across the azimuth

and elevation limits specified by the
MechanicalScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Electronic' The radar scans electronically across the azimuth
and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Mechanical and electronic' The radar mechanically scans the antenna
boresight across the mechanical scan limits and
electronically scans beams relative to the
antenna boresight across the electronic scan
limits. The total field of regard scanned in this
mode is the combination of the mechanical and
electronic scan limits. The scan direction
increments by the radar field of view angle
between dwells.

'No scanning' The radar beam points along the antenna
boresight defined by the mountingAngles
property.

Example: 'No scanning'
Data Types: char

MaxMechanicalScanRate — Maximum mechanical scan rate
[75;75] (default) | nonnegative scalar | real-valued 2-by-1 vector with nonnegative entries

Maximum mechanical scan rate, specified as a nonnegative scalar or real-valued 2-by-1 vector with
nonnegative entries.

When HasElevation is true, specify the scan rate as a 2-by-1 column vector of nonnegative entries,
[maxAzRate; maxElRate]. maxAzRate is the maximum scan rate in azimuth and maxElRate is
the maximum scan rate in elevation.

When HasElevation is false, specify the scan rate as a nonnegative scalar representing the
maximum mechanical azimuth scan rate.

Scan rates set the maximum rate at which the radar can mechanically scan. The radar sets its scan
rate to step the radar mechanical angle by the field of regard. If the required scan rate exceeds the
maximum scan rate, the maximum scan rate is used. Units are degrees per second.
Example: [5,10]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
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Data Types: double

MechanicalScanLimits — Angular limits of mechanical scan directions of radar
[0 360; -10 0] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of mechanical scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The mechanical scan limits define the minimum and maximum mechanical
angles the radar can scan from its mounted orientation.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl].
minAz and maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and
maxEl represent the minimum and maximum limits of the elevation angle scan. When
HasElevation is false, the scan limits take the form [minAz maxAz]. If you specify the scan
limits as a 2-by-2 matrix but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits cannot span more than 360° and elevation scan limits must lie within the closed
interval [-90° 90°]. Units are in degrees.
Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle of radar, returned as a scalar or real-valued 2-by-1 vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth
and elevation scan angles, respectively, relative to the mounted angle of the radar on the platform.
When HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

ElectronicScanLimits — Angular limits of electronic scan directions of radar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of electronic scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the radar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl].
minAz and maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and
maxEl represent the minimum and maximum limits of the elevation angle scan. When
HasElevation is false, the scan limits take the form [minAz maxAz]. If you specify the scan
limits as a 2-by-2 matrix but set HasElevation to false, the second row of the matrix is ignored.
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Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.
Example: [-90 90; 0 85]
Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of radar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth
and elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.
Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

LookAngle — Look angle of emitter
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of emitter, specified as a scalar or real-valued 2-by-1 vector. Look angle is a combination
of the mechanical angle and electronic angle depending on the ScanMode property. When
HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

ScanMode LookAngle
'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and Electronic' MechnicalAngle + ElectronicAngle
'No scanning' 0

Data Types: double

HasElevation — Enable radar elevation scan and measurements
false (default) | true

Enable the radar to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a radar emitter that can estimate target elevation and scan
in elevation.
Data Types: logical
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EIRP — Effective isotropic radiated power
100 (default) | scalar

Effective isotropic radiated power of the transmitter, specified as a scalar. EIRP is the root mean
squared power input to a lossless isotropic antenna that gives the same power density in the far field
as the actual transmitter. EIRP is equal to the power input to the transmitter antenna (in dBW) plus
the transmitter isotropic antenna gain. Units are in dBi.
Data Types: double

CenterFrequency — Center frequency of radar band
positive scalar

Center frequency of radar band, specified as a positive scalar. Units are in hertz.
Example: 100e6
Data Types: double

Bandwidth — Radar waveform bandwidth
positive scalar

Radar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

WaveformType — Type of detected waveform
0 (default) | nonnegative integer

Type of detected waveform, specified as a nonnegative integer.
Example: 1
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain when demodulating an emitted signal waveform, specified as a scalar. Processing
gain is achieved by emitting a signal over a bandwidth which is greater than the minimum bandwidth
necessary to send the information contained in the signal. Units are in dB.
Example: 20
Data Types: double

Usage

Syntax
radarsigs = emitter(platform,simTime)
[radarsigs,config] = emitter(platform,simTime)
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Description

radarsigs = emitter(platform,simTime) creates radar signals, radarsigs, from emitter on
the platform at the current simulation time, simTime. The emitter object can simultaneously
generate signals from multiple emitters on the platform.

[radarsigs,config] = emitter(platform,simTime) also returns the emitter configurations,
config, at the current simulation time.

Input Arguments

platform — emitter platform
object | structure

Emitter platform, specified as a platform object, Platform, or a platform structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

Acceleration Acceleration of the platform in scenario
coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).
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Field Description
AngularVelocity Angular velocity of platform in scenario

coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell
{rcsSignature}.

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The radarScenario object calls the radar
sensor at regular time intervals. The radar emitter generates new signals at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an integer multiple
of the simulation time interval. Updates requested from the emitter between update intervals contain
no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

radarsigs — Radar emissions
array of radar emission objects

Radar emissions, returned as an array of radarEmission objects.

config — Current emitter configuration
structure array

Current emitter configurations, returned as an array of structures.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as true or false.

IsValidTime is false when detection updates
are requested between update intervals specified
by the update rate.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov].
azfov and elfov represent the field of view in
azimuth and elevation, respectively.
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MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarEmitter
coverageConfig Sensor and emitter coverage configuration
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Model Radar Jammer

Create an emitter that stares from the front of a jammer.

Create a platform to mount the jammer on.

plat = struct( ...
    'PlatformID', 1, ...
    'Position', [0 0 0]);

Create an emitter that stares from the front of the jamming platform.

jammer = radarEmitter(1,'No scanning');

Emit the jamming waveform.

time = 0;
sig = jammer(plat, time)

sig = 
  radarEmission with properties:

              PlatformID: 1
            EmitterIndex: 1
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          OriginPosition: [0 0 0]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [1 5]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 100
                     RCS: 0

Model Radar Emitter for Air Traffic Control Tower

Model an radar emitter for an air traffic control tower.

Simulate one full rotation of the tower.

rpm = 12.5;
scanrate = rpm*360/60;
fov = [1.4;5];
updaterate = scanrate/fov(1);

Create a radarScenario object to manage the motion of the platforms.

scene = radarScenario('UpdateRate', updaterate, ...
    'StopTime', 60/rpm);

Add a platform to the scenario to host the air traffic control tower.

tower = platform(scene);

Create an emitter that provides 360 degree surveillance.

radarTx = radarEmitter(1,'Rotator', ...
    'UpdateRate',updaterate, ...
    'MountingLocation',[0 0 -15], ...
    'MaxMechanicalScanRate',scanrate, ...
    'FieldOfView',fov);

Attach the emitter to the tower.

tower.Emitters = radarTx

tower = 
  Platform with properties:

       PlatformID: 1
          ClassID: 0
         Position: [0 0 0]
      Orientation: [0 0 0]
       Dimensions: [1x1 struct]
       Trajectory: [1x1 kinematicTrajectory]
    PoseEstimator: [1x1 insSensor]
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         Emitters: {[1x1 radarEmitter]}
          Sensors: {}
       Signatures: {[1x1 rcsSignature]}

Rotate the antenna and emit the radar waveform.

loggedData = struct('Time', zeros(0,1), ...
    'Orientation', quaternion.zeros(0, 1));
while advance(scene)
    time = scene.SimulationTime;
    txSig = emit(tower, time); 
    loggedData.Time = [loggedData.Time; time];
    loggedData.Orientation = [loggedData.Orientation; ...
        txSig{1}.Orientation];
end

Plot the emitter azimuth direction.

angles = eulerd(loggedData.Orientation, 'zyx', 'frame');
plot(loggedData.Time, angles(:,1))
title('Emitted Azimuth')
xlabel('Time (s)')
ylabel('Azimuth (deg)')
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More About
Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of radar emitter.
No Scanning

Sets ScanMode to 'No scanning'.
Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
HasElevation true
MaxMechanicalScanRate [75;75]
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]

You can change the ScanMode property to 'Electronic' to perform an electronic raster scan over
the same volume as a mechanical scan.
Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1:10]
HasElevation false or true
MechanicalScanLimits [0 360; -10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1;10]
HasElevation false
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Changing the ScanMode property to 'Electronic' lets you perform an electronic raster scan over
the same volume as a mechanical scan.

 radarEmitter

4-645



Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
radarEmission | platform | targetPoses | emissionsInBody
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rcsSignature
Radar cross-section pattern

Description
rcsSignature creates a radar cross-section (RCS) signature object. You can use this object to model
an angle-dependent and frequency-dependent radar cross-section pattern. The radar cross-section
determines the intensity of reflected radar signal power from a target. The object models only non-
polarized signals. The object support several Swerling fluctuation models.

Creation

Syntax
rcssig = rcsSignature
rcssig = rcsSignature(Name,Value)

Description

rcssig = rcsSignature creates an rcsSignature object with default property values.

rcssig = rcsSignature(Name,Value) sets object properties using one or more Name,Value
pair arguments. Name is a property name and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Note You can only set property values of rcsSignature when constructing the object. The property
values are not changeable after construction.

Properties
Pattern — Sampled radar cross-section pattern
[10 10; 10 10] (default) | Q-by-P real-valued matrix | Q-by-P-by-K real-valued array

Sampled radar cross-section (RCS) pattern, specified as a scalar, a Q-by-P real-valued matrix, or a Q-
by-P-by-K real-valued array. The pattern is an array of RCS values defined on a grid of elevation
angles, azimuth angles, and frequencies. Azimuth and elevation are defined in the body frame of the
target.

• Q is the number of RCS samples in elevation.
• P is the number of RCS samples in azimuth.
• K is the number of RCS samples in frequency.

Q, P, and K usually match the length of the vectors defined in the Elevation, Azimuth, and
Frequency properties, respectively, with these exceptions:
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• To model an RCS pattern for an elevation cut (constant azimuth), you can specify the RCS pattern
as a Q-by-1 vector or a 1-by-Q-by-K matrix. Then, the elevation vector specified in the Elevation
property must have length 2.

• To model an RCS pattern for an azimuth cut (constant elevation), you can specify the RCS pattern
as a 1-by-P vector or a 1-by-P-by-K matrix. Then, the azimuth vector specified in the Azimuth
property must have length 2.

• To model an RCS pattern for one frequency, you can specify the RCS pattern as a Q-by-P matrix.
Then, the frequency vector specified in the Frequency property must have length-2.

Example: [10,0;0,-5]
Data Types: double

Azimuth — Azimuth angles
[-180 180] (default) | length-P real-valued vector

Azimuth angles used to define the angular coordinates of each column of the matrix or array,
specified by the Pattern property. Specify the azimuth angles as a length-P vector. P must be greater
than two. Angle units are in degrees.

When the Pattern property defines an elevation cut, Azimuth must be a 2-element vector defining
the minimum and maximum azimuth view angles over which the elevation cut is considered valid.
Example: [-45:0.5:45]
Data Types: double

Elevation — Elevation angles
[-90 90] (default) | length-Q real-valued vector

Elevation angles used to define the coordinates of each row of the matrix or array, specified by the
Pattern property. Specify the elevation angles as a length-Q vector. Q must be greater than two.
Angle units are in degrees.

When the Pattern property defines an azimuth cut, Elevation must be a 2-element vector defining
the minimum and maximum elevation view angles over which the azimuth cut is considered valid.
Example: [-30:0.5:30]
Data Types: double

Frequency — Pattern frequencies
[0 1e20] (default) | K-element vector of positive scalars

Frequencies used to define the applicable RCS for each page of the Pattern property, specified as a
K-element vector of positive scalars. K is the number of RCS samples in frequency. K must be no less
than two. Frequency units are in hertz.

When the Pattern property is a matrix, Frequency must be a 2-element vector defining the
minimum and maximum frequencies over which the pattern values are considered valid.
Example: [0:0.1:30]
Data Types: double

FluctuationModel — Statistical signature fluctuation model
'Swerling0' (default) | 'Swerling1' | 'Swerling3'
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Fluctuation models, specified as 'Swerling0', 'Swerling1' or 'Swerling3'. Swerling cases 2
and 4 are not modeled as these are determined how the target is sample, not an inherent target
property.

Model Description
'Swerling0' The target RCS is assumed to be non-fluctuating.

In this case the instantaneous RCS signature
value retrieved by the value method is
deterministic. This model represents ideal radar
targets with an RCS that remains constant in
time across the range of aspect angles of interest,
e.g., a conducting sphere and various corner
reflectors.

'Swerling1' The target is assumed to be made up of many
independent scatterers of equal size. This model
is typically used to represent aircraft. The
instantaneous RCS signature value returned by
the value method in this case is a random
variable distributed according to the exponential
distribution with a mean determined by the
Pattern property.

'Swerling3' The target is assumed to have one large dominant
scatterer and several small scatterers. The RCS
of the dominant scatterer equals 1+sqrt(2) times
the sum of the RCS of other scatterers. This
model can be used to represent helicopters and
propeller driven aircraft. In this case the
instantaneous RCS signature's value returned by
the value method is a random variable distributed
according to the 4th degree chi-square
distribution with mean determined by the
Pattern property.

Data Types: char | string

Object Functions
value Radar cross-section at specified angle and frequency
toStruct Convert to structure

Examples

Radar Cross-Section of Ellipsoid

Specify the radar cross-section (RCS) of a triaxial ellipsoid and plot RCS values along an azimuth cut.

Specify the lengths of the axes of the ellipsoid. Units are in meters.

a = 0.15;
b = 0.20;
c = 0.95;
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Create an RCS array. Specify the range of azimuth and elevation angles over which RCS is defined.
Then, use an analytical model to compute the radar cross-section of the ellipsoid. Create an image of
the RCS.

az = [-180:1:180];
el = [-90:1:90];
rcs = rcs_ellipsoid(a,b,c,az,el);
rcsdb = 10*log10(rcs);
imagesc(az,el,rcsdb)
title('Radar Cross-Section')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

Create an rcsSignature object and plot an elevation cut at 30∘ azimuth.

rcssig = rcsSignature('Pattern',rcsdb,'Azimuth',az,'Elevation',el,'Frequency',[300e6 300e6]);
rcsdb1 = value(rcssig,30,el,300e6);
plot(el,rcsdb1)
grid
title('Elevation Profile of Radar Cross-Section')
xlabel('Elevation (deg)')
ylabel('RCS (dBsm)')
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function rcs = rcs_ellipsoid(a,b,c,az,el)
sinaz = sind(az);
cosaz = cosd(az);
sintheta = sind(90 - el);
costheta = cosd(90 - el);
denom = (a^2*(sintheta'.^2)*cosaz.^2 + b^2*(sintheta'.^2)*sinaz.^2 + c^2*(costheta'.^2)*ones(size(cosaz))).^2;
rcs = (pi*a^2*b^2*c^2)./denom;
end

RCS Distribution of Swerling 1 Target

Import the radar cross-section (RCS) measurements of a 1/5th scale Boeing 737. Load the RCS data
into an rcsSignature object. Assume the RCS follows a Swerling 1 distribution.

load('RCSSignatureExampleData.mat','boeing737');
rcs = rcsSignature('Pattern',boeing737.RCSdBsm, ...
    'Azimuth', boeing737.Azimuth,'Elevation',boeing737.Elevation, ...
    'Frequency',boeing737.Frequency,'FluctuationModel','Swerling1');

Set the seed of the random number generator for reproducibility of example.

rng(3231)

Plot sample RCS versus azimuth angle.
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plot(rcs.Azimuth,rcs.Pattern)
xlabel('Azimuth (deg)'); ylabel('RCS (dBsm)')
title('Measured RCS from 1/5th scale Boeing 737 model')

Construct an RCS histogram and display the mean value.

N = 1000;
val = zeros(1,N);
for k = 1:N
    [val(k),expval] = value(rcs,-5,0,800.0e6);
end

Convert to power units.

mean(db2pow(val))

ans = 406.9799

histogram(db2pow(val),50)
xlabel("RCS (dBsm)")
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Version History
Introduced in R2021a

References
[1] Richards, Mark A. Fundamentals of Radar Signal Processing. New York, McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
value | toStruct
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value
Radar cross-section at specified angle and frequency

Syntax
rcsval = value(rcssig,az,el,freq)
[rcsval,expval] = value(rcssig,az,el,freq)

Description
rcsval = value(rcssig,az,el,freq) returns the value, rcsval, of the radar cross-section
(RCS) specified by the radar signature object, rcssig, computed at the specified azimuth az,
elevation el, and frequency freq. If the specified azimuth and elevation is outside of the region in
which the RCS signature is defined, the RCS value, rcsval, is returned as -Inf in dBsm.

[rcsval,expval] = value(rcssig,az,el,freq) returns the expected values of the radar
cross-section.

Input Arguments
rcssig — RCS signature object
rcsSignature object

Radar cross-section signature, specified as an rcsSignature object.

az — Azimuth angle
scalar | length-M real-valued vector

Azimuth angle, specified as scalar or length-M real-valued vector. Units are in degrees. The az, el,
and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M.
Data Types: double

el — Elevation angle
scalar | length-M real-valued vector

Elevation angle, specified as scalar or length-M real-valued vector. The az, el, and freq arguments
must have the same size. You can, however, specify one or two arguments as scalars, in which case
the arguments are expanded to length-M. Units are in degrees.
Data Types: double

freq — RCS frequency
positive scalar | length-M vector with positive, real elements

RCS frequency, specified as a positive scalar or length-M vector with positive, real elements. The az,
el, and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M vectors. Units are in Hertz.
Example: 100e6

4 Objects

4-654



Data Types: double

Output Arguments
rcsval — Radar cross-section
scalar | real-valued length-M vector

Radar cross-section, returned as a scalar or real-valued length-M vector. Units are in dBsm.

expval — Expected values of radar cross section
scalar (default) | real-valued length-M vector

Expected values of radar cross section, returned as a scalar or as a real-valued length-M vector. The
dimensions of expval are the same as rcsval. Units are in dBsm.
Data Types: double

Examples

Radar Cross-Section of Ellipsoid

Specify the radar cross-section (RCS) of a triaxial ellipsoid and plot RCS values along an azimuth cut.

Specify the lengths of the axes of the ellipsoid. Units are in meters.

a = 0.15;
b = 0.20;
c = 0.95;

Create an RCS array. Specify the range of azimuth and elevation angles over which RCS is defined.
Then, use an analytical model to compute the radar cross-section of the ellipsoid. Create an image of
the RCS.

az = [-180:1:180];
el = [-90:1:90];
rcs = rcs_ellipsoid(a,b,c,az,el);
rcsdb = 10*log10(rcs);
imagesc(az,el,rcsdb)
title('Radar Cross-Section')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar
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Create an rcsSignature object and plot an elevation cut at 30∘ azimuth.

rcssig = rcsSignature('Pattern',rcsdb,'Azimuth',az,'Elevation',el,'Frequency',[300e6 300e6]);
rcsdb1 = value(rcssig,30,el,300e6);
plot(el,rcsdb1)
grid
title('Elevation Profile of Radar Cross-Section')
xlabel('Elevation (deg)')
ylabel('RCS (dBsm)')
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function rcs = rcs_ellipsoid(a,b,c,az,el)
sinaz = sind(az);
cosaz = cosd(az);
sintheta = sind(90 - el);
costheta = cosd(90 - el);
denom = (a^2*(sintheta'.^2)*cosaz.^2 + b^2*(sintheta'.^2)*sinaz.^2 + c^2*(costheta'.^2)*ones(size(cosaz))).^2;
rcs = (pi*a^2*b^2*c^2)./denom;
end

RCS Distribution of Swerling 1 Target

Import the radar cross-section (RCS) measurements of a 1/5th scale Boeing 737. Load the RCS data
into an rcsSignature object. Assume the RCS follows a Swerling 1 distribution.

load('RCSSignatureExampleData.mat','boeing737');
rcs = rcsSignature('Pattern',boeing737.RCSdBsm, ...
    'Azimuth', boeing737.Azimuth,'Elevation',boeing737.Elevation, ...
    'Frequency',boeing737.Frequency,'FluctuationModel','Swerling1');

Set the seed of the random number generator for reproducibility of example.

rng(3231)

Plot sample RCS versus azimuth angle.
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plot(rcs.Azimuth,rcs.Pattern)
xlabel('Azimuth (deg)'); ylabel('RCS (dBsm)')
title('Measured RCS from 1/5th scale Boeing 737 model')

Construct an RCS histogram and display the mean value.

N = 1000;
val = zeros(1,N);
for k = 1:N
    [val(k),expval] = value(rcs,-5,0,800.0e6);
end

Convert to power units.

mean(db2pow(val))

ans = 406.9799

histogram(db2pow(val),50)
xlabel("RCS (dBsm)")
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Algorithms
The RCS signature, is first linearly interpolated at the specified azimuth, az, and elevation, el, view
angles for the provided frequencies, freq. The interpolated signature is then used as an expected
value of a probability distribution that generates a signature pattern value according to the RCS
fluctuation model specified by the FluctuationModel property.. az and el are specified in degrees
and are defined in the body frame of the pattern. freq is in hertz.

If FluctuationModel is 'Swerling0', the returned pattern value is a deterministic constant equal
to the interpolated signature.

If FluctuationModel is 'Swerling1', the returned pattern value is a random variable distributed
according to an exponential distribution with a mean value equal to the interpolated signature.

If FluctuationModel is 'Swerling3', the returned pattern value is a random variable distributed
according to a chi-square distribution with four degrees of freedom and a mean value equal to the
interpolated signature.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rcsSignature | toStruct
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toStruct
Convert to structure

Syntax
rcsStruct = toStruct(rcsSig)

Description
rcsStruct = toStruct(rcsSig) converts the rcsSignature object rcsSig to a structure
rcsStruct. The field names of the returned structure are the same as the property names of the
rcsSignature object.

Examples

Convert rcsSignature to Structure

Create a rcsSignature object.

rcsSig = rcsSignature

rcsSig = 
  rcsSignature with properties:

    FluctuationModel: Swerling0
             Pattern: [2x2 double]
             Azimuth: [-180 180]
           Elevation: [2x1 double]
           Frequency: [0 1.0000e+20]

Convert the signature to a structure.

rcsStruct = toStruct(rcsSig)

rcsStruct = struct with fields:
      Pattern: [2x2 double]
      Azimuth: [-180 180]
    Elevation: [2x1 double]
    Frequency: [0 1.0000e+20]

Input Arguments
rcsSig — RCS signature
rcsSignature object

RCS signature, specified as an rcsSignature object.
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Output Arguments
rcsStruct — RCS structure
structure

RCS structure, returned as a structure.

Version History
Introduced in R2021a
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radarEmission
Emitted radar signal structure

Description
The radarEmission class creates a radar emission object. This object contains all the properties
that describe a signal radiated by a radar source.

Creation

Syntax
signal = radarEmission
signal = radarEmission(Name,Value)

Description

signal = radarEmission creates a radarEmission object with default properties. The object
represents radar signals from emitters, channels, and sensors.

signal = radarEmission(Name,Value) sets object properties specified by one or more
Name,Value pair arguments. Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
PlatformID — Platform identifier
positive integer

Platform identifier, specified as a positive integer. The emitter is mounted on the platform with this
ID. Each platform identifier is unique within a scenario.
Example: 5
Data Types: double

EmitterIndex — Emitter identifier
positive integer

Emitter identifier, specified as a positive integer. Each emitter index is unique.
Example: 2
Data Types: double

OriginPosition — Location of emitter
[0 0 0] (default) | 1-by-3 real-valued vector
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Location of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters.
Example: [100 -500 1000]
Data Types: double

OriginVelocity — Velocity of emitter
[0 0 0] (default) | 1-by-3 real-valued vector

Velocity of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters per second.
Example: [0 -50 100]
Data Types: double

Orientation — Orientation of emitter
quaternion(1,0,0,0) (default) | quaternion | 3-by-3 real-valued orthogonal matrix

Orientation of the emitter in scenario coordinates, specified as a quaternion or 3-by-3 real-valued
orthogonal matrix.
Example: eye(3)
Data Types: double

FieldOfView — Field of view of emitter
[180,180] | 2-by-1 vector of positive real values

Field of view of emitter, specified as a 2-by-1 vector of positive real values, [azfov, elfov]. The field of
view defines the total angular extent of the signal emitted. The azimuth filed of view azfov must lie in
the interval (0,360]. The elevation filed of view elfov must lie in the interval (0,180].
Example: [140;70]
Data Types: double

EIRP — Effective isotropic radiated power
0 (default) | scalar

Effective isotropic radiated power, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

RCS — Cumulative radar cross-section
0 (default) | scalar

Cumulative radar cross-section, specified as a scalar. Units are in dBsm.
Example: 10
Data Types: double

CenterFrequency — Center frequency of radar signal
300e6 (default) | positive scalar

Center frequency of the signal, specified as a positive scalar. Units are in Hz.
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Example: 100e6
Data Types: double

Bandwidth — Half-power bandwidth of radar signal
30e6 (default) | positive scalar

Half-power bandwidth of the radar signal, specified as a positive scalar. Units are in Hz.
Example: 5e3
Data Types: double

WaveformType — Waveform type identifier
0 (default) | nonnegative integer

Waveform type identifier, specified as a nonnegative integer.
Example: 5e3
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain associated with the signal waveform, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

PropagationRange — Distance signal propagates
0 (default) | nonnegative scalar

Total distance over which the signal has propagated, specified as a nonnegative scalar. For direct-
path signals, the range is zero. Units are in meters.
Example: 1000
Data Types: double

PropagationRangeRate — Range rate of signal propagation path
0 (default) | scalar

Total range rate for the path over which the signal has propagated, specified as a scalar. For direct-
path signals, the range rate is zero. Units are in meters per second.
Example: 10
Data Types: double

Examples

Create Radar Emission Object

Create a radarEmission object with specified properties.
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signal = radarEmission('PlatformID',10,'EmitterIndex',25, ...
    'OriginPosition',[100,3000,50],'EIRP',10,'CenterFrequency',200e6, ...
    'Bandwidth',10e3)

signal = 
  radarEmission with properties:

              PlatformID: 10
            EmitterIndex: 25
          OriginPosition: [100 3000 50]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [180 180]
         CenterFrequency: 200000000
               Bandwidth: 10000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 10
                     RCS: 0

Detect Radar Emission with radarDataGenerator

Create a radar emission and then detect the emission using a radarDataGenerator object.

First, create a radar emission.

orient = quaternion([180 0 0],'eulerd','zyx','frame');
rfSig = radarEmission('PlatformID',1,'EmitterIndex',1,'EIRP',100, ...
    'OriginPosition',[30 0 0],'Orientation',orient);

Then, create an ESM sensor using radarDataGenerator.

sensor = radarDataGenerator(1,'DetectionMode','ESM');

Detect the RF emission.

time = 0;
[dets,numDets,config] = sensor(rfSig,time)

dets = 1x1 cell array
    {1x1 objectDetection}

numDets = 1

config = struct with fields:
              SensorIndex: 1
              IsValidTime: 1
               IsScanDone: 0
              FieldOfView: [1 5]
              RangeLimits: [0 Inf]
          RangeRateLimits: [0 Inf]
    MeasurementParameters: [1x1 struct]
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarEmitter | radarChannel
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radarChannel
Free space propagation and reflection of radar signals

Syntax
radarsigout = radarChannel(radarsigin,platforms)
radarsigout = radarChannel(radarsigin,platforms,'HasOcclusion',HasOcclusion)

Description
radarsigout = radarChannel(radarsigin,platforms) returns radar signals, radarsigout,
as combinations of the signals, radarsigin, that are reflected from the platforms, platforms.

radarsigout = radarChannel(radarsigin,platforms,'HasOcclusion',HasOcclusion)
also allows you to specify whether to model occlusion from extended objects.

Examples

Reflect Radar Emission From Platform

Create a radar emission and a platform and reflect the emission from the platform.

Create a radar emission object.

radarSig = radarEmission('PlatformID',1,'EmitterIndex',1,'OriginPosition',[0 0 0]);

Create a platform structure.

platfm = struct('PlatformID',2,'Position',[10 0 0],'Signatures',rcsSignature());

Reflect the emission from the platform.

sigs = radarChannel(radarSig,platfm)

sigs = 
  radarEmission with properties:

              PlatformID: 1
            EmitterIndex: 1
          OriginPosition: [0 0 0]
          OriginVelocity: [0 0 0]
             Orientation: [1x1 quaternion]
             FieldOfView: [180 180]
         CenterFrequency: 300000000
               Bandwidth: 3000000
            WaveformType: 0
          ProcessingGain: 0
        PropagationRange: 0
    PropagationRangeRate: 0
                    EIRP: 0
                     RCS: 0
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Reflect Radar Emission From Platform within Radar Scenario

Create a radar scenario object.

scenario = radarScenario;

Create a radarEmitter object.

emitter = radarEmitter(1);

Mount the emitter on a platform within the scenario.

plat = platform(scenario,'Emitters',emitter);

Add another platform to reflect the emitted signal.

target = platform(scenario);
target.Trajectory.Position = [30 0 0];

Emit the signal using the emit object function of a platform.

txsigs = emit(plat,scenario.SimulationTime)

txsigs = 1x1 cell array
    {1x1 radarEmission}

Reflect the signal from the platforms in the scenario.

sigs = radarChannel(txsigs,scenario.Platforms)

sigs=2×1 cell array
    {1x1 radarEmission}
    {1x1 radarEmission}

Input Arguments
radarsigin — Input radar signals
array of radarEmission objects

Input radar signals, specified as an array of radarEmission objects.

platforms — Reflector platforms
cell array of Platform objects | array of Platform structures

Reflector platforms, specified as a cell array of Platform objects, or an array of Platform
structures:
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Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

Acceleration Acceleration of the platform in scenario
coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell
{rcsSignature}.

If you specify an array of platform structures, set a unique PlatformID for each platform and set the
Position field for each platform. Any other fields not specified are assigned default values.

HasOcclusion — Enable occlusion from extended objects
true | false
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Enable occlusion from extended objects, specified as true or false. Set HasOccusion to true to
model occlusion from extended objects. Two types of occlusion (self occlusion and inter object
occlusion) are modeled. Self occlusion occurs when one side of an extended object occludes another
side. Inter object occlusion occurs when one extended object stands in the line of sight of another
extended object or a point target. Note that both extended objects and point targets can be occluded
by extended objects, but a point target cannot occlude another point target or an extended object.

Set HasOccusion to false to disable occlusion of extended objects. This will also disable the
merging of objects whose detections share a common sensor resolution cell, which gives each object
in the tracking scenario an opportunity to generate a detection.
Data Types: logical

Output Arguments
radarsigout — Reflected radar signals
array of radarEmission objects

Reflected radar signals, specified as an array of radarEmission objects.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarEmission | radarEmitter
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theaterPlot
Plot objects, detections, and tracks in Scenario

Description
The theaterPlot object is used to display a plot of a radarScenario. This type of plot can be used
with sensors capable of detecting objects.

To display aspects of a scenario on a theater plot:

1 Create a theaterPlot object.
2 Create plotters for the aspects of the scenario that you want to plot.
3 Use the plotters with their corresponding plot functions to display those aspects on the theater

plot.

This table shows the plotter functions to use based on the scenario aspect that you want to plot.

Scenario Aspect to Plot Plotter Creation Function Plotter Display Function
Sensor coverage areas coveragePlotter plotCoverage
Sensor detections detectionPlotter plotDetection
Object orientation orientationPlotter plotOrientation
Platform platformPlotter plotPlatform
Track trackPlotter plotTrack
Object trajectory trajectoryPlotter plotTrajectory
Surface surfacePlotter plotSurface
Clutter clutterRegionPlotter plotClutterRegion

Creation

Syntax
tp = theaterPlot
tp = theaterPlot(Name,Value)

Description

tp = theaterPlot creates a theater plot in a new figure.

tp = theaterPlot(Name,Value) creates a theater plot in a new figure with optional input
“Properties” on page 4-673 specified by one or more Name,Value pair arguments. Properties can
be specified in any order as Name1,Value1,...,NameN,ValueN. Enclose each property name in
quotes.
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Properties
Parent — Parent axes
theaterPlot handle

Parent axes, specified as a theaterPlot handle. If you do not specify Parent, then theaterPlot
creates axes in a new figure.

Plotters — Plotters created for theater plot
array of plotter objects

Plotters created for the theater plot, specified as an array of plotter objects.

XLimits — Limits of x-axis
two-element row vector

Limits of the x-axis, specified as a two-element row vector, [x1,x2]. The values x1 and x2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used.
Data Types: double

YLimits — Limits of y-axis
two-element row vector

Limits of the y-axis, specified as a two-element row vector, [y1,y2]. The values y1 and y2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used.
Data Types: double

ZLimits — Limits of z-axis
two-element row vector

Limits of the z-axis, specified as a two-element row vector, [z1,z2]. The values z1 and z2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used.
Data Types: double

AxesUnits — Unit of each axes
["m" "m" "m"] (default) | three-element string array

Unit of each axes, specified as a three-element string array. Each element must be "m" or "km"
Data Types: string

Object Functions

Plotter Creation
coveragePlotter Create coverage plotter
detectionPlotter Create detection plotter
orientationPlotter Create orientation plotter
platformPlotter Create platform plotter
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trackPlotter Create track plotter
trajectoryPlotter Create trajectory plotter
surfacePlotter Create surface plotter
clutterRegionPlotter Create clutter region plotter

Plotter Display
plotCoverage Plot set of coverages in theater coverage plotter
plotDetection Plot set of detections in theater detection plotter
plotOrientation Plot set of orientations in orientation plotter
plotPlatform Plot set of platforms in platform plotter
plotTrack Plot set of tracks in theater track plotter
plotTrajectory Plot set of trajectories in trajectory plotter
plotSurface Plot surfaces in theater surface plotter
plotClutterRegion Plot clutter region in theater plot

Plotter Utilities
clearData Clear data from specific plotter of theater plot
clearPlotterData Clear plotter data from theater plot
findPlotter Return array of plotters associated with theater plot

Examples

Create and Display Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0 90],'YLim',[-35 35],'ZLim',[0 50]);

Display radar detections with coordinates at 30, − 5, 5 , 50, − 10, 10 , and 40, 7, 40 . Set the
view so that you are looking on the yz-plane. Confirm the y- and z-coordinates of the radar detections
are correct.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');
plotDetection(radarPlotter, [30 -5 5; 50 -10 10; 40 7 40])
grid on
view(90,0)
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The view can be changed by opening the plot in a figure window and selecting Tools > Rotate 3D in
the figure menu.

Limitations
You cannot use the rectangle-zoom feature in the theaterPlot figure.

Version History
Introduced in R2021a

See Also
radarScenario
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clearData
Clear data from specific plotter of theater plot

Syntax
clearData(pl)

Description
clearData(pl) clears data belonging to the plotter pl associated with a theater plot. This function
clears data from plotters created by the following plotter methods:

• detectionPlotter
• orientationPlotter
• platformPlotter
• trackPlotter
• trajectoryPlotter

Examples

Clear Specific Plotter Data

Create a theater plot. Add a track plotter and detection plotter to the theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks');
radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');
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Plot a set of tracks in the track plotter.

trackPos = [30, 15, 1; 60, -15, 1; 20, 5, 1];
trackLabels = {'T1','T2','T3'};
plotTrack(tPlotter, trackPos, trackLabels)
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Plot a set of detections in the detection plotter.

detPos = [30, 5, 4; 30, -10, 2; 50, 15, 1];
detLabels = {'R1','R2','R3'};
plotDetection(radarPlotter, detPos, detLabels)
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Delete the track plotter data.

clearData(tPlotter)
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Input Arguments
pl — Specific plotter belonging to theater plot
specific plotter of theater plot handle

Specific plotter belonging to a theater plot, specified as a plotter handle of theaterPlot.

Version History
Introduced in R2021a

See Also
clearPlotterData | theaterPlot | findPlotter
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clearPlotterData
Clear plotter data from theater plot

Syntax
clearPlotterData(tp)

Description
clearPlotterData(tp) clears data shown in the plot from all the plotters used in the theater plot,
tp. Legend entries and coverage areas are not cleared from the plot.

Examples

Clear Plotter Data from Theater Plot

Create a theater plot and a detection plotter.

tp = theaterPlot('XLim',[0, 90],'YLim',[-35, 35],'ZLim',[0, 10]);
detectionPlotter(tp,'DisplayName','Radar Detections');
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Use findPlotter to locate the plotter by its display name.

radarPlotter = findPlotter(tp,'DisplayName','Radar Detections');

Plot three detections.

plotDetection(radarPlotter, [30, 5, 1; 30, -10, 2; 30, 15, 1]);

Clear data from the plot.

clearPlotterData(tp);
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Version History
Introduced in R2021a

See Also
theaterPlot | findPlotter | clearData
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findPlotter
Return array of plotters associated with theater plot

Syntax
p = findPlotter(tp)
p = findPlotter(tp,Name,Value)

Description
p = findPlotter(tp) returns the array of plotters associated with the theater plot, tp.

Note  In general, it is faster to use the plotters directly from the plotter creation methods of
theaterPlot. Use findPlotter when it is otherwise inconvenient to use the plotter handles
directly.

p = findPlotter(tp,Name,Value) specifies one or more Name,Value pair arguments required
to match for the theater plot.

Examples

Find Plotter in Theater Plot

Create a theater plot and generate detection and platform plotters. Set the value of the Tag property
of the detection plotter to 'radPlot'.

tp = theaterPlot('XLim',[0, 90],'YLim',[-35, 35]);
detectionPlotter(tp,'DisplayName','Radar Detections','Tag','radPlot');
platformPlotter(tp, 'DisplayName', 'Platforms');

Use findPlotter to locate the detection plotter based on its Tag property.

radarPlotter = findPlotter(tp,'Tag','radPlot')

radarPlotter = 
  DetectionPlotter with properties:

       HistoryDepth: 0
             Marker: 'o'
         MarkerSize: 6
    MarkerEdgeColor: [0 0 0]
    MarkerFaceColor: 'none'
           FontSize: 10
        LabelOffset: [0 0 0]
    VelocityScaling: 1
                Tag: 'radPlot'
        DisplayName: 'Radar Detections'
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Use the detection plotter to display the located objects.

plotDetection(radarPlotter, [30, 5, 0; 30, -20, 0; 30, 15, 0]);

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tag','thisPlotter'

DisplayName — Display name
character vector | string scalar
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Display name of the plotter to find, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. DisplayName is the plotter name that
appears in the legend. To match missing legend entries, specify DisplayName as ''.

Tag — Tag of plotter
character vector | string scalar

Tag of plotter to find, specified as the comma-separated pair consisting of 'Tag'a character vector or
string scalar. By default, plotters have a Tag property with a default value of 'PlotterN', where N
is an integer that corresponds to the Nth plotter associated with the theater plot tp.

Version History
Introduced in R2021a

See Also
theaterPlot | clearPlotterData | clearData
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coveragePlotter
Create coverage plotter

Syntax
cPlotter = coveragePlotter(tp)
cPlotter = coveragePlotter(tp,Name,Value)

Description
cPlotter = coveragePlotter(tp) creates a CoveragePlotter object for use with the theater
plot object, tp. Use the plotCoverage function to plot the sensor coverage via the created
CoveragePlotter object.

cPlotter = coveragePlotter(tp,Name,Value) creates a CoveragePlotter object with
additional options specified by one or more Name,Value pair arguments.

Examples

Plot Coverage in Theater Plot

Create a theater plot and set the limits for its axes. Create a coverage plotter with DisplayName set
to 'Sensor Coverage'.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40],'ZLim',[-40 40]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');

Set up the configuration of the sensors whose coverage is to be plotted.

 sensor = struct('Index',1,'ScanLimits',[-45 45],'FieldOfView',[10;40],...
       'LookAngle',-10,'Range',30,'Position',zeros(1,3),'Orientation',zeros(1,3));

Plot the coverage using the plotCoverage function and visualize the results. The dark blue
represents the current sensor beam, and the light blue represents the coverage area.

plotCoverage(covp,sensor)
view(70,30)
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Animate Sensor Coverage Plot

Create a theater plot and create a coverage plotter.

tp = theaterPlot('XLim',[-1e7 1e7],'YLim',[-1e7 1e7],'ZLim',[-2e6 1e6]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');
view(25,20)

Model a non-scanning radar and a raster scanning radar.

radarIndex = 1;
radar =fusionRadarSensor(radarIndex,'No Scanning','RangeLimits',[0 1e8]);
RasterIndex = 2;
raster = fusionRadarSensor(RasterIndex,'Raster','RangeLimits',[0 1e8]);

Create a target platform.

tgt = struct( ...
        'PlatformID', 1, ...
        'Position', [0 -50e3 -1e3], ...
        'Speed', -1e3);

Simulate sensors and visualize their scanning pattern.

time = 0;
timestep = 1;
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stopTime = 90;
while time < stopTime
    time = time+timestep;
    radar(tgt,time);
    raster(tgt,time);
    
    % Obtain sensor configuration using coverageConfig. 
    radarcov = coverageConfig(radar);
    ircov = coverageConfig(raster);
    
    % Update plotter
    plotCoverage(covp,[radarcov,ircov],... 
        [radarIndex, RasterIndex],... 
        {'blue','red'}... 
        );
    pause(0.03)
end

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'DisplayName', 'Radar1'

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

Color — Coverage area and sensor beam color
'auto' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Coverage area and sensor beam color, specified as a character vector, a string scalar, an RGB triplet,
a hexadecimal color code, or 'auto'. When a color is specified, the plotter draws all coverage areas
and beams with the specified color. If the color is set to 'auto', the plotter uses the axis color order
to assign colors to sensors based on their sensor indices.

Alpha — Face alpha values of coverage area and sensor beam
[0.7 0.05] (default) | 2-element vector of nonnegative scalars

Face alpha values of the coverage area and the sensor beam, specified as a 2-element vector of
nonnegative scalars. The first element is the value applied to the beam and the second element is the
value applied to the coverage area.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string

Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

Output Arguments
cPlotter — Coverage plotter
CoveragePlotter object

Coverage plotter, returned as a CoveragePlotter object. You can modify this object by changing its
property values. The property names correspond to the name-value pair arguments of the
coveragePlotter function.

To plot the coverage, use the plotCoverage function.

Version History
Introduced in R2021a

See Also
plotCoverage | theaterPlot | clearData | clearPlotterData
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plotCoverage
Plot set of coverages in theater coverage plotter

Syntax
plotCoverage(cPlotter,configurations)
plotCoverage(cPlotter,configurations,indices,colors)

Description
plotCoverage(cPlotter,configurations) specifies configurations of M sensors or emitters
whose coverage areas and beams are plotted by the CoveragePlotter object, cPlotter. See
coveragePlotter on how to create a CoveragePlotter object.

plotCoverage(cPlotter,configurations,indices,colors) specifies the color of each
coverage and beam plot pair using a list of indices and colors.

Examples

Plot Coverage in Theater Plot

Create a theater plot and set the limits for its axes. Create a coverage plotter with DisplayName set
to 'Sensor Coverage'.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40],'ZLim',[-40 40]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');

Set up the configuration of the sensors whose coverage is to be plotted.

 sensor = struct('Index',1,'ScanLimits',[-45 45],'FieldOfView',[10;40],...
       'LookAngle',-10,'Range',30,'Position',zeros(1,3),'Orientation',zeros(1,3));

Plot the coverage using the plotCoverage function and visualize the results. The dark blue
represents the current sensor beam, and the light blue represents the coverage area.

plotCoverage(covp,sensor)
view(70,30)

 plotCoverage

4-691



Animate Sensor Coverage Plot

Create a theater plot and create a coverage plotter.

tp = theaterPlot('XLim',[-1e7 1e7],'YLim',[-1e7 1e7],'ZLim',[-2e6 1e6]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');
view(25,20)

Model a non-scanning radar and a raster scanning radar.

radarIndex = 1;
radar =fusionRadarSensor(radarIndex,'No Scanning','RangeLimits',[0 1e8]);
RasterIndex = 2;
raster = fusionRadarSensor(RasterIndex,'Raster','RangeLimits',[0 1e8]);

Create a target platform.

tgt = struct( ...
        'PlatformID', 1, ...
        'Position', [0 -50e3 -1e3], ...
        'Speed', -1e3);

Simulate sensors and visualize their scanning pattern.

time = 0;
timestep = 1;
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stopTime = 90;
while time < stopTime
    time = time+timestep;
    radar(tgt,time);
    raster(tgt,time);
    
    % Obtain sensor configuration using coverageConfig. 
    radarcov = coverageConfig(radar);
    ircov = coverageConfig(raster);
    
    % Update plotter
    plotCoverage(covp,[radarcov,ircov],... 
        [radarIndex, RasterIndex],... 
        {'blue','red'}... 
        );
    pause(0.03)
end

Input Arguments
cPlotter — Coverage plotter object
CoveragePloter object

Coverage plotter object, created by the coveragePlotter function.

configurations — Sensor or emitter configurations
array of structures

Sensor or emitter configurations, specified as an array of structures. Each structure corresponds to
the configuration of a sensor or emitter. The fields of each structure are:
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Fields of configurations

Field Description
Index A unique integer to distinguish sensors or

emitters.
LookAngle The current boresight angles of the sensor or

emitter, specified as:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.

FieldOfView The field of view of the sensor or emitter,
specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can only scan in the
azimuth direction, specify the limits as a 1-
by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, specify the limits as a 2-
by-2 matrix [minAz, maxAz; minEl, maxEl] in
degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the theater plot's axes.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

Tip If either the value of Position field or the value of the Orientation field is NaN, the
corresponding coverage area and beam will not be plotted.

indices — Sensor or emitter indices
N-element array of nonnegative integers

Sensor or emitter indices, specified as an N-element array of nonnegative integers. This argument
allows you to specify the color of each coverage area and beam pair with the corresponding index.
Example: [1;2;4]
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colors — Coverage plotter colors
N-element array of character vector | N-element array of string scalar | N-element array of RGB
triplet | N-element array of hexadecimal color code

Coverage plotter colors, specified as an N-element vector of character vectors, string scalars, RGB
triplets, or hexadecimal color codes. N is the number of elements in the indices array. The coverage
area and beam pair indexed by the ith element in the indices array is plotted with the color
specified by the ith element of the colors array.

Version History
Introduced in R2021a

See Also
coveragePlotter | theaterPlot | clearData | clearPlotterData
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detectionPlotter
Create detection plotter

Syntax
detPlotter = detectionPlotter(tp)
detPlotter = detectionPlotter(tp,Name,Value)

Description
detPlotter = detectionPlotter(tp) creates a detection plotter for use with the theater plot
tp.

detPlotter = detectionPlotter(tp,Name,Value) creates a detection plotter with additional
options specified by one or more Name,Value pair arguments.

Examples

Create and Update Detections for Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a detection plotter with the name Radar Detections.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');

Update the detection plotter with three detections labeled 'R1', 'R2', and 'R3' positioned in units
of meters at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1  with corresponding velocities (in m/s) of
−10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotDetection(radarPlotter, positions, velocities, labels)
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'
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HistoryDepth — Number of previous updates to display
0 (default) | nonnegative integer less than or equal to 10,000

Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 10,000. If set to 0, then no
previous updates are rendered.

Marker — Marker symbol
'o' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerSize — Size of marker
6 (default) | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.
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MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling platforms
10 (default) | positive integer

Font size for labeling detections, specified as the comma-separated pair consisting of 'FontSize'
and a positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

Version History
Introduced in R2021a

See Also
theaterPlot | plotDetection | clearData | clearPlotterData
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plotDetection
Plot set of detections in theater detection plotter

Syntax
plotDetection(detPlotter,positions)
plotDetection(detPlotter,positions,velocities)
plotDetection(detPlotter,positions, ___ ,labels)
plotDetection(detPlotter,positions, ___ ,covariances)

Description
plotDetection(detPlotter,positions) specifies positions of M detected objects whose
positions are plotted by the detection plotter detPlotter. Specify the positions as an M-by-3 matrix,
where each column of the matrix corresponds to the x-, y-, and z-coordinates of the detected object
locations.

plotDetection(detPlotter,positions,velocities) also specifies the corresponding
velocities of the detections. Velocities are plotted as line vectors emanating from the center positions
of the detections. If specified, velocities must have the same dimensions as positions.

plotDetection(detPlotter,positions, ___ ,labels) also specifies a cell vector of length M
whose elements contain the text labels corresponding to the M detections specified in the positions
matrix. If omitted, no labels are plotted.

plotDetection(detPlotter,positions, ___ ,covariances) also specifies the covariances of
the M detection uncertainties, where the covariances are a 3-by-3-by-M matrix of covariances that
are centered at the positions of each detection. The uncertainties are plotted as an ellipsoid

Examples

Create and Update Detections for Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a detection plotter with the name Radar Detections.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');

Update the detection plotter with three detections labeled 'R1', 'R2', and 'R3' positioned in units
of meters at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1  with corresponding velocities (in m/s) of
−10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotDetection(radarPlotter, positions, velocities, labels)
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Input Arguments
detPlotter — Detection plotter
detectionPlotter object

Detection plotter, specified as a detectionPlotter object.

positions — Detection positions
real-valued matrix

Detection positions, specified as an M-by-3 real-valued matrix, where M is the number of detections.
Each column of the matrix corresponds to the x-, y-, and z-coordinates of the detection positions in
meters.

velocities — Detection velocities
real-valued matrix

Detection velocities, specified as an M-by-3 real-valued matrix, where M is the number of detections.
Each column of the matrix corresponds to the x-, y-, and z-velocities of the detections. If specified,
velocities must have the same dimensions as positions.

labels — Detection labels
cell array
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Detection labels, specified as a M-by-1 cell array of character vectors, where M is the number of
detections. The input argument labels contains the text labels corresponding to the M detections
specified in positions. If labels is omitted, no labels are plotted.

covariances — Detection uncertainties
real-valued array

Detection uncertainties of M tracked objects, specified as a 3-by-3-by-M real-valued array of
covariances. The covariances are centered at the positions of each detection and are plotted as an
ellipsoid.

Version History
Introduced in R2021a

See Also
theaterPlot | detectionPlotter | clearData | clearPlotterData
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orientationPlotter
Create orientation plotter

Syntax
oPlotter = orientationPlotter(tp)
oPlotter = orientationPlotter(tp,Name,Value)

Description
oPlotter = orientationPlotter(tp) creates an orientation plotter for use with the theater plot
tp.

oPlotter = orientationPlotter(tp,Name,Value) creates an orientation plotter with
additional options specified by one or more Name,Value pair arguments.

Examples

Show Random Orientation

Create a theater plot object and a trajectory plotter.

tp = theaterPlot('XLimit',[-2 2],'YLimit',[-2 2],'ZLimit',[-2 2]);
op = orientationPlotter(tp,'DisplayName','Orientation',...
    'LocalAxesLength',2);

Create some random rotations.

pose = randrot(20,1);

Loop through the pose information to animate the orientations.

for i=1:numel(pose)
    plotOrientation(op,pose(i))
    drawnow
end
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'HistoryDepth',6

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'
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HistoryDepth — Number of previous track updates to display
0 (default) | nonnegative integer less than or equal to 100

Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 100. If set to 0, then no previous
updates are rendered.

Marker — Marker symbol
'o' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerSize — Size of marker
10 (default) | positive integer

Size of marker, specified in points as the comma-separated pair consisting of 'MarkerSize' and a
positive integer.

 orientationPlotter

4-705



MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, string scalar, an RGB triplet, or a hexadecimal color code. The default color is
'black'.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling tracks
10 (default) | positive integer

Font size for labeling tracks, specified as the comma-separated pair consisting of 'FontSize' and a
positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

LocalAxesLength — Length of line
1 (default) | positive scalar

Length of line used to denote each of the local x-, y-, and z-axes of the given orientation, specified as
the comma-separated pair consisting of 'LocalAxesLength' and a positive scalar.
'LocalAxesLength' is in meters.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

Version History
Introduced in R2021a

See Also
theaterPlot | plotOrientation | clearData | clearPlotterData
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plotOrientation
Plot set of orientations in orientation plotter

Syntax
plotOrientation(oPlotter,orientations)
plotOrientation(oPlotter,roll,pitch,yaw)
plotOrientation(oPlotter, ___ ,positions)
plotOrientation(oPlotter, ___ ,positions,labels)

Description
plotOrientation(oPlotter,orientations) specifies the orientations of M objects to show for
the orientation plotter, oPlotter. The orientations argument can be either an M-by-1 array of
quaternions, or a 3-by-3-by-M array of rotation matrices.

plotOrientation(oPlotter,roll,pitch,yaw) specifies the orientations of M objects to show
for the orientation plotter, oPlotter. The arguments roll, pitch, and yaw are M-by-1 vectors
measured in degrees.

plotOrientation(oPlotter, ___ ,positions) also specifies the positions of the objects as an
M-by-3 matrix. Each column of positions corresponds to the x-, y-, and z-coordinates of the object
locations, respectively.

plotOrientation(oPlotter, ___ ,positions,labels) also specifies the labels as an M-by-1
cell array of character vectors that correspond to the M orientations.

Examples

Show Random Orientation

Create a theater plot object and a trajectory plotter.

tp = theaterPlot('XLimit',[-2 2],'YLimit',[-2 2],'ZLimit',[-2 2]);
op = orientationPlotter(tp,'DisplayName','Orientation',...
    'LocalAxesLength',2);

Create some random rotations.

pose = randrot(20,1);

Loop through the pose information to animate the orientations.

for i=1:numel(pose)
    plotOrientation(op,pose(i))
    drawnow
end
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Input Arguments
oPlotter — Orientation plotter
orientationPlotter object

Orientation plotter, specified as an orientationPlotter object.

orientations — Orientations
quaternion array | real-valued array

Orientations of M objects, specified as either an M-by-1 array of quaternions, or a 3-by-3-by-M array
of rotation matrices.

roll, pitch, yaw — Roll, pitch, yaw
real-valued vectors

Roll, pitch, and yaw angles defining the orientations of M objects, specified as M-by-1 vectors. Angles
are measured in degrees.

positions — Object positions
[0 0 0] (default) | real-valued matrix

Object positions, specified as an M-by-3 real-valued matrix, where M is the number of objects. Each
column of the matrix corresponds to the x-, y-, and z-coordinates of the objects locations in meters.
The default value of positions is at the origin.
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labels — Object labels
cell array

Object labels, specified as a M-by-1 cell array of character vectors, where M is the number of objects.
labels contains the text labels corresponding to the M objects specified in positions. If labels is
omitted, no labels are plotted.

Version History
Introduced in R2021a

See Also
theaterPlot | orientationPlotter | clearData | clearPlotterData
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platformPlotter
Create platform plotter

Syntax
pPlotter = platformPlotter(tp)
pPlotter = platformPlotter(tp,Name,Value)

Description
pPlotter = platformPlotter(tp) creates a platform plotter for use with the theater plot, tp.

pPlotter = platformPlotter(tp,Name,Value) creates a platform plotter with additional
options specified by one or more Name,Value pair arguments.

Examples

Create and Update Theater Plot Platforms

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a platform plotter with the name 'Platforms'.

plotter = platformPlotter(tp,'DisplayName','Platforms');

Update the theater plot with three platforms labeled, 'R1', 'R2', and 'R3'. Position the three
platforms, in units of meters, at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 , with corresponding
velocities (in m/s) of −10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotPlatform(plotter, positions, velocities, labels);
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'
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Marker — Marker symbol
'^' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
values.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerSize — Size of marker
6 | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.
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MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling platforms
10 (default) | positive integer

Font size for labeling platforms, specified in font points size as the comma-separated pair consisting
of 'FontSize' and a positive integer.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

Version History
Introduced in R2021a

See Also
theaterPlot | plotPatform | clearData | clearPlotterData
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plotPlatform
Plot set of platforms in platform plotter

Syntax
plotPlatform(platPlotter,positions)
plotPlatform(platPlotter,positions,velocities)
plotPlatform(platPlotter,positions,labels)
plotPlatform(platPlotter,positions,velocities,labels)
plotPlatform(platPlotter,positions, ___ ,dimensions,orientations)
plotPlatform(platPlotter,positions, ___ ,meshes,orientations)

Description
plotPlatform(platPlotter,positions) specifies positions of M platforms whose positions are
plotted by platPlotter. Specify the positions as an M-by-3 matrix, where each column of the matrix
corresponds to the x-, y-, and z-coordinates of the platform locations.

plotPlatform(platPlotter,positions,velocities) also specifies the corresponding
velocities of the platforms. Velocities are plotted as line vectors emanating from the positions of the
platforms. If specified, velocities must have the same dimensions as positions.

plotPlatform(platPlotter,positions,labels) also specifies a cell vector of length M whose
elements contain the text labels corresponding to the M platforms specified in the positions matrix. If
omitted, no labels are plotted.

plotPlatform(platPlotter,positions,velocities,labels) specifies velocities and text
labels corresponding to the M platforms specified in the positions matrix.

plotPlatform(platPlotter,positions, ___ ,dimensions,orientations) specifies the
dimension and orientation of each plotted platform.

plotPlatform(platPlotter,positions, ___ ,meshes,orientations) specifies the extent of
each platform using meshes.

Use of meshes requires Sensor Fusion and Tracking Toolbox.

Examples

Create and Update Theater Plot Platforms

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a platform plotter with the name 'Platforms'.

plotter = platformPlotter(tp,'DisplayName','Platforms');
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Update the theater plot with three platforms labeled, 'R1', 'R2', and 'R3'. Position the three
platforms, in units of meters, at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 , with corresponding
velocities (in m/s) of −10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotPlatform(plotter, positions, velocities, labels);

Input Arguments
platPlotter — Platform plotter
platformPlotter object

Platform plotter, specified as a platformPlotter object.

positions — Platform positions
real-valued matrix

Platform positions, specified as an M-by-3 real-valued matrix, where M is the number of platforms.
Each column of the matrix corresponds to the x-, y-, and z-coordinates of the platform locations in
meters.

velocities — Platform velocities
M-by-3 real-valued matrix
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Platform velocities, specified as an M-by-3 real-valued matrix, where M is the number of platforms.
Each column of the matrix corresponds to the x, y, and z velocities of the platforms. If specified,
velocities must have the same dimensions as positions.

labels — Platform labels
cell array

Platform labels, specified as an M-by-1 cell array of character vectors, where M is the number of
platforms. labels contains the text labels corresponding to the M platforms specified in positions.
If labels is omitted, no labels are plotted.

dimensions — Platform dimensions
M-by-1 array of dimension structure

Platform dimensions, specified as an M-by-1 array of dimension structures, where M is the number of
platforms. The fields of each dimension structure are:

Fields of Dimensions

Fields Description
Length Dimension of a cuboid along the x direction
Width Dimension of a cuboid along the y direction
Height Dimension of a cuboid along the z direction
OriginOffset Position of the platform coordinate frame origin

with respect to the cuboid center, specified as a
vector of three elements

meshes — Platform meshes
M-element array of extendedObjectMesh object

Platform meshes, specified as an M-element array of extendedObjectMesh objects.

orientations — Platform orientations
3-by-3-by-M array of rotation matrix | M-element array of quaternion object

Platform orientations, specified as a 3-by-3-by-M array of rotation matrices, or an M-element array of
quaternion objects.

Version History
Introduced in R2021a
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See Also
platformPlotter | theaterPlot
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trackPlotter
Create track plotter

Syntax
tPlotter = trackPlotter(tp)
tPlotter = trackPlotter(tp,Name,Value)

Description
tPlotter = trackPlotter(tp) creates a track plotter for use with the theater plot tp.

tPlotter = trackPlotter(tp,Name,Value) creates a track plotter with additional options
specified by one or more Name,Value pair arguments.

Examples

Plot Tracks in Theater Plot

Create a theater plot. Create a track plotter with DisplayName set to 'Tracks' and with
HistoryDepth set to 5.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks','HistoryDepth',5);
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Update the track plotter with three tracks labeled 'T1', 'T2', and 'T3' with start positions in units
of meters all starting at (30, 5, 1) with corresponding velocities (in m/s) of (3, 0, 1), (3, 2, 2) and (3,
-3, 5), respectively. Update the tracks with the velocities for ten iterations.

positions = [30, 5, 1; 30, 5, 1; 30, 5, 1];
velocities = [3, 0, 1; 3, 2, 2; 3, -3, 5];
labels = {'T1','T2','T3'};
for i=1:10
    plotTrack(tPlotter, positions, velocities, labels)
    positions = positions + velocities;
end
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This animation loops through all the generated plots.
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

HistoryDepth — Number of previous track updates to display
0 (default) | nonnegative integer less than or equal to 10,000
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Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 10,000. If set to 0, then no
previous updates are rendered.

ConnectHistory — Connect tracks flag
'off' (default) | 'on'

Connect tracks flag, specified as either 'on' or 'off'. When set to 'on', tracks with the same label
or track identifier between consecutive updates are connected with a line. This property can only be
specified when creating the trackPlotter. The default is 'off'.

To use the trackIDs on page 4-0  input argument of plotTrack, 'ConnectHistory' must be
'on'. If trackIDs on page 4-0  is omitted when 'ConnectHistory' is 'on', then the track
identifiers are derived from the labels input instead.

ColorizeHistory — Colorize track history
'off' (default) | 'on'

Colorize track history, specified as either 'on' or 'off'. When set to 'on', tracks with the same
label or track identifier between consecutive updates are connected with a line of a different color.
This property can only be specified when creating the trackPlotter.The default is 'off'.

ColorizedHistory is applicable only when ConnectHistory is 'on'.

Marker — Marker symbol
's' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle
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Marker Description Resulting Marker
"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerSize — Size of marker
10 (default) | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling tracks
10 (default) | positive integer

Font size for labeling tracks, specified as the comma-separated pair consisting of 'FontSize' and a
positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar
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Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

Version History
Introduced in R2021a

See Also
theaterPlot | plotTrack | clearData | clearPlotterData

4 Objects

4-724



plotTrack
Plot set of tracks in theater track plotter

Syntax
plotTrack(tPlotter,positions)
plotTrack(tPlotter,positions,velocities)
plotTrack( ___ ,covariances)
plotTrack(tPlotter,positions, ___ ,labels)
plotTrack(tPlotter,positions, ___ ,labels,trackIDs)
plotTrack(tPlotter,positions, ___ ,dimensions,orientations)

Description
plotTrack(tPlotter,positions) specifies positions of M tracked objects whose positions are
plotted by the track plotter tPlotter. Specify the positions as an M-by-3 matrix, where each column
of positions corresponds to the x-, y-, and z-coordinates of the object locations.

plotTrack(tPlotter,positions,velocities) also specifies the corresponding velocities of the
objects. Velocities are plotted as line vectors emanating from the positions of the detections. If
specified, velocities must have the same dimensions as positions. If unspecified, no velocity
information is plotted.

plotTrack( ___ ,covariances) also specifies the covariances of the M track uncertainties. The
input argument covariances is a 3-by-3-by-M array of covariances that are centered at the track
positions. The uncertainties are plotted as an ellipsoid. You can use this syntax with any of the
previous syntaxes.

plotTrack(tPlotter,positions, ___ ,labels) also specifies the labels and positions of the M
objects whose positions are estimated by a tracker. The input argument labels is an M-by-1 cell
array of character vectors that correspond to the M detections specified in positions. If omitted, no
labels are plotted.

plotTrack(tPlotter,positions, ___ ,labels,trackIDs) also specifies the unique track
identifiers for each track when the 'ConnectHistory' on page 4-0  property of tPlotter is set
to 'on'. The input argument trackIDs can be an M-by-1 array of unique integer values, an M-by-1
array of strings, or an M-by-1 cell array of unique character vectors.

If trackIDs is omitted when 'ConnectHistory' is 'on', then the track identifiers are derived
from the labels input instead. The trackIDs input is ignored when 'ConnectHistory' is 'off'.

plotTrack(tPlotter,positions, ___ ,dimensions,orientations) specifies the dimension
and orientation of each tracked object in the plot.

Examples
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Plot Tracks in Theater Plot

Create a theater plot. Create a track plotter with DisplayName set to 'Tracks' and with
HistoryDepth set to 5.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks','HistoryDepth',5);

Update the track plotter with three tracks labeled 'T1', 'T2', and 'T3' with start positions in units
of meters all starting at (30, 5, 1) with corresponding velocities (in m/s) of (3, 0, 1), (3, 2, 2) and (3,
-3, 5), respectively. Update the tracks with the velocities for ten iterations.

positions = [30, 5, 1; 30, 5, 1; 30, 5, 1];
velocities = [3, 0, 1; 3, 2, 2; 3, -3, 5];
labels = {'T1','T2','T3'};
for i=1:10
    plotTrack(tPlotter, positions, velocities, labels)
    positions = positions + velocities;
end
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This animation loops through all the generated plots.
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Plot Track Uncertainties

Create a theater plot. Create a track plotter with DisplayName set to 'Uncertain Track'.

tp = theaterPlot('Xlim',[0 5],'Ylim',[0 5]);
tPlotter = trackPlotter(tp,'DisplayName','Uncertain Track');

Update the track plotter with a track at a position in meters (2,2,1) and velocity (in meters/second) of
(1,1,3). Also create a random 3-by-3 covariance matrix representing track uncertainties. For purposes
of reproducibility, set the random seed to the default value.

 positions = [2, 2, 1];
 velocities = [1, 1, 3];
 rng default
 covariances = randn(3,3);

Plot the track with the covariances plotted as an ellipsoid.

plotTrack(tPlotter,positions,velocities,covariances)
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Input Arguments
tPlotter — Track plotter
trackPlotter object

Track plotter, specified as a trackPlotter object.

positions — Tracked object positions
real-valued matrix

Tracked object positions, specified as an M-by-3 real-valued matrix, where M is the number of
objects. Each column of positions corresponds to the x-, y-, and z-coordinates of the object
locations in meters.

velocities — Tracked object velocities
real-valued matrix

Tracked object velocities, specified as an M-by-3 real-valued matrix, where M is the number of
objects. Each column of velocities corresponds to the x, y, and z velocities of the objects. If
specified, velocities must have the same dimensions as positions.

covariances — Track uncertainties
real-valued array
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Track uncertainties of M tracked objects, specified as a 3-by-3-by-M real-valued array of covariances.
The covariances are centered at the track positions, and are plotted as an ellipsoid.

labels — Tracked object labels
cell array

Tracked object labels, specified as a M-by-1 cell array of character vectors, where M is the number of
objects. The argument labels contains the text labels corresponding to the M objects specified in
positions. If labels is omitted, no labels are plotted.

trackIDs — Unique track identifiers
integer vector | string array | cell array

Unique track identifiers for the M tracked objects, specified as an M-by-1 integer vector, an M-by-1
array of strings, or an M-by-1 cell array of character vectors. The elements of trackIDs must be
unique.

The trackIDs input is ignored when the property 'ConnectHistory' of tPlotter is 'off'. If
trackIDs is omitted when 'ConnectHistory' is 'on', then the track identifiers are derived from
the labels input instead.

dimensions — Platform dimensions
M-by-1 array of dimension structure

Platform dimensions, specified as an M-by-1 array of dimension structures, where M is the number of
platforms. The fields of each dimension structure are:

Fields of Dimensions

Fields Description
Length Dimension of a cuboid along the x direction
Width Dimension of a cuboid along the y direction
Height Dimension of a cuboid along the z direction
OriginOffset Position of the platform coordinate frame origin

with respect to the cuboid center, specified as a
vector of three elements

orientations — Platform orientations
3-by-3-by-M array of rotation matrix | M-element array of quaternion object

Platform orientations, specified as a 3-by-3-by-M array of rotation matrices, or an M-element array of
quaternion objects.
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Version History
Introduced in R2021a

See Also
theaterPlot | trackPlotter | clearData | clearPlotterData
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trajectoryPlotter
Create trajectory plotter

Syntax
trajPlotter = trajectoryPlotter(tp)
trajPlotter = trajectoryPlotter(tp,Name,Value)

Description
trajPlotter = trajectoryPlotter(tp) creates a trajectory plotter for use with the theater
plot tp.

trajPlotter = trajectoryPlotter(tp,Name,Value) creates a trajectory plotter with
additional options specified by one or more Name,Value pair arguments.

Examples

Moving Platform on Trajectory in radarScenario

This example shows how to create an animation of a platform moving on a trajectory.

First, create a radarScenario and add waypoints for a trajectory.

ts = radarScenario;
height = 100;
d = 1;
wayPoints = [ ...
    -30   -25   height;
    -30    25-d height;
    -30+d  25   height;
    -10-d  25   height;
    -10    25-d height;
    -10   -25+d height;
    -10+d -25   height;
    10-d -25   height;
    10   -25+d height;
    10    25-d height;
    10+d  25   height;
    30-d  25   height;
    30    25-d height;
    30   -25+d height;
    30   -25   height];

Specify a time for each waypoint.

elapsedTime = linspace(0,10,size(wayPoints,1));

Next, create a platform in the tracking scenario and add trajectory information using the
trajectory method.
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target = platform(ts);
traj = waypointTrajectory('Waypoints',wayPoints,'TimeOfArrival',elapsedTime);
target.Trajectory = traj;

Record the tracking scenario to retrieve the platform's trajectory.

r = record(ts);
pposes = [r(:).Poses];
pposition = vertcat(pposes.Position);

Create a theater plot to display the recorded trajectory.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40]);
trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{pposition})

Animate using the platformPlotter.

restart(ts);
trajPlotter = platformPlotter(tp,'DisplayName','Platform');

while advance(ts)
    p = pose(target,'true');
    plotPlatform(trajPlotter, p.Position);
    pause(0.1)
    
end
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This animation loops through all the generated plots.
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LineStyle','--'

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'
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Color — Trajectory color
'gray' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Trajectory color, specified as the comma-separated pair consisting of 'Color' and a character
vector, a string scalar, an RGB triplet, or a hexadecimal color code.

LineStyle — Line style
':' (default) | '-' | '--' | '-.'

Line style used to plot the trajectory, specified as one of these values.

Value Description
':' Dotted line (default)
'-' Solid line
'--' Dashed line
'-.' Dash-dotted line

LineWidth — Line width
0.5 (default) | positive scalar

Line width of the trajectory, specified in points size as the comma-separated pair consisting of
'LineWidth' and a positive scalar.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

Version History
Introduced in R2021a

See Also
theaterPlot | plotTrajectory | clearData | clearPlotterData
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plotTrajectory
Plot set of trajectories in trajectory plotter

Syntax
plotTrajectory(trajPlotter,trajCoordList)

Description
plotTrajectory(trajPlotter,trajCoordList) specifies the trajectories to show in the
trajectory plotter, trajPlotter. The input argument trajCoordList is a cell array of M-by-3
matrices, where M is the number of points in the trajectory. Each matrix in trajCoordList can have
a different number of rows. The first, second, and third columns of each matrix correspond to the x-,
y-, and z-coordinates of a curve through M points that represent the corresponding trajectory.

Examples

Moving Platform on Trajectory in radarScenario

This example shows how to create an animation of a platform moving on a trajectory.

First, create a radarScenario and add waypoints for a trajectory.

ts = radarScenario;
height = 100;
d = 1;
wayPoints = [ ...
    -30   -25   height;
    -30    25-d height;
    -30+d  25   height;
    -10-d  25   height;
    -10    25-d height;
    -10   -25+d height;
    -10+d -25   height;
    10-d -25   height;
    10   -25+d height;
    10    25-d height;
    10+d  25   height;
    30-d  25   height;
    30    25-d height;
    30   -25+d height;
    30   -25   height];

Specify a time for each waypoint.

elapsedTime = linspace(0,10,size(wayPoints,1));

Next, create a platform in the tracking scenario and add trajectory information using the
trajectory method.
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target = platform(ts);
traj = waypointTrajectory('Waypoints',wayPoints,'TimeOfArrival',elapsedTime);
target.Trajectory = traj;

Record the tracking scenario to retrieve the platform's trajectory.

r = record(ts);
pposes = [r(:).Poses];
pposition = vertcat(pposes.Position);

Create a theater plot to display the recorded trajectory.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40]);
trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{pposition})

Animate using the platformPlotter.

restart(ts);
trajPlotter = platformPlotter(tp,'DisplayName','Platform');

while advance(ts)
    p = pose(target,'true');
    plotPlatform(trajPlotter, p.Position);
    pause(0.1)
    
end
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This animation loops through all the generated plots.
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Input Arguments
trajPlotter — Trajectory plotter
trajectoryPlotter object

Trajectory plotter, specified as a trajectoryPlotter object.

trajCoordList — Coordinates of trajectories
cell array

Coordinates of trajectories to show, specified as a cell array of M-by-3 matrices, where M is the
number of points in the trajectory. Each matrix in trajCoordList can have a different number of
rows. The first, second, and third columns of each matrix correspond to the x-, y-, and z-coordinates
of a curve through M points that represent the corresponding trajectory.
Example: coordList = {[1 2 3; 4 5 6; 7,8,9];[4 2 1; 4 3 1];[4 4 4; 3 1 2; 9 9
9; 1 0 2]} specifies three different trajectories.

Version History
Introduced in R2021a
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See Also
trajectoryPlotter | theaterPlot | clearData | clearPlotterData
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surfacePlotter
Create surface plotter

Syntax
sPlotter = surfacePlotter(tp)
sPlotter = surfacePlotter(tp,Name=Value)

Description
sPlotter = surfacePlotter(tp) creates a SurfacePlotter object for use with a
theaterPlot object tp. Use the plotSurface function to plot surfaces using the
SurfacePlotter object.

sPlotter = surfacePlotter(tp,Name=Value) creates a SurfacePlotter object with
additional options specified by one or more name-value arguments. For example,
surfacePlotter(DisplayName="Surfaces") specifies Surfaces as the name displayed in the
legend.

Examples

Plot Surface in Theatre Plot in Radar Scenario

Create a radar scenario.

scenario = radarScenario;

Define the terrain and boundaries of two surfaces and add the two surfaces to the radar scenario.

terrain1 = randi(100,4,5);
terrain2 = randi(100,3,3);
boundary1 = [0 100;
    0 100-eps];
boundary2 = [0 100;
    100 200];
s1 = landSurface(scenario,Terrain=terrain1,Boundary=boundary1);
s2 = landSurface(scenario,Terrain=terrain2,Boundary=boundary2);

Obtain the plotter data by using the surfacePlotterData function.

plotterData = surfacePlotterData(scenario.SurfaceManager)

plotterData=1×2 struct array with fields:
    X
    Y
    Z
    C

Create a theaterPlot object and specify the axis limits of the plot.
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theaterpplot = theaterPlot(ZLimits=[-50 150],YLimits=[-50 250],ZLimits=[-100 100]);

Create a surface plotter.

plotter = surfacePlotter(theaterpplot,DisplayName="Surfaces");

Plot surfaces in the theater plot. Change view angles for better visualization.

plotSurface(plotter,plotterData)
view(-41,29)

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: DisplayName="GroundSurface"

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as a character vector or string scalar. If you do not specify
this argument, the function does not display a plot name.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string

Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

FaceAlpha — Face alpha value for all plotted surfaces
1 (default) | scalar in range [0 1]

Face alpha value for all plotted surfaces, specified as a scalar in the range [0 1].

EdgeColor — Edge color for all plotted surfaces
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Edge color for all plotted surfaces, specified as a character vector of a valid color, a string scalar of a
valid color, an RGB triplet, or a hexadecimal color code.

Output Arguments
sPlotter — Surface plotter
SurfacePlotter object

Surface plotter, returned as a SurfacePlotter object. You can modify this object by changing its
property values. The property names correspond to the name-value arguments of the
surfacePlotter function.

To plot surfaces, use the plotSurface function.

Version History
Introduced in R2022b

See Also
plotSurface | theaterPlot | surfacePlotterData | SurfacePlotter | SurfaceManager
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SurfacePlotter
Surface plotter object belonging to theater plot

Description
SurfacePlotter defines a surface plotter object belonging to a theaterPlot object. Use the
plotSurface function to plot surfaces using the SurfacePlotter object.

Creation
Create a SurfacePlotter objects using the surfacePlotter object function of the theaterPlot
object.

Properties
DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as a character vector or string scalar. If you do not specify
this argument, the function does not display a plot name.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string

Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

FaceAlpha — Face alpha value for all plotted surfaces
1 (default) | scalar in range [0 1]

Face alpha value for all plotted surfaces, specified as a scalar in the range [0 1].

EdgeColor — Edge color for all plotted surfaces
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Edge color for all plotted surfaces, specified as a character vector of a valid color, a string scalar of a
valid color, an RGB triplet, or a hexadecimal color code.

Examples

Plot Surface in Theatre Plot in Radar Scenario

Create a radar scenario.

scenario = radarScenario;
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Define the terrain and boundaries of two surfaces and add the two surfaces to the radar scenario.

terrain1 = randi(100,4,5);
terrain2 = randi(100,3,3);
boundary1 = [0 100;
    0 100-eps];
boundary2 = [0 100;
    100 200];
s1 = landSurface(scenario,Terrain=terrain1,Boundary=boundary1);
s2 = landSurface(scenario,Terrain=terrain2,Boundary=boundary2);

Obtain the plotter data by using the surfacePlotterData function.

plotterData = surfacePlotterData(scenario.SurfaceManager)

plotterData=1×2 struct array with fields:
    X
    Y
    Z
    C

Create a theaterPlot object and specify the axis limits of the plot.

theaterpplot = theaterPlot(ZLimits=[-50 150],YLimits=[-50 250],ZLimits=[-100 100]);

Create a surface plotter.

plotter = surfacePlotter(theaterpplot,DisplayName="Surfaces");

Plot surfaces in the theater plot. Change view angles for better visualization.

plotSurface(plotter,plotterData)
view(-41,29)
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Version History
Introduced in R2022b

See Also
plotSurface | theaterPlot | surfacePlotterData

Topics
“Introduction to Radar Scenario Clutter Simulation”
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plotSurface
Plot surfaces in theater surface plotter

Syntax
plotSurface(sPlotter,plotData)

Description
plotSurface(sPlotter,plotData) plots surfaces specified by plotData using the surface
plotter sPlotter.

Examples

Plot Surface in Theatre Plot in Radar Scenario

Create a radar scenario.

scenario = radarScenario;

Define the terrain and boundaries of two surfaces and add the two surfaces to the radar scenario.

terrain1 = randi(100,4,5);
terrain2 = randi(100,3,3);
boundary1 = [0 100;
    0 100-eps];
boundary2 = [0 100;
    100 200];
s1 = landSurface(scenario,Terrain=terrain1,Boundary=boundary1);
s2 = landSurface(scenario,Terrain=terrain2,Boundary=boundary2);

Obtain the plotter data by using the surfacePlotterData function.

plotterData = surfacePlotterData(scenario.SurfaceManager)

plotterData=1×2 struct array with fields:
    X
    Y
    Z
    C

Create a theaterPlot object and specify the axis limits of the plot.

theaterpplot = theaterPlot(ZLimits=[-50 150],YLimits=[-50 250],ZLimits=[-100 100]);

Create a surface plotter.

plotter = surfacePlotter(theaterpplot,DisplayName="Surfaces");

Plot surfaces in the theater plot. Change view angles for better visualization.
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plotSurface(plotter,plotterData)
view(-41,29)

Input Arguments
sPlotter — Surface plotter object
SurfacePlotter object

Surface plotter object, created by the surfacePlotter function.

plotData — Plot data
S-element array of structures

Plot data, specified as an S-element array of structures, where S is the number of surfaces. You can
directly create this argument by using the surfacePlotterData function. To create this argument
manually, specify each structure with these fields.

Field Name Description
X Domain of the surface in the x-direction, specified

as an M-element real-valued vector. M is the
number of x-coordinates for defining the terrain
of the surface. The values for the elements in the
vector must monotonically increase.
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Field Name Description
Y Domain of the surface in the y-direction, specified

as an N-element real-valued vector. N is the
number of y-coordinates for defining the terrain
of the surface. The values for the elements in the
vector must monotonically increase.

Z Height values of the surface, specified as an N-
by-M real-valued matrix. N is the number of
elements in the Y field, and M is the number of
elements in the X field.

C Color for vertices in the terrain of the surface,
specified as an N-by-M-by-3 matrix of RGB
triplets. N is the number of elements in the Y
field, and M is the number of elements in the X
field. The plotSurface function determines the
color of a surface patch based on the color of its
first vertex.

Version History
Introduced in R2022b

See Also
surfacePlotterData | surfacePlotter | theaterPlot | SurfaceManager
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clutterRegionPlotter
Create clutter region plotter

Syntax
plotter = clutterRegionPlotter(tp)
plotter = clutterRegionPlotter(tp,Name=Value)

Description
plotter = clutterRegionPlotter(tp) creates a ClutterRegionPlotter object for use with
the theaterPlot object tp. Use the plotClutterRegion function with ClutterRegionPlotter
object to plot clutter.

plotter = clutterRegionPlotter(tp,Name=Value) creates a ClutterRegionPlotter
object with additional options specified by one or more name-value arguments. For example,
clutterRegionPlotter(DisplayName="SurfaceClutter") specifies "SurfaceClutter" as
the name displayed in the legend.

Examples

Create Rectangular Clutter Region

Create a clutterRegionPlotter object from a theaterPlot object. Fill a clutter region data
structure plotdata and then plot the region.

tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
plotdata = struct('X',[0 1 1 0],'Y',[0 0 1.5 1.5],'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [0 1 1 0]
                   Y: [0 0 1.5000 1.5000]
    RegionPlotHeight: 25

plotClutterRegion(clutrregion,plotdata);
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Create Irregular Clutter Region

Create a quadrilateral clutterRegionPlotter object from a theaterPlot object. Set the clutter
region data structure plotdata and then plot the region. Set an edge color and a face color.

Choose the four vertices of the quadrilateral. Set the region plot height to 25 m.

p1 = [1 4];
p2 = [5 3.5];
p3 = [3 1];
p4 = [0.9 1];
X = [p1(1) p2(1) p3(1) p4(1)];
Y = [p1(2) p2(2) p3(2) p4(2)];
tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName', ...
    'Clutter Region','RegionFaceColor','y', ...
    'RegionEdgeColor',[.6 .2 .3]);
plotdata = struct('X',X,'Y',Y,'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [1 5 3 0.9000]
                   Y: [4 3.5000 1 1]
    RegionPlotHeight: 25
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plotClutterRegion(clutrregion,plotdata);

Create Two Adjacent Clutter Regions

Create two clutter adjacent regions.

tp = theaterPlot;
clutp = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
pd = struct('X',[0 1.1; 1 2.1; 1 2.1; 0 1.1],'Y', ...
    [-1 -1; -1 -1;1 1; 1 1],'RegionPlotHeight',20);
plotClutterRegion(clutp,pd);
view(45,30)
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Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DisplayName="ClutterSurface"

DisplayName — Plot name to display in legend
character vector | string

Plot name to display in legend, specified as a character vector or string. If you do not specify this
argument, the function does not display a plot name.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string
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Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

RegionFaceAlpha — Face alpha value for all plotted regions
1 (default) | scalar in range [0 1]

Face alpha value for plotted regions, specified as a scalar in the range [0 1]. The same value is
applied to all regions.

RegionFaceColor — Face color value for all plotted regions
'black' (default) | character vector | scalar | RGB triplet | hexadecimal color code

Face color value for all plotted regions, specified as a color string or [R,G,B] vector .

RegionEdgeAlpha — Edge alpha for all region edges
1 (default) | scalar

The edge alpha value of the region edges, specified as a scalar. The same alpha value is used for all
regions.

RegionEdgeColor — Edge color for all plotted regions
'black' (default) | character vector | scalar | RGB triplet | hexadecimal color code

Edge color for all regions, specified as a character vector of a valid color, a string scalar of a valid
color, an RGB triplet, or a hexadecimal color code.

PatchMarker — Marker symbol for patches
'.' (default) | char

Marker symbol for patches, specified as a char.

o circle s square ^ triangle (up)
x x-mark d diamond v triangle (down)
+ plus p pentagram < triangle (left)
* star h hexagram > triangle (right)
. dot     

PatchMarkerFaceColor — Patch marker fill color
color string | [R, G, B] vector

Patch marker fill color, specified as a color string or an [R, G, B] vector defining a color.
Example: [.1,.1,.1]

PatchMarkerEdgeColor — Patch marker edge color
'blue' (default) | color string | [R, G, B] vector

Patch marker edge color, specified as a color string or an [R, G, B] vector defining a color.
Example: [.1,.5,.4]

PatchMarkerSize — Size of patch marker
3 (default) | positive integer
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Size of patch marker, specified as a positive integer.

ShowPatchCenters — Show patch centers
false (default) | true

Show patch centers, specified as false or true.

MaxPatches — Maximum number of clutter patches
100 (default) | scalar

Maximum number of clutter patches to plot, specified as a scalar.
Example: 3

Output Arguments
plotter — Clutter region plotter
ClutterRegionPlotter object

Clutter regions plotter, returned as a ClutterRegionPlotter object. You can modify this object by
changing its property values. The property names correspond to the name-value arguments of the
clutterRegionPlotter function.

To plot clutter regions, use the plotClutterRegion function.

Version History
Introduced in R2022b

See Also
theaterPlot | clutterRegionPlotter | ClutterRegionPlotter | plotClutterRegion |
clutterRegionData

Topics
“Introduction to Radar Scenario Clutter Simulation”
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plotClutterRegion
Plot clutter region in theater plot

Syntax
plotClutterRegion(plotter,plotterData)

Description
plotClutterRegion(plotter,plotterData) uses the clutter region plotter to display clutter
regions specified by the data plotterData.

Examples

Create Rectangular Clutter Region

Create a clutterRegionPlotter object from a theaterPlot object. Fill a clutter region data
structure plotdata and then plot the region.

tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
plotdata = struct('X',[0 1 1 0],'Y',[0 0 1.5 1.5],'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [0 1 1 0]
                   Y: [0 0 1.5000 1.5000]
    RegionPlotHeight: 25

plotClutterRegion(clutrregion,plotdata);
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Create Irregular Clutter Region

Create a quadrilateral clutterRegionPlotter object from a theaterPlot object. Set the clutter
region data structure plotdata and then plot the region. Set an edge color and a face color.

Choose the four vertices of the quadrilateral. Set the region plot height to 25 m.

p1 = [1 4];
p2 = [5 3.5];
p3 = [3 1];
p4 = [0.9 1];
X = [p1(1) p2(1) p3(1) p4(1)];
Y = [p1(2) p2(2) p3(2) p4(2)];
tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName', ...
    'Clutter Region','RegionFaceColor','y', ...
    'RegionEdgeColor',[.6 .2 .3]);
plotdata = struct('X',X,'Y',Y,'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [1 5 3 0.9000]
                   Y: [4 3.5000 1 1]
    RegionPlotHeight: 25
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plotClutterRegion(clutrregion,plotdata);

Create Two Adjacent Clutter Regions

Create two clutter adjacent regions.

tp = theaterPlot;
clutp = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
pd = struct('X',[0 1.1; 1 2.1; 1 2.1; 0 1.1],'Y', ...
    [-1 -1; -1 -1;1 1; 1 1],'RegionPlotHeight',20);
plotClutterRegion(clutp,pd);
view(45,30)
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Input Arguments
plotter — Clutter region plotter object
ClutterRegionPlotter object

ClutterRegionPlotter object, created by the clutterRegionPlotter function.

plotterData — Plot data
N-element array of structures

Plot data, specified as a structure. You can directly create this argument by using the
clutterRegionData function. To create this argument manually, specify each structure with these
fields.

Field Name Description
X x-coordinates of region specified as a M-by-N

matrix. Each column contains the x-coordinates
of a different clutter region. N is the number of
clutter regions.

Y y-coordinates of region specified as a M-by-N
matrix. Each column contains the y-coordinates
of a different clutter region. N is the number of
clutter regions.
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Field Name Description
RegionPlotHeight Height of the clutter region, specified as a scalar.

The same height applies to all regions.
PatchCenters Patch centers, specified as a 3-by-N matrix where

each column is a patch center position in scenario
coordinates.

Version History
Introduced in R2022b

See Also
theaterPlot | clutterRegionPlotter | ClutterRegionPlotter | plotClutterRegion |
clutterRegionData

Topics
“Introduction to Radar Scenario Clutter Simulation”
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ClutterRegionPlotter
Clutter region plotter object belonging to theater plot

Description
ClutterRegionPlotter is a clutter region plotter object belonging to a theaterPlot object. Use
the plotClutterRegion function to plot clutter from the ClutterRegionPlotter object.

Creation
Create a ClutterRegionPlotter objects using the clutterRegionPlotter object function of the
theaterPlot object.

Properties
DisplayName — Plot name to display in legend
character vector | string

Plot name to display in legend, specified as a character vector or string. If you do not specify this
argument, the function does not display a plot name.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string

Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

RegionFaceAlpha — Face alpha value for all plotted regions
1 (default) | scalar in range [0 1]

Face alpha value for plotted regions, specified as a scalar in the range [0 1]. The same value is
applied to all regions.

RegionFaceColor — Face color value for all plotted regions
'black' (default) | character vector | scalar | RGB triplet | hexadecimal color code

Face color value for all plotted regions, specified as a color string or [R,G,B] vector .

RegionEdgeAlpha — Edge alpha for all region edges
1 (default) | scalar

The edge alpha value of the region edges, specified as a scalar. The same alpha value is used for all
regions.

RegionEdgeColor — Edge color for all plotted regions
'black' (default) | character vector | scalar | RGB triplet | hexadecimal color code
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Edge color for all regions, specified as a character vector of a valid color, a string scalar of a valid
color, an RGB triplet, or a hexadecimal color code.

PatchMarker — Marker symbol for patches
'.' (default) | char

Marker symbol for patches, specified as a char.

o circle s square ^ triangle (up)
x x-mark d diamond v triangle (down)
+ plus p pentagram < triangle (left)
* star h hexagram > triangle (right)
. dot     

PatchMarkerFaceColor — Patch marker fill color
color string | [R, G, B] vector

Patch marker fill color, specified as a color string or an [R, G, B] vector defining a color.
Example: [.1,.1,.1]

PatchMarkerEdgeColor — Patch marker edge color
'blue' (default) | color string | [R, G, B] vector

Patch marker edge color, specified as a color string or an [R, G, B] vector defining a color.
Example: [.1,.5,.4]

PatchMarkerSize — Size of patch marker
3 (default) | positive integer

Size of patch marker, specified as a positive integer.

ShowPatchCenters — Show patch centers
false (default) | true

Show patch centers, specified as false or true.

MaxPatches — Maximum number of clutter patches
100 (default) | scalar

Maximum number of clutter patches to plot, specified as a scalar.
Example: 3

Examples

Create Rectangular Clutter Region

Create a clutterRegionPlotter object from a theaterPlot object. Fill a clutter region data
structure plotdata and then plot the region.
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tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
plotdata = struct('X',[0 1 1 0],'Y',[0 0 1.5 1.5],'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [0 1 1 0]
                   Y: [0 0 1.5000 1.5000]
    RegionPlotHeight: 25

plotClutterRegion(clutrregion,plotdata);

Create Irregular Clutter Region

Create a quadrilateral clutterRegionPlotter object from a theaterPlot object. Set the clutter
region data structure plotdata and then plot the region. Set an edge color and a face color.

Choose the four vertices of the quadrilateral. Set the region plot height to 25 m.

p1 = [1 4];
p2 = [5 3.5];
p3 = [3 1];
p4 = [0.9 1];
X = [p1(1) p2(1) p3(1) p4(1)];
Y = [p1(2) p2(2) p3(2) p4(2)];
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tp = theaterPlot;
clutrregion = clutterRegionPlotter(tp,'DisplayName', ...
    'Clutter Region','RegionFaceColor','y', ...
    'RegionEdgeColor',[.6 .2 .3]);
plotdata = struct('X',X,'Y',Y,'RegionPlotHeight',25)

plotdata = struct with fields:
                   X: [1 5 3 0.9000]
                   Y: [4 3.5000 1 1]
    RegionPlotHeight: 25

plotClutterRegion(clutrregion,plotdata);

Create Two Adjacent Clutter Regions

Create two clutter adjacent regions.

tp = theaterPlot;
clutp = clutterRegionPlotter(tp,'DisplayName','Clutter Regions');
pd = struct('X',[0 1.1; 1 2.1; 1 2.1; 0 1.1],'Y', ...
    [-1 -1; -1 -1;1 1; 1 1],'RegionPlotHeight',20);
plotClutterRegion(clutp,pd);
view(45,30)
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Version History
Introduced in R2022b

See Also
theaterPlot | clutterRegionPlotter | plotClutterRegion | clutterRegionData

Topics
“Introduction to Radar Scenario Clutter Simulation”
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trackHistoryLogic
Confirm and delete tracks based on recent track history

Description
The trackHistoryLogic object determines if a track should be confirmed or deleted based on the
track history. A track should be confirmed if there are at least Mc hits in the recent Nc updates. A
track should be deleted if there are at least Md misses in the recent Nd updates.

The confirmation and deletion decisions contribute to the track management by a radarTracker
object.

Creation
Syntax
logic = trackHistoryLogic
logic = trackHistoryLogic(Name,Value,...)

Description

logic = trackHistoryLogic creates a trackHistoryLogic object with default confirmation
and deletion thresholds.

logic = trackHistoryLogic(Name,Value,...) specifies the properties of the track history
logic object using one or more Name,Value pair arguments. Any unspecified properties take default
values.

Properties
ConfirmationThreshold — Confirmation threshold
[2 3] (default) | positive integer scalar | 2-element vector of positive integers

Confirmation threshold, specified as a positive integer scalar or 2-element vector of positive integers.
If the logic score is above this threshold, the track is confirmed. ConfirmationThreshold has the
form [Mc Nc], where Mc is the number of hits required for confirmation in the recent Nc updates.
When specified as a scalar, then Mc and Nc have the same value.
Example: [3 5]
Data Types: single | double

DeletionThreshold — Deletion threshold
[6 6] (default) | positive integer scalar | 2-element vector of positive integers

Deletion threshold, specified as a positive integer scalar or 2-element vector of positive integers. If
the logic score is above this threshold, the track is deleted. DeletionThreshold has the form [Md
Nd], where Md is the number of misses required for deletion in the recent Nd updates. When
specified as a scalar, then Md and Nd have the same value.
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Example: [5 5]
Data Types: single | double

History — Track history
logical vector

This property is read-only.

Track history, specified as a logical vector of length N, where N is the larger of the second element in
the ConfirmationThreshold and the second element in the DeletionThreshold. The first
element is the most recent update. A true value indicates a hit and a false value indicates a miss.

Object Functions
init Initialize track logic with first hit
hit Update track logic with subsequent hit
miss Update track logic with miss
checkConfirmation Check if track should be confirmed
checkDeletion Check if track should be deleted
output Get current state of track logic
reset Reset state of track logic
sync Synchronize trackHistoryLogic objects
clone Create copy of track logic

Examples

Create and Update History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0  0].

Update the logic four more times, where only the odd updates register a hit. The confirmation flag is
true by the end of the fifth update, because three hits (Mc) are counted in the most recent five
updates (Nc).
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for i = 2:5
    isOdd = logical(mod(i,2));
    if isOdd
        hit(historyLogic)
    else
        miss(historyLogic)
    end
    
    history = historyLogic.History;
    confFlag = checkConfirmation(historyLogic);
    delFlag = checkDeletion(historyLogic,true,i);
    disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
        '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0  1  0  0  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1  0  1  0  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  1  0  1  0  0  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1  0  1  0  1  0  0]. Confirmation Flag: 1. Deletion Flag: 0

Update the logic with a miss six times. The deletion flag is true by the end of the fifth update,
because six misses (Md) are counted in the most recent seven updates (Nd).

for i = 1:6
    miss(historyLogic);
    
    history = historyLogic.History;
    confFlag = checkConfirmation(historyLogic);
    delFlag = checkDeletion(historyLogic);
    disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
        '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0  1  0  1  0  1  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  1  0  1  0  1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  1  0  1  0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  0  1  0  1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0  0  0  0  0  1  0]. Confirmation Flag: 0. Deletion Flag: 1
History: [0  0  0  0  0  0  1]. Confirmation Flag: 0. Deletion Flag: 1

Version History
Introduced in R2021a

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Boston, MA:

Artech House, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
radarTracker
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checkConfirmation
Check if track should be confirmed

Syntax
tf = checkConfirmation(historyLogic)

Description
tf = checkConfirmation(historyLogic) returns a flag that is true when at least Mc out of Nc
recent updates of the track history logic object historyLogic are true.

Examples

Check Confirmation of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [3 3].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',[3 3])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [3 3]
                  History: [0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

History: [1  0  0]. Confirmation Flag: 0

Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

History: [1  1  0]. Confirmation Flag: 1
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Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
tf — Track should be confirmed
true | false

Track should be confirmed, returned as true or false.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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checkDeletion
Check if track should be deleted

Syntax
tf = checkDeletion(historyLogic)
tf = checkDeletion(historyLogic,tentativeTrack,age)

Description
tf = checkDeletion(historyLogic) returns a flag that is true when at least Md out of Nd
recent updates of the track history logic object historyLogic are false.

tf = checkDeletion(historyLogic,tentativeTrack,age) returns a flag that is true when
the track is tentative and there are not enough detections to allow it to confirm. Use the logical flag
tentativeTrack to indicate if the track is tentative and provide age as a numeric scalar.

Examples

Check Deletion of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',[4 5])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [4 5]
                  History: [0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   0

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1  0  0  0  0]. Deletion Flag: 1
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Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1  1  0  0  0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0  1  1  0  0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
delFlag = checkDeletion(historyLogic);
checkConfirmation(historyLogic)

ans = logical
   0

disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0  0  1  1  0]. Deletion Flag: 0

Check Deletion of Tentative Track

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
    'DeletionThreshold',5)

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [5 5]
                  History: [0 0 0 0 0]
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Initialize the logic, which records a hit as the first update to the logic. Then, record two misses.

init(historyLogic)
miss(historyLogic)
miss(historyLogic)
history = output(historyLogic)

history = 1x5 logical array

   0   0   1   0   0

The confirmation flag is false because the number of hits in the most recent 3 updates (Nc) is less
than 2 (Mc).

confirmationFlag = checkConfirmation(historyLogic)

confirmationFlag = logical
   0

Check the deletion flag as if the track were not tentative. The deletion flag is false because the
number of misses in the most recent 5 updates (Nm) is less than 4 (Mc).

deletionFlag = checkDeletion(historyLogic)

deletionFlag = logical
   0

Recheck the deletion flag, treating the track as tentative with an age of 3. The tentative deletion flag
is true because there are not enough detections to allow the track to confirm.

tentativeDeletionFlag = checkDeletion(historyLogic,true,3)

tentativeDeletionFlag = logical
   1

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

tentativeTrack — Track is tentative
false | true

Track is tentative, specified as false or true. Use tentativeTrack to indicate if the track is
tentative.

age — Number of updates
numeric scalar

Number of updates since track initialization, specified as a numeric scalar.
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Output Arguments
tf — Track can be deleted
true | false

Track can be deleted, returned as true or false.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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clone
Create copy of track logic

Syntax
clonedLogic = clone(logic)

Description
clonedLogic = clone(logic) returns a copy of the current track logic object, logic.

Examples

Clone Track History Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7])

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)

Update the logic four more times, where only the odd updates register a hit.

for i = 2:5
    isOdd = logical(mod(i,2));
    if isOdd
        hit(historyLogic)
    else
        miss(historyLogic)
    end
end

Get the current state of the logic.

history = output(historyLogic)

history = 1x7 logical array

   1   0   1   0   1   0   0
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Create a copy of the logic. The clone has the same confirmation threshold, deletion threshold, and
history as the original history logic.

clonedLogic = clone(historyLogic)

clonedLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 5]
        DeletionThreshold: [6 7]
                  History: [1 0 1 0 1 0 0]

Input Arguments
logic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
clonedLogic — Cloned track logic
trackHistoryLogic object

Cloned track logic, returned as a trackHistoryLogic object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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hit
Update track logic with subsequent hit

Syntax
hit(historyLogic)

Description
hit(historyLogic) updates the track history with a hit.

Examples

Update History Logic with Hit

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Update the logic with a hit. The first two elements of the 'History' property are 1.

hit(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  1  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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init
Initialize track logic with first hit

Syntax
init(historyLogic)

Description
init(historyLogic) initializes the track history logic with the first hit.

Examples

Initialize History-Based Logic

Create a history-based logic with default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic

historyLogic = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [6 6]
                  History: [0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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miss
Update track logic with miss

Syntax
miss(historyLogic)

Description
miss(historyLogic) updates the track history with a miss.

Examples

Update History Logic with Miss

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1  0  0  0  0  0].

Update the logic with a miss. The first element of the 'History' property is 0.

miss(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [0  1  0  0  0  0].

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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output
Get current state of track logic

Syntax
history = output(historyLogic)

Description
history = output(historyLogic) returns the recent history updates of the track history logic
object, historyLogic.

Examples

Get Recent History of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
    'DeletionThreshold',[6 7]);

Get the recent history of the logic. The history vector has a length of 7, which is the greater of Nc and
Nd. All values are 0 because the logic is not initialized.

h = output(historyLogic)

h = 1x7 logical array

   0   0   0   0   0   0   0

Initialize the logic, then get the recent history of the logic. The first element, which indicates the most
recent update, is 1.

init(historyLogic);
h = output(historyLogic)

h = 1x7 logical array

   1   0   0   0   0   0   0

Update the logic with a hit, then get the recent history of the logic.

hit(historyLogic);
h = output(historyLogic)

h = 1x7 logical array

   1   1   0   0   0   0   0
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Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

Output Arguments
history — Recent history
logical vector

Recent track history of historyLogic, returned as a logical vector. The length of the vector is the
same as the length of the History property of the historyLogic. The first element is the most
recent update. A true value indicates a hit and a false value indicates a miss.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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reset
Reset state of track logic

Syntax
reset(logic)

Description
reset(logic) resets the track logic object, logic.

Examples

Reset Track History Logic

Create a history-based logic using the default confirmation threshold and deletion threshold. Get the
current state of the logic. The current and maximum score are both 0.

historyLogic = trackHistoryLogic;
history = output(historyLogic)

history = 1x6 logical array

   0   0   0   0   0   0

Initialize the logic, then get the current state of the logic.

volume = 1.3;
beta = 0.1;
init(historyLogic);
history = output(historyLogic)

history = 1x6 logical array

   1   0   0   0   0   0

Reset the logic, then get the current state of the logic.

reset(historyLogic)
history = output(historyLogic)

history = 1x6 logical array

   0   0   0   0   0   0
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Input Arguments
logic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic
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sync
Synchronize trackHistoryLogic objects

Syntax
sync(historyLogic1,historyLogic2)

Description
sync(historyLogic1,historyLogic2) synchronizes historyLogic1 based on historyLogic2
so that they have the same history value.

Examples

Synchronize Two trackHistoryLogic Objects

Create two trackHistoryLogic objects.

logic1 = trackHistoryLogic

logic1 = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [6 6]
                  History: [0 0 0 0 0 0]

logic2 = trackHistoryLogic('ConfirmationThreshold',[3 3],'DeletionThreshold',[5 6])

logic2 = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 3]
        DeletionThreshold: [5 6]
                  History: [0 0 0 0 0 0]

Initialize logic2 with a hit.

init(logic2)
logic2

logic2 = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [3 3]
        DeletionThreshold: [5 6]
                  History: [1 0 0 0 0 0]

Synchronize logic1 to logic2.
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sync(logic1,logic2);
logic1

logic1 = 
  trackHistoryLogic with properties:

    ConfirmationThreshold: [2 3]
        DeletionThreshold: [6 6]
                  History: [1 0 0 0 0 0]

Input Arguments
historyLogic1 — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

historyLogic2 — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

Version History
Introduced in R2021a
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objectTrack
Single object track report

Description
objectTrack captures the track information of a single object. objectTrack is the standard output
format for trackers.

Creation

Syntax
track = objectTrack
track = objectTrack(Name,Value)

Description

track = objectTrack creates an objectTrack object with default property values. An
objectTrack object contains information like the age and state of a single track.

Tip To create an empty objectTrack object, use objectTrack.empty().

track = objectTrack(Name,Value) allows you to set properties using one or more name-value
pairs. Enclose each property name in single quotes.

Properties
TrackID — Unique track identifier
1 (default) | nonnegative integer

Unique track identifier, specified as a nonnegative integer. This property distinguishes different
tracks.
Example: 2

BranchID — Unique track branch identifier
0 (default) | nonnegative integer

Unique track branch identifier, specified as a nonnegative integer. This property distinguishes
different track branches.
Example: 1

SourceIndex — Index of source track reporting system
1 (default) | nonnegative integer
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Index of source track reporting system, specified as a nonnegative integer. This property identifies
the source that reports the track.
Example: 3

UpdateTime — Update time of track
0 (default) | nonnegative real scalar

Time at which the track was updated by a tracker, specified as a nonnegative real scalar.
Example: 1.2
Data Types: single | double

Age — Number of times track was updated
1 (default) | positive integer

Number of times the track was updated, specified as a positive integer. When a track is initialized, its
Age is equal to 1. Any subsequent update with a hit or miss increases the track Age by 1.
Example: 2

State — Current state of track
zeros(6,1) (default) | real-valued N-element vector

The current state of the track at the UpdateTime, specified as a real-valued N-element vector, where
N is the dimension of the state. The format of track state depends on the model used to track the
object. For example, for 3-D constant velocity model used with constvel, the state vector is [x; vx; y;
vy; z; vz].
Example: [1 0.2 3 0.2]
Data Types: single | double

StateCovariance — Current state uncertainty covariance of track
eye(6,6) (default) | real positive semidefinite symmetric N-by-N matrix

The current state uncertainty covariance of the track, specified as a real positive semidefinite
symmetric N-by-N matrix, where N is the dimension of state specified in the State property.
Data Types: single | double

StateParameters — Parameters of the track state reference frame
struct() (default) | structure | structure array

Parameters of the track state reference frame, specified as a structure or a structure array. Use this
property to define the track state reference frame and how to transform the track from the source
coordinate system to the fuser coordinate system.

ObjectClassID — Object class identifier
0 (default) | nonnegative integer

Object class identifier, specified as a nonnegative integer. This property distinguishes between
different user-defined object types. For example, you can use 1 for objects of type "car", and 2 for
objects of type "pedestrian". 0 is reserved for unknown classification.

If you specify this property as a nonzero integer, you can use the ObjectClassProbablities
property to specify the classification probabilities.
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Example: 3

ObjectClassProbablities — Object classification probabilities
1 (default) | N-element vector of nonnegative scalars

Object classification probabilities of the track, specified as an N-element vector of nonnegative
scalars. N is the total number of possible classes of the track. Each element must be a scalar in the
range [0 1], and the sum of all elements must be equal to 1.The i-th element of the vector
corresponds to the probability that the track belongs to the class i.
Example: [0.7 0.3]

TrackLogic — Track confirmation and deletion logic type
'History' (default) | 'Integrated' | 'Score'

Confirmation and deletion logic type, specified as:

• 'History' – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• 'Score' – Track confirmation and deletion is based on a log-likelihood track score. A high score
means that the track is more likely to be valid. A low score means that the track is more likely to
be a false alarm.

• 'Integrated' – Track confirmation and deletion is based on the integrated probability of track
existence.

TrackLogicState — State of track logic
1-by-M logical vector | 1-by-2 real-valued vector | nonnegative scalar

The current state of the track logic type. Based on the logic type specified in the TrackLogic
property, the logic state is specified as:

• 'History' – A 1-by-M logical vector, where M is the number of latest track logical states
recorded. true (1) values indicate hits, and false (0) values indicate misses. For example, [1 0
1 1 1] represents four hits and one miss in the last five updates. The default value for logic state
is 1.

• 'Score' – A 1-by-2 real-valued vector, [cs, ms]. cs is the current score, and ms is the maximum
score. The default value is [0, 0].

• 'Integrated' – A nonnegative scalar. The scalar represents the integrated probability of
existence of the track. The default value is 0.5.

IsConfirmed — Indicate if track is confirmed
true (default) | false

Indicate if the track is confirmed, specified as true or false.
Data Types: logical

IsCoasted — Indicate if track is coasted
false (default) | true

Indicate if the track is coasted, specified as true or false. A track is coasted if its latest update is
based on prediction instead of correction using detections.
Data Types: logical
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IsSelfReported — Indicate if track is self reported
true (default) | false

Indicate if the track is self reported, specified as true or false. A track is self reported if it is
reported from internal sources (senors, trackers, or fusers). To limit the propagation of rumors in a
tracking system, use the value false if the track was updated by an external source.
Example: false
Data Types: logical

ObjectAttributes — Object attributes
struct() (default) | structure

Object attributes passed by the tracker, specified as a structure.

Object Functions
toStruct Convert objectTrack object to struct

Examples

Create Track Report using objectTrack

Create a report of a track using objectTrack.

x = (1:6)';
P = diag(1:6);
track = objectTrack('State',x,'StateCovariance',P);
disp(track)

  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 1
                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: 1
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Version History
Introduced in R2021a
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Represent track class probability

The objectTrack object has a new property, ObjectClassProbabilities, which represents the
probabilities that the tracked target belongs to specific classes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The TrackLogic property can only be set during construction.

See Also
objectDetection
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toStruct
Convert objectTrack object to struct

Syntax
S = toStruct(objTrack)

Description
S = toStruct(objTrack) converts an array of objectTrack objects, objTrack, to an array of
structures whose fields are equivalent to the properties of objTrack.

Examples

Convert objectTrack to Struct

Create a report of a track using objectTrack.

  x = (1:6)';
  P = diag(1:6);
  track = objectTrack('State', x, 'StateCovariance', P)

track = 
  objectTrack with properties:

                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 1
                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: 1
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Convert the track object to a structure.

  S = toStruct(track)

S = struct with fields:
                     TrackID: 1
                    BranchID: 0
                 SourceIndex: 1
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                  UpdateTime: 0
                         Age: 1
                       State: [6x1 double]
             StateCovariance: [6x6 double]
             StateParameters: [1x1 struct]
               ObjectClassID: 0
    ObjectClassProbabilities: 1
                  TrackLogic: 'History'
             TrackLogicState: 1
                 IsConfirmed: 1
                   IsCoasted: 0
              IsSelfReported: 1
            ObjectAttributes: [1x1 struct]

Input Arguments
objTrack — Reports of object track
array of objectTrack object

Reports of object tracks, specified as an array of objectTrack objects.

Output Arguments
S — Structures converted from objectTrack
array of structure

Structures converted from objectTrack, returned as an array of structures. The dimension of the
returned structure is same with the dimension of the objTrack input. The fields of each structure
are equivalent to the properties of objectTrack.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectTrack
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objectDetection
Report for single object detection

Description
An objectDetection object contains an object detection report that was obtained by a sensor for a
single object. You can use the objectDetection output as the input to trackers such as
radarTracker.

Creation

Syntax
detection = objectDetection(time,measurement)
detection = objectDetection( ___ ,Name,Value)

Description

detection = objectDetection(time,measurement) creates an object detection at the
specified time from the specified measurement.

Tip To create an empty objectDetection object, use objectDetection.empty().

detection = objectDetection( ___ ,Name,Value) creates a detection object with
properties specified as one or more Name,Value pair arguments. Any unspecified properties have
default values. You cannot specify the Time or Measurement properties using Name,Value pairs.

Input Arguments

time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. This argument sets the Time property.

measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. N is determined by the coordinate
system used to report detections and other parameters that you specify in the
MeasurementParameters property for the objectDetection object.

This argument sets the Measurement property.

Output Arguments

detection — Detection report
objectDetection object
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Detection report for a single object, returned as an objectDetection object. An
objectDetection object contains these properties:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Properties
Time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. You cannot set this property as a name-value
pair. Use the time input argument instead.
Example: 5.0
Data Types: double

Measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. You cannot set this property as a
name-value pair. Use the measurement input argument instead.
Example: [1.0;-3.4]
Data Types: double | single

MeasurementNoise — Measurement noise covariance
scalar | real positive semi-definite symmetric N-by-N matrix

Measurement noise covariance, specified as a scalar or a real positive semi-definite symmetric N-by-
N matrix. N is the number of elements in the measurement vector. For the scalar case, the matrix is a
square diagonal N-by-N matrix having the same data interpretation as the measurement.
Example: [5.0,1.0;1.0,10.0]
Data Types: double | single

SensorIndex — Sensor identifier
1 | positive integer

Sensor identifier, specified as a positive integer. The sensor identifier lets you distinguish between
different sensors and must be unique to the sensor.
Example: 5
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Data Types: double

ObjectClassID — Object class identifier
0 (default) | nonnegative integer

Object class identifier, specified as a nonnegative integer. Use this property to distinguish detections
generated from different kinds of objects. For example, use 1 for objects of type "car", and 2 for
objects of type "pedestrian". The value 0 denotes an unknown object type.

When you specify this property as a nonzero integer, you can use the ObjectClassParameters
property to specify the detection classifier statistics.
Example: 1
Data Types: double

ObjectClassParameters — Parameters for detection classifier
[] (default) | structure

Parameters for detection classifier, specified as a structure. The structure can contain any field. For
class fusion with a multi-object tracker, such as the trackerGNN System object, you can specify the
ConfusionMatrix field as follows.

Field Name Description
ConfusionMatrix Confusion matrix of the detection classifier,

specified as an N-by-N real-valued matrix, where
N is the number of possible object classes. The
(i,j) element of the matrix represents the weight
or probability that the classifier classifies the
detection as class j if the true class of the
detection is class i.

For example, if the classifier outputs two classes
and makes right classification 95% of the time,
specify this matrix as [0.95 0.05; 0.05
0.95].

Data Types: struct

MeasurementParameters — Measurement function parameters
{} (default) | structure array | cell containing structure array | cell array

Measurement function parameters, specified as a structure array, a cell containing a structure array,
or a cell array. The property contains all the arguments used by the measurement function specified
by the MeasurementFcn property of a nonlinear tracking filter such as trackingEKF or
trackingUKF.

The table shows sample fields for the MeasurementParameters structures.
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Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1
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Field Description Example
IsParentToChild Logical scalar indicating if

Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

ObjectAttributes — Object attributes
{} (default) | cell array

Object attributes passed through the tracker, specified as a cell array. These attributes are added to
the output of the radarTracker but not used by the tracker.
Example: {[10,20,50,100],'radar1'}

Examples

Create Detection from Position Measurement

Create a detection from a position measurement. The detection is made at a timestamp of one second
from a position measurement of [100;250;10] in Cartesian coordinates.

detection = objectDetection(1,[100;250;10])

detection = 
  objectDetection with properties:

                     Time: 1
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: {}
         ObjectAttributes: {}

Create Detection With Measurement Noise

Create an objectDetection from a time and position measurement. The detection is made at a
time of one second for an object position measurement of [100;250;10]. Add measurement noise
and set other properties using Name-Value pairs.

detection = objectDetection(1,[100;250;10],'MeasurementNoise',10, ...
    'SensorIndex',1,'ObjectAttributes',{'Example object',5})
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detection = 
  objectDetection with properties:

                     Time: 1
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: {}
         ObjectAttributes: {'Example object'  [5]}

Version History
Introduced in R2021a

Specify class confusion matrix

Using the new ObjectClassParameters property, you can specify detection class statistics in the
form of a confusion matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
radarTracker | radarDataGenerator | trackingKF | trackingEKF | trackingUKF
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trackingKF
Linear Kalman filter for object tracking

Description
A trackingKF object is a discrete-time linear Kalman filter used to track states, such as positions
and velocities of target platforms.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The filter assumes the state-space model, including the state
model and the measurement model, is linear. When the process noise and measurement noise are
Gaussian and the motion model is linear, the Kalman filter is optimal. For a brief description of the
linear Kalman filter algorithm, see “Linear Kalman Filters”.

You can use a trackingKF object in these ways:

• Set the MotionModel property to one of predefined state transition models. See the
MotionModel property for details on these models.

• "1D Constant Velocity"
• "1D Constant Acceleration"
• "2D Constant Velocity"
• "2D Constant Acceleration"
• "3D Constant Velocity"
• "3D Constant Acceleration"

• Explicitly set the motion model. Set the MotionModel property to "Custom", and then use the
StateTransitionModel and MeasurementModel properties to specify the state transition
matrix and measurement matrix, respectively. Optionally, you can specify control inputs by
specifying the ControlModel property.

Creation

Syntax
filter = trackingKF
filter = trackingKF("MotionModel",model)
filter = trackingKF(A,H)
filter = trackingKF(A,H,B)
filter = trackingKF( ___ ,Name,Value)

Description

filter = trackingKF creates a discrete-time linear Kalman filter object for estimating the state of
a 2-D, constant-velocity, moving object. The function sets the MotionModel property of the filter to
"2D Constant Velocity".
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filter = trackingKF("MotionModel",model) sets the MotionModel property to a predefined
motion model, model. In this case, the filter initializes the state as a double-precision zero vector
based on the dimension of the motion model. The filter also configures the MeasurementModel
property so that the measurement model returns position measurements.

filter = trackingKF(A,H) specifies the StateTransitionModel and the MeasurementModel
properties to A and H, respectively. The function sets the MotionModel property to "Custom".

filter = trackingKF(A,H,B) sets the ControlModel property to the specified B. The function
sets the MotionModel property to "Custom".

filter = trackingKF( ___ ,Name,Value) configures the properties of the Kalman filter by using
one or more name-value arguments and any of the previous syntaxes. Any unspecified properties take
default values. Enclose each property name in quotes.

Properties
State — Kalman filter state
0 (default) | real-valued scalar | real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the state
vector. For information on the typical size of the state vector for each motion model, see the
MotionModel property. If you specify the initial state as a scalar, the filter extends the state to an M-
by-1 vector.

To use the filter with single-precision, floating-point variables, specify the MootionModel property as
a predefined model and specify State as a single-precision vector variable. For example:

filter = trackingKF("MotionModel","2D Constant Velocity","State",single([1; 2; 3; 4]))

Example: [200; 0.2; -40; -0.01]
Data Types: single | double

StateCovariance — State estimation error covariance
1 (default) | positive scalar | positive-definite real-valued M-by-M matrix

State estimation error covariance, specified as a positive scalar or a positive-definite real-valued M-
by-M matrix, where M is the size of the state vector. If you specify a scalar, the property value is the
product of the specified scalar and an M-by-M identity matrix. The matrix represents the uncertainty
in the state, and each diagonal element of the matrix represents the variance of the corresponding
state component. The off-diagonal elements represent cross-covariance between different state
components.
Example: [20 0.1; 0.1 1]
Data Types: double

MotionModel — Kalman filter motion model
"Custom" | "1D Constant Velocity" | "2D Constant Velocity" | "3D Constant
Velocity" | "1D Constant Acceleration" | "2D Constant Acceleration" | "3D Constant
Acceleration"

Kalman filter motion model, specified as "Custom" or one of these predefined models:
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• "1D Constant Velocity"
• "1D Constant Acceleration"
• "2D Constant Velocity"
• "2D Constant Acceleration"
• "3D Constant Velocity"
• "3D Constant Acceleration"

If you specify the property as one of the predefined motion models, the filter uses this state-space
model:

x(k + 1) = A(k)x(k) + G(k)w(k)
z(k) = H(k)x(k) + v(k)

where k is the discrete time step, x is the state, A is the state transition matrix, w is the process
noise, G is the process noise gain matrix, H is the measurement matrix, v is the measurement noise,
and z is the measurement. Note that the size of the gain matrix G is M-by-M/2, and the size of the
process noise w is M/2, where M is the size of the state x.

Motion Model State Vector x State Transition
Matrix (A)

Gain Matrix (G)

"1D Constant
Velocity"

[x;vx] [1 dt; 0 1] [dt^2/2; dt]

"2D Constant
Velocity"

[x;vx;y;vy] Block diagonal matrix
with the [1 dt; 0 1]
block repeated for the x
and y spatial
dimensions

Kronecker product of
kron(eye(2),
[dt^2/2; dt])

"3D Constant
Velocity"

[x;vx;y;vy;z;vz] Block diagonal matrix
with the [1 dt; 0 1]
block repeated for the x,
y, and z spatial
dimensions.

Kronecker product of
kron(eye(3),
[dt^2/2; dt])

"1D Constant
Acceleration"

[x;vx;ax] [1 dt dt^2/2; 0 1
dt; 0 0 1]

[dt^2/2; dt;1]

"2D Constant
Acceleration"

[x;vx;ax;y;vy;ay] Block diagonal matrix
with [1 dt dt^2/2;
0 1 dt; 0 0 1]
blocks repeated for the
x and y spatial
dimensions

Kronecker product of
kron(eye(2),
[dt^2/2; dt; 1])

"3D Constant
Acceleration"

[x;vx,ax;y;vy;ay;z
;vz;az]

Block diagonal matrix
with the [1 dt
0.5*dt^2; 0 1 dt;
0 0 1] block repeated
for the x, y, and z
spatial dimensions

Kronecker product of
kron(eye(3),
[dt^2/2; dt; 1])
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In the table, dt is the time step specified in the predict object function. If you want process noise
and measurement noise values different from the default values for the motion model, specify them in
the ProcessNoise and MeasurementNoise properties, respectively.

If you specify MotionModel as "Custom", you must specify a state transition model matrix A and a
measurement model matrix H as input arguments to the Kalman filter. You can optionally specify a
control model matrix, B, as well. When you specify a custom motion model, the filter uses this state-
space model:

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)
z(k) = H(k)x(k) + v(k)

where u is the control input. In this case, the size of the process noise w is M, where M is the size of
the state x. You can specify the covariance of w using the ProcessNoise property, and specify the
covariance of v using the MeasurementNoise property.
Data Types: char | string

StateTransitionModel — State transition model between time steps
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | real-valued M-by-M matrix

State transition model between time steps, specified as a real-valued M-by-M matrix. M is the size of
the state vector. In the absence of controls and noise, the state transition model predicts the state at
a time step to the next time step.
Example: [1 1; 0 1]

Dependencies

To enable this property, set the MotionModel property to "Custom".
Data Types: single | double

ControlModel — Control model
M-by-L real-valued matrix

Control model, specified as an M-by-L matrix. M is the dimension of the state vector, and L is the
number of controls or forces. The control model adds the effect of controls on the evolution of the
state.

Note To use a control model, you must specify this property when constructing the filter object. You
cannot change the size of the control model matrix after creating the filter.

Example: [.01 0.2]
Data Types: single | double

ProcessNoise — Covariance of process noise
1 (default) | nonnegative scalar | positive-semidefinite D-by-D matrix | positive-semidefinite M-by-M
matrix

Covariance of process noise, specified as a nonnegative scalar, a positive-semidefinite D-by-D matrix,
or a positive-semidefinite M-by-M matrix. Process noise represents the uncertainty of state
propagation, and the filter assumes the process noise to be zero-mean Gaussian white noise.
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• When the MotionModel property is specified as one of the predefined motion models, specify the
ProcessNoise property as a positive-semidefinite D-by-D matrix, where D is the number of
dimensions of the target motion. For example, D = 2 for the "2D Constant Velocity" or the
"2D Constant Acceleration" motion model.

In this case, if you specify the ProcessNoise property as a nonnegative scalar, then the scalar
extends to the diagonal elements of a diagonal covariance matrix, of size D-by-D .

• When the MotionModel property is specified as "Custom", specify the ProcessNoise property
as a positive-semidefinite M-by-M matrix, where M is the size of the filter state. For example, M =
6 if you customize a 3-D motion model in which the state is (x, vx, y, vy, z, vz).

In this case, if you specify the ProcessNoise property as a nonnegative scalar, then the scalar
extends to the diagonal elements of a diagonal covariance matrix, of size M-by-M.

Data Types: single | double

MeasurementModel — Measurement model from state vector
[1 0 0 0; 0 0 1 0] (default) | real-valued N-by-M matrix

Measurement model from the state vector, specified as a real-valued N-by-M matrix, where N is the
size of the measurement vector and M is the size of the state vector. The measurement model is a
linear matrix that determines measurements from the filter state.

Note You cannot change the size of the measurement model matrix after creating the filter.

Example: [1 0.5 0.01; 1.0 1 0]
Data Types: single | double

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued N-by-N matrix

Covariance of the measurement noise, specified as a positive scalar or a positive-definite, real-valued
N-by-N matrix, where N is the size of the measurement vector. If you specify this property as a scalar,
the property value is the product of the specified scalar and the N-by-N identity matrix. Measurement
noise represents the uncertainty of the measurement and the filter assumes measurement noise to be
zero-mean Gaussian white noise.
Example: 0.2
Data Types: single | double

EnableSmoothing — Enable state smoothing
false (default) | true

Enable state smoothing, specified as false or true. Setting this property to true requires the
Sensor Fusion and Tracking Toolbox license. When specified as true, you can:

• Use the smooth function, provided in Sensor Fusion and Tracking Toolbox, to smooth state
estimates of the previous steps. Internally, the filter stores the results from previous steps to allow
backward smoothing.

• Specify the maximum number of smoothing steps using the MaxNumSmoothingSteps property of
the tracking filter.
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MaxNumSmoothingSteps — Maximum number of smoothing steps
5 (default) | positive integer

Maximum number of backward smoothing steps, specified as a positive integer.

Dependencies

To enable this property, set the EnableSmoothing property to true.

MaxNumOOSMSteps — Maximum number of out-of-sequence measurement steps
0 (default) | nonnegative integer

Maximum number of out-of-sequence measurement (OOSM) steps, specified as a nonnegative integer.

• Setting this property to 0 disables the OOSM retrodiction capability of the filter object.
• Setting this property to a positive integer enables the OOSM retrodiction capability of the filter

object. This option requires a Sensor Fusion and Tracking Toolbox license. Also, you cannot set
the MotionModel property to "Custom". When you set this property as N>1, the filter object
saves the past state and state covariance history up to the last N+1 corrections. You can use the
OOSM and the retrodict and retroCorrect (or retroCorrectJPDA for multiple OOSMs)
object functions to reduce the uncertainty of the estimated state.

Increasing the value of this property increases the amount of memory that must be allocated for the
state history, but enables you to process OOSMs that arrive after longer delays. Note that the effect
of the uncertainty reduction using an OOSM decreases as the delay becomes longer.

Object Functions
predict Predict state and state estimation error covariance of linear Kalman filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and

JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter
tunableProperties Get tunable properties of filter
setTunedProperties Set properties to tuned values

Examples

Create Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D constant velocity motion model. Assume that the
measurement consists of the xy-location of the object.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);
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Create measured positions for the object on a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T  = 0.5;
pos = [0:vx*T:2;
       5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
    pstates(k,:) = predict(KF,T);
    cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),"k.",pstates(:,1),pstates(:,3),"+", ...
    cstates(:,1),cstates(:,3),"o")
xlabel("x [m]")
ylabel("y [m]")
grid
xt  = [x-2, pos(1,1)+0.1, pos(end,1)+0.1];
yt = [y, pos(1,2), pos(end,2)];
text(xt,yt,["First measurement","First position","Last position"])
legend("Object position","Predicted position","Corrected position")
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Use Custom trackingKF with Control Inputs

Specify a simulation time of 10 seconds with a time step of 1 second.

rng(2021) % For repeatable results
simulationTime = 20;
dt = 1;
tspan = 0:dt:simulationTime;
steps = length(tspan);

Specify the motion model as a 2-D constant velocity model with a state of [x; vx; y; vy]. The
measurement is [x; y].

A1D = [1 dt; 0 1]; 
A = kron(eye(2),A1D) % State transiton model

A = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

H1D = [1 0];
H = kron(eye(2),H1D) % Measurement model 

H = 2×4

     1     0     0     0
     0     0     1     0

sigma = 0.2;
R = sigma^2*eye(2); % Measurement noise covariance

Specify a control model matrix.

B1D = [0; 1];
B = kron(eye(2),B1D) % Control model matrix

B = 4×2

     0     0
     1     0
     0     0
     0     1

Assume the control inputs are sinusoidal on the velocity components, vx and vy.

gain = 5;
Ux = gain*sin(tspan(2:end));
Uy = gain*cos(tspan(2:end));
U =[Ux; Uy]; % Control inputs

Assuming the true initial state is [1 1 1 -1], simulate the system to obtain true states and
measurements.
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initialState = [1 1 1 -1]'; % [m m/s m m/s]
trueStates = NaN(4,steps);
trueStates(:,1) = initialState;

for i=2:steps
    trueStates(:,i) = A*trueStates(:,i-1) + B*U(:,i-1);
end

measurements = H*trueStates + chol(R)*randn(2,steps);

Visualize the true trajectory and the measurements.

figure
plot(trueStates(1,:),trueStates(3,:),"DisplayName","Truth")
hold on
plot(measurements(1,:),measurements(2,:),"x","DisplayName","Measurements")
xlabel("x (m)")
ylabel("y (m)")
legend

Create a trackingKF filter with a custom motion model. Enable the control input by specifying the
control model. Specify the initial state in the filter based on the first measurement.

initialFilterState = [measurements(1,1); 0; measurements(2,1); 0];
filter = trackingKF("MotionModel","Custom", ...
    "StateTransitionModel",A, ...
    "MeasurementModel",H, ...
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    "ControlModel",B, ...
    "State",initialFilterState);

Estimate states by using the predict and correct object functions.

estimateStates = NaN(4,steps);
estimateStates(:,1) = initialFilterState;
for i = 2:steps
    predict(filter,U(:,i-1));
    estimateStates(:,i) = correct(filter,measurements(:,i));
end

Visualize the state estimates.

plot(estimateStates(1,:),estimateStates(3,:),"g","DisplayName","Estimates");

Version History
Introduced in R2021a

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.
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[2] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." Transaction of the
ASME–Journal of Basic Engineering, Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House. 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you create a trackingKF object, and you specify the MotionModel property as any value other
than "Custom", then you must specify the state vector explicitly at construction time using the
State property. The choice of motion model determines the size of the state vector, but motion
models do not specify the data type such as double precision or single precision. Code generation
requires both the size and data type.

• In code generation, after cloning the filter, you cannot change its EnableSmoothing property.
• In code generation, after calling the filter, you cannot change its MaxNumOOSMSteps property.
• The filter supports strict single-precision code generation.
• The filter supports non-dynamic memory allocation code generation.

See Also
Functions
initcvkf | initcakf

Objects
trackingEKF | trackingUKF | trackingABF | radarTracker

Topics
“Linear Kalman Filters”
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trackingABF
Alpha-beta filter for object tracking

Description
The trackingABF object represents an alpha-beta filter designed for object tracking for an object
that follows a linear motion model and has a linear measurement model. Linear motion is defined by
constant velocity or constant acceleration. Use the filter to predict the future location of an object, to
reduce noise for a detected location, or to help associate multiple objects with their tracks.

Creation

Syntax
abf = trackingABF
abf = trackingABF(Name,Value)

Description

abf = trackingABF returns an alpha-beta filter for a discrete time, 2-D constant velocity system.
The motion model is named '2D Constant Velocity' with the state defined as [x; vx; y; vy].

abf = trackingABF(Name,Value) specifies the properties of the filter using one or more
Name,Value pair arguments. Any unspecified properties take default values.

Properties
MotionModel — Model of target motion
'2D Constant Velocity' (default) | '1D Constant Velocity' | '3D Constant Velocity' |
'1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Model of target motion, specified as a character vector or string. Specifying 1D, 2D, or 3D specifies
the dimension of the target's motion. Specifying Constant Velocity assumes that the target
motion is a constant velocity at each simulation step. Specifying Constant Acceleration assumes
that the target motion is a constant acceleration at each simulation step.
Data Types: char | string

State — Filter state
real-valued M-element vector | scalar

Filter state, specified as a real-valued M-element vector. A scalar input is extended to an M-element
vector. The state vector is the concatenated states from each dimension. For example, if
MotionModel is set to '3D Constant Acceleration', the state vector is in the form:[x; x';
x''; y; y'; y''; z; z'; z''] where ' and '' indicate first and second order derivatives,
respectively.
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If you want a filter with single-precision floating-point variables, specify State as a single-precision
vector variable. For example,

filter = trackingABF('State',single([1;2;3;4]))

Example: [200;0.2;150;0.1;0;0.25]
Data Types: single | double

StateCovariance — State estimation error covariance
M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix, where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state.
Example: eye(6)

ProcessNoise — Process noise covariance
D-by-D matrix | scalar

Process noise covariance, specified as a scalar or a D-by-D matrix, where D is the dimensionality of
motion. For example, if MotionModel is '2D Constant Velocity', then D = 2. A scalar input is
extended to a D-by-D matrix.
Example: [20 0.1; 0.1 1]

MeasurementNoise — Measurement noise covariance
D-by-D matrix | scalar

Measurement noise covariance, specified as a scalar or a D-by-D matrix, where D is the
dimensionality of motion. For example, if MotionModel is '2D Constant Velocity', then D = 2.
A scalar input is extended to a M-by-M matrix.
Example: [20 0.1; 0.1 1]

Coefficients — Alpha-beta filter coefficients
row vector | scalar

Alpha-beta filter coefficients, specified as a scalar or row vector. A scalar input is extended to a row
vector. If you specify constant velocity in the MotionModel property, the coefficients are [alpha
beta]. If you specify constant acceleration in the MotionModel property, the coefficients are
[alpha beta gamma].
Example: [20 0.1]

EnableSmoothing — Enable state smoothing
false (default) | true

Enable state smoothing, specified as false or true. Setting this property to true requires the
Sensor Fusion and Tracking Toolbox license. When specified as true, you can:

• Use the smooth function, provided in Sensor Fusion and Tracking Toolbox, to smooth state
estimates of the previous steps. Internally, the filter stores the results from previous steps to allow
backward smoothing.

• Specify the maximum number of smoothing steps using the MaxNumSmoothingSteps property of
the tracking filter.
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MaxNumSmoothingSteps — Maximum number of smoothing steps
5 (default) | positive integer

Maximum number of backward smoothing steps, specified as a positive integer.

Dependencies

To enable this property, set the EnableSmoothing property to true.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter

Examples

Run trackingABF Filter

This example shows how to create and run a trackingABF filter. Call the predict and correct
functions to track an object and correct the state estimation based on measurements.

Create the filter. Specify the initial state.

state = [1;2;3;4];
abf = trackingABF('State',state);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 sec time step.

[xPred,pPred] = predict(abf, 0.5);

Call correct with a given measurement.

meas = [1;1];
[xCorr,pCorr] = correct(abf, meas);

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(abf);         % Predict over 1 second
[xPred,pPred] = predict(abf,2);       % Predict over 2 seconds

Modify the filter coefficients and correct again with a new measurement.

abf.Coefficients = [0.4 0.2];
[xCorr,pCorr] = correct(abf,[8;14]);

Version History
Introduced in R2021a
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References
[1] Blackman, Samuel S. "Multiple-target tracking with radar applications." Dedham, MA, Artech

House, Inc., 1986, 463 p. (1986).
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingKF | trackingEKF | trackingUKF | radarTracker
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trackingEKF
Extended Kalman filter for object tracking

Description
A trackingEKF object is a discrete-time extended Kalman filter used to track dynamical states, such
as positions and velocities of targets and objects.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The extended Kalman filter can model the evolution of a
state when the state follows a nonlinear motion model, when the measurements are nonlinear
functions of the state, or when both conditions apply. The extended Kalman filter is based on the
linearization of the nonlinear equations. This approach leads to a filter formulation similar to the
linear Kalman filter, trackingKF.

The process and measurements can have Gaussian noise, which you can include in these ways:

• Add noise to both the process and the measurements. In this case, the sizes of the process noise
and measurement noise must match the sizes of the state vector and measurement vector,
respectively.

• Add noise in the state transition function, the measurement model function, or in both functions.
In these cases, the corresponding noise sizes are not restricted.

See “Extended Kalman Filters” for more details.

Creation

Syntax
filter = trackingEKF
filter = trackingEKF(transitionfcn,measurementfcn,state)
filter = trackingEKF( ___ ,Name,Value)

Description

filter = trackingEKF creates an extended Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingEKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingEKF( ___ ,Name,Value) configures the properties of the extended Kalman
filter object by using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.
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Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
The value of M is determined based on the motion model you use. For example, if you use a 2-D
constant velocity model specified by constvel, in which the state is [x;vx;y;vy], M is four.

If you want a filter with single-precision floating-point variables, specify State as a single-precision
vector variable. For example,

filter = trackingEKF('State',single([1;2;3;4]))

Example: [200; 0.2]
Data Types: single | double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values. You
can use one of these functions as your state transition function.

Function Name Function Purpose
constvel Constant-velocity state update model
constacc Constant-acceleration state update model
constturn Constant turn-rate state update model

You can also write your own state transition function. The valid syntaxes for the state transition
function depend on whether the filter has additive process noise. The table shows the valid syntaxes
based on the value of the HasAdditiveProcessNoise property.
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Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingEKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc
Data Types: function_handle

StateTransitionJacobianFcn — Jacobian of state transition function
function handle

Jacobian of the state transition function, specified as a function handle. This function has the same
input arguments as the state transition function.

The valid syntaxes for the Jacobian of the state transition function depend on whether the filter has
additive process noise. The table shows the valid syntaxes based on the value of the
HasAdditiveProcessNoise property.
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Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

Jx(k) = statejacobianfcn(x(k))
Jx(k) = statejacobianfcn(x(k),parameters)

• x(k) is the state at time k.
• Jx(k) denotes the Jacobian of the predicted

state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))
[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dt)
[Jx(k),Jw(k)] = statejacobianfcn(__,parameters)

• x(k) is the state at time k
• w(k) is a sample Q-element vector of the

process noise at time k. Q is the size of the
process noise covariance. The process noise
vector in the nonadditive case does not need
to have the same dimensions as the state
vector.

• Jx(k) denotes the Jacobian of the predicted
state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• Jw(k) denotes the M-by-Q Jacobian of the
predicted state with respect to the process
noise elements.

• dt is the time step of the trackingEKF filter,
filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

If this property is not specified, the Jacobians are computed by numeric differencing at each call of
the predict function. This computation can increase the processing time and numeric inaccuracy.
Example: @constaccjac
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.
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• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. The function accepts the M-element
state vector an inputs and outputs the N-element measurement vector. You can use one of these
functions as your measurement function.

Function Name Function Purpose
cvmeas Constant-velocity measurement model
cameas Constant-acceleration measurement model
ctmeas Constant turn-rate measurement model

You can also write your own measurement function.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If the HasMeasurementWrapping property is true, you must additionally return the
measurement wrapping bounds, which the filter uses to wrap the measurement residuals, as the
second output argument of the measurement function.

[z(k),bounds] = measurementfcn(__)

The function must return bounds as an M-by-2 real-valued matrix, where M is the size of z(k). In
each row, the first and second elements specify the lower and upper bounds, respectively, for the
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corresponding measurement variable. You can use −Inf or Inf to represent that the variable
does not have a lower or upper bound.

For example, consider a measurement function that returns the azimuth and range of a platform
as [azimuth; range]. If the azimuth angle wraps between -180 and 180 degrees while the range
is unbounded and nonnegative, then specify the second output argument of the function as [-180
180; 0 Inf].

Example: @cameas
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
function handle

Jacobian of the measurement function, specified as a function handle. The function has the same
input arguments as the measurement function. The function can take additional input parameters,
such sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the Jacobian function using one of these
syntaxes:

Jmx(k) = measjacobianfcn(x(k))

Jmx(k) = measjacobianfcn(x(k),parameters)

x(k) is the state at time k. Jx(k) denotes the N-by-M Jacobian of the measurement function with
respect to the state. The parameters argument stands for all arguments required by the
measurement function.

• If HasAdditiveMeasurementNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k))

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is an R-dimensional sample noise vector. Jmx(k) denotes the
N-by-M Jacobian of the measurement function with respect to the state. Jmv(k) denotes the
Jacobian of the N-by-R measurement function with respect to the measurement noise. The
parameters argument stands for all arguments required by the measurement function.

If not specified, measurement Jacobians are computed using numerical differencing at each call to
the correct function. This computation can increase processing time and numerical inaccuracy.
Example: @cameasjac
Data Types: function_handle

HasMeasurementWrapping — Wrapping of measurement residuals
0 (default) | false or 0 | true or 1

Wrapping of measurement residuals in the filter, specified as a logical 0 (false) or 1 (true). When
specified as true, the measurement function specified in the MeasurementFcn property must return
two output arguments:

• The first argument is the measurement, returned as an M-element real-valued vector.
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• The second argument is the wrapping bounds, returned as an M-by-2 real-valued matrix, where M
is the dimension of the measurement. In each row, the first and second elements are the lower and
upper bounds for the corresponding measurement variable. You can use −Inf or Inf to represent
that the variable does not have a lower or upper bound.

If you enable this property, the filter wraps the measurement residuals according to the measurement
bounds, which helps prevent the filter from divergence caused by incorrect measurement residual
values.

These measurement functions have predefined wrapping bounds:

• cvmeas
• cameas
• ctmeas

In these functions, the wrapping bounds are [-180 180] degrees for azimuth angle measurements and
[-90 90] degrees for elevation angle measurements. Other measurements are not bounded.

Note You can specify this property only when constructing the filter.

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurementNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

EnableSmoothing — Enable state smoothing
false (default) | true

Enable state smoothing, specified as false or true. Setting this property to true requires the
Sensor Fusion and Tracking Toolbox license. When specified as true, you can:

• Use the smooth function, provided in Sensor Fusion and Tracking Toolbox, to smooth state
estimates of the previous steps. Internally, the filter stores the results from previous steps to allow
backward smoothing.
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• Specify the maximum number of smoothing steps using the MaxNumSmoothingSteps property of
the tracking filter.

MaxNumSmoothingSteps — Maximum number of smoothing steps
5 (default) | positive integer

Maximum number of backward smoothing steps, specified as a positive integer.
Dependencies

To enable this property, set the EnableSmoothing property to true.

MaxNumOOSMSteps — Maximum number of out-of-sequence measurement steps
0 (default) | nonnegative integer

Maximum number of out-of-sequence measurement (OOSM) steps, specified as a nonnegative integer.

• Setting this property to 0 disables the OOSM retrodiction capability of the filter object.
• Setting this property to a positive integer enables the OOSM retrodiction capability of the filter

object. This option requires a Sensor Fusion and Tracking Toolbox license. When you set this
property as N>1, the filter object saves the past state and state covariance history up to the last N
+1 corrections. You can use the OOSM and the retrodict and retroCorrect (or
retroCorrectJPDA for multiple OOSMs) object functions to reduce the uncertainty of the
estimated state.

Increasing the value of this property increases the amount of memory that must be allocated for the
state history, but enables you to process OOSMs that arrive after longer delays. Note that the effect
of the uncertainty reduction using an OOSM decreases as the delay becomes longer.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and

JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter
tunableProperties Get tunable properties of filter
setTunedProperties Set properties to tuned values

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);
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Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Filter Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector

h Measurement function
that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the object
state.

State M-element vector
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Filter Parameter Description Filter Property Size
Pk State error covariance

matrix representing the
uncertainty in the
values of the state.

StateCovariance M-by-M matrix

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is a measure of the
uncertainty in the
dynamic model. It is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M matrix when
HasAdditiveProcess
Noise is true. Q-by-Q
matrix when
HasAdditiveProcess
Noise is false

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement. It
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N matrix when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.

F Function determining
Jacobian of propagated
state with respect to
previous state.

StateTransitionJac
obianFcn

M-by-M matrix

H Function determining
Jacobians of
measurement with
respect to the state and
measurement noise.

MeasurementJacobia
nFcn

N-by-M for state vector
Jacobian and N-by-R for
measurement vector
Jacobian

Algorithms
The extended Kalman filter estimates the state of a process governed by this nonlinear stochastic
equation:

xk + 1 = f (xk, uk, wk, t)

xk is the state at step k. f() is the state transition function. Random noise perturbations, wk, can affect
the object motion. The filter also supports a simplified form,

xk + 1 = f (xk, uk, t) + wk

To use the simplified form, set HasAdditiveProcessNoise to true.

In the extended Kalman filter, the measurements are also general functions of the state:

zk = h(xk, vk, t)
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h(xk,vk,t) is the measurement function that determines the measurements as functions of the state.
Typical measurements are position and velocity or some function of position and velocity. The
measurements can also include noise, represented by vk. Again, the filter offers a simpler formulation.

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurementNoise to true.

These equations represent the actual motion and the actual measurements of the object. However,
the noise contribution at each step is unknown and cannot be modeled deterministically. Only the
statistical properties of the noise are known.

Version History
Introduced in R2021a

References
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[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.” Transactions of the
ASME–Journal of Basic Engineering. Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• In code generation, after cloning the filter, you cannot change its EnableSmoothing property.
• In code generation, after calling the filter, you cannot change its MaxNumOOSMSteps property.
• The filter supports strict single-precision code generation when the specified state transition

function and measurement function both support single-precision code generation.
• The filter supports non-dynamic memory allocation code generation.

See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constvel | constveljac | cvmeas | cvmeasjac | initcaekf | initcvekf |
initctekf

Objects
trackingKF | trackingUKF | trackingABF | radarTracker
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Topics
“Extended Kalman Filters”
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trackingUKF
Unscented Kalman filter for object tracking

Description
The trackingUKF object is a discrete-time unscented Kalman filter used to track the positions and
velocities of targets and objects.

An unscented Kalman filter is a recursive algorithm for estimating the evolving state of a process
when measurements are made on the process. The unscented Kalman filter can model the evolution
of a state that obeys a nonlinear motion model. The measurements can also be nonlinear functions of
the state, and the process and measurements can have noise.

Use an unscented Kalman filter when one of both of these conditions apply:

• The current state is a nonlinear function of the previous state.
• The measurements are nonlinear functions of the state.

The unscented Kalman filter estimates the uncertainty about the state, and its propagation through
the nonlinear state and measurement equations, by using a fixed number of sigma points. Sigma
points are chosen by using the unscented transformation, as parameterized by the Alpha, Beta, and
Kappa properties.

Creation

Syntax
filter = trackingUKF
filter = trackingUKF(transitionfcn,measurementfcn,state)
filter = trackingUKF( ___ ,Name,Value)

Description

filter = trackingUKF creates an unscented Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingUKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingUKF( ___ ,Name,Value) configures the properties of the unscented Kalman
filter object using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.
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Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.

If you want a filter with single-precision floating-point variables, specify State as a single-precision
vector variable. For example,

filter = trackingUKF('State',single([1;2;3;4]))

Example: [200; 0.2]
Data Types: single | double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values. You
can use one of these functions as your state transition function.

Function Name Function Purpose
constvel Constant-velocity state update model
constacc Constant-acceleration state update model
constturn Constant turn-rate state update model

You can also write your own state transition function. The valid syntaxes for the state transition
function depend on whether the filter has additive process noise. The table shows the valid syntaxes
based on the value of the HasAdditiveProcessNoise property.
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Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingUKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle
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Measurement model function, specified as a function handle. The function accepts the M-element
state vector an inputs and outputs the N-element measurement vector. You can use one of these
functions as your measurement function.

Function Name Function Purpose
cvmeas Constant-velocity measurement model
cameas Constant-acceleration measurement model
ctmeas Constant turn-rate measurement model

You can also write your own measurement function.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If the HasMeasurementWrapping property is true, you must additionally return the
measurement wrapping bounds, which the filter uses to wrap the measurement residuals, as the
second output argument of the measurement function.

[z(k),bounds] = measurementfcn(__)

The function must return bounds as an M-by-2 real-valued matrix, where M is the size of z(k). In
each row, the first and second elements specify the lower and upper bounds, respectively, for the
corresponding measurement variable. You can use −Inf or Inf to represent that the variable
does not have a lower or upper bound.

For example, consider a measurement function that returns the azimuth and range of a platform
as [azimuth; range]. If the azimuth angle wraps between -180 and 180 degrees while the range
is unbounded and nonnegative, then specify the second output argument of the function as [-180
180; 0 Inf].

Example: @cameas
Data Types: function_handle

HasMeasurementWrapping — Wrapping of measurement residuals
0 (default) | false or 0 | true or 1

Wrapping of measurement residuals in the filter, specified as a logical 0 (false) or 1 (true). When
specified as true, the measurement function specified in the MeasurementFcn property must return
two output arguments:
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• The first argument is the measurement, returned as an M-element real-valued vector.
• The second argument is the wrapping bounds, returned as an M-by-2 real-valued matrix, where M

is the dimension of the measurement. In each row, the first and second elements are the lower and
upper bounds for the corresponding measurement variable. You can use −Inf or Inf to represent
that the variable does not have a lower or upper bound.

If you enable this property, the filter wraps the measurement residuals according to the measurement
bounds, which helps prevent the filter from divergence caused by incorrect measurement residual
values.

These measurement functions have predefined wrapping bounds:

• cvmeas
• cameas
• ctmeas

In these functions, the wrapping bounds are [-180 180] degrees for azimuth angle measurements and
[-90 90] degrees for elevation angle measurements. Other measurements are not bounded.

Note You can specify this property only when constructing the filter.

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurementNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

Alpha — Sigma point spread around state
1.0e-3 (default) | positive scalar greater than 0 and less than or equal to 1

Sigma point spread around state, specified as a positive scalar greater than 0 and less than or equal
to 1.

Beta — Distribution of sigma points
2 (default) | nonnegative scalar
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Distribution of sigma points, specified as a nonnegative scalar. This parameter incorporates
knowledge of the noise distribution of states for generating sigma points. For Gaussian distributions,
setting Beta to 2 is optimal.

Kappa — Secondary scaling factor for generating sigma points
0 (default) | scalar from 0 to 3

Secondary scaling factor for generation of sigma points, specified as a scalar from 0 to 3. This
parameter helps specify the generation of sigma points.

EnableSmoothing — Enable state smoothing
false (default) | true

Enable state smoothing, specified as false or true. Setting this property to true requires the
Sensor Fusion and Tracking Toolbox license. When specified as true, you can:

• Use the smooth function, provided in Sensor Fusion and Tracking Toolbox, to smooth state
estimates of the previous steps. Internally, the filter stores the results from previous steps to allow
backward smoothing.

• Specify the maximum number of smoothing steps using the MaxNumSmoothingSteps property of
the tracking filter.

MaxNumSmoothingSteps — Maximum number of smoothing steps
5 (default) | positive integer

Maximum number of backward smoothing steps, specified as a positive integer.

Dependencies

To enable this property, set the EnableSmoothing property to true.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and

JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter
tunableProperties Get tunable properties of filter
setTunedProperties Set properties to tuned values

Examples

Constant-Velocity Unscented Kalman Filter

Create a trackingUKF object using the predefined constant-velocity motion model, constvel, and
the associated measurement model, cvmeas. These models assume that the state vector has the form
[x;vx;y;vy] and that the position measurement is in Cartesian coordinates, [x;y;z]. Set the sigma point
spread property to 1e-2.
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filter = trackingUKF(@constvel,@cvmeas,[0;0;0;0],'Alpha',1e-2);

Run the filter. Use the predict and correct functions to propagate the state. You can call predict
and correct in any order and as many times as you want.

meas = [1;1;0]; 
[xpred, Ppred] = predict(filter);
[xcorr, Pcorr] = correct(filter,meas);
[xpred, Ppred] = predict(filter);
[xpred, Ppred] = predict(filter)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500   -0.0000    0.0000
    4.7500    3.7500    0.0000   -0.0000
   -0.0000    0.0000   11.7500    4.7500
    0.0000   -0.0000    4.7500    3.7500

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Model Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector

h Measurement function
that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector
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Model Parameter Description Filter Property Size
xk Estimate of the object

state.
State M

Pk State error covariance
matrix representing the
uncertainty in the
values of the state

StateCovariance M-by-M

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is measure of the
uncertainty in your
dynamic model and is
assumed to be zero-
mean white Gaussian
noise

ProcessNoise M-by-M when
HasAdditiveProcess
Noise is true. Q-by-Q
when
HasAdditiveProcess
Noiseis false.

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement and
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.

α Determines spread of
sigma points.

Alpha scalar

β A priori knowledge of
sigma point distribution.

Beta scalar

κ Secondary scaling
parameter.

Kappa scalar

Algorithms
The unscented Kalman filter estimates the state of a process governed by a nonlinear stochastic
equation

xk + 1 = f (xk, uk, wk, t)

where xk is the state at step k. f() is the state transition function, uk are the controls on the process.
The motion may be affected by random noise perturbations, wk. The filter also supports a simplified
form,

xk + 1 = f (xk, uk, t) + wk

To use the simplified form, set HasAdditiveProcessNoise to true.

In the unscented Kalman filter, the measurements are also general functions of the state,

zk = h(xk, vk, t)
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where h(xk,vk,t) is the measurement function that determines the measurements as functions of the
state. Typical measurements are position and velocity or some function of these. The measurements
can include noise as well, represented by vk. Again the class offers a simpler formulation

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurementNoise to true.

These equations represent the actual motion of the object and the actual measurements. However,
the noise contribution at each step is unknown and cannot be modeled exactly. Only statistical
properties of the noise are known.

Version History
Introduced in R2021a

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code uses an algorithm that is different from the algorithm that the trackingUKF
object uses. You might see some numerical differences in the results obtained using the two
methods.

• The filter supports strict single-precision code generation when the specified state transition
function and measurement function both support single-precision code generation.

• The filter supports non-dynamic memory allocation code generation.
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See Also
Functions
constacc | constaccjac | cameas | cameasjac | constturn | constturnjac | ctmeas |
ctmeasjac | constvel | constveljac | cvmeas | cvmeasjac | initcaukf | initcvukf |
initctukf

Objects
trackingKF | trackingEKF | trackingABF | radarTracker
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clone
Create duplicate tracking filter

Syntax
filterClone = clone(filter)

Description
filterClone = clone(filter) creates a copy of a tracking filter that has the same property
values as the original filter.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

Output Arguments
filterClone — Cloned filter
tracking filter object

Cloned filter, returned as a tracking filter object of the same type as filter. The cloned filter has the
same properties as the original filter.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
correct | correctjpda | distance | initialize | likelihood | predict | residual
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correct
Correct state and state estimation error covariance using tracking filter

Syntax
[xcorr,Pcorr] = correct(filter,zmeas)

[xcorr,Pcorr] = correct(filter,zmeas,measparams)

[xcorr,Pcorr] = correct(filter,zmeas,zcov)

[xcorr,Pcorr,zcorr] = correct(filter,zmeas)
[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov)

correct(filter, ___ )
xcorr = correct(filter, ___ )

Description
[xcorr,Pcorr] = correct(filter,zmeas) returns the corrected state, xcorr, and the
corrected state estimation error covariance, Pcorr, for the next time step of the input tracking filter
based on the current measurement, zmeas. The corrected values overwrite the internal state and
state estimation error covariance of filter.

[xcorr,Pcorr] = correct(filter,zmeas,measparams) specifies additional parameters used
by the measurement function that is defined in the MeasurementFcn property of filter. You can
return any of the outputs from preceding syntaxes.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correct(filter,zmeas,zcov) specifies additional measurement covariance,
zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas) also returns the correction of
measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov) returns the correction of
measurements, zcorr, and also specifies additional measurement covariance, zcov, used in the
MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

correct(filter, ___ ) updates filter with the corrected state and state estimation error
covariance without returning the corrected values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xcorr = correct(filter, ___ ) updates filter with the corrected state and state estimation
error covariance but returns only the corrected state, xcorr.
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Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurement of filter
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.
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Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the
MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correct:

[xcorr,Pcorr] = correct(filter,frame,sensorpos,sensorvel)

The correct function internally calls the following:

meas = cameas(state,frame,sensorpos,sensorvel)

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

Output Arguments
xcorr — Corrected state of filter
vector | matrix

Corrected state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Pcorr — Corrected state covariance of filter
vector | matrix

Corrected state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zcorr — Corrected measurement of filter
vector | matrix

Corrected measurement of the filter, specified as a vector or matrix. You can return zcorr only when
filter is a trackingABF object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
clone | correctjpda | distance | initialize | likelihood | predict | residual
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correctjpda
Correct state and state estimation error covariance using tracking filter and JPDA

Syntax
[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs)
[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

Description
[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs) returns the corrected state,
xcorr, and the corrected state estimation error covariance, Pcorr, for the next time step of the
input tracking filter. The corrected values are based on a set of measurements, zmeas, and their joint
probabilistic data association coefficients, jpdacoeffs. These values overwrite the internal state and
state estimation error covariance of filter.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams) specifies
additional parameters used by the measurement function that is defined in the MeasurementFcn
property of the tracking filter object.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) specifies additional
measurement covariance, zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs) also returns the
correction of measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) returns the
correction of measurements, zcorr, and also specifies additional measurement covariance, zcov,
used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:
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• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurements
M-by-N matrix

Measurements, specified as an M-by-N matrix, where M is the dimension of a single measurement,
and N is the number of measurements.
Data Types: single | double

jpdacoeffs — Joint probabilistic data association coefficients
(N+1)-element vector

Joint probabilistic data association coefficients, specified as an (N+1)-element vector. The ith (i = 1,
…, N) element of jpdacoeffs is the joint probability that the ith measurement in zmeas is
associated with the filter. The last element of jpdacoeffs corresponds to the probability that no
measurement is associated with the filter. The sum of all elements of jpdacoeffs must equal 1.
Data Types: single | double

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the
MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correctjpda:

[xcorr,Pcorr] = correctjpda(filter,frame,sensorpos,sensorvel)

The correctjpda function internally calls the following:

meas = cameas(state,frame,sensorpos,sensorvel)

Output Arguments
xcorr — Corrected state
P-element vector

Corrected state, returned as a P-element vector, where P is the dimension of the estimated state. The
corrected state represents the a posteriori estimate of the state vector, taking into account the
current measurements and their associated probabilities.
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Pcorr — Corrected state error covariance
positive-definite P-by-P matrix

Corrected state error covariance, returned as a positive-definite P-by-P matrix, where P is the
dimension of the state estimate. The corrected state covariance matrix represents the a posteriori
estimate of the state covariance matrix, taking into account the current measurements and their
associated probabilities.

zcorr — Corrected measurements
M-by-N matrix

Corrected measurements, returned as an M-by-N matrix, where M is the dimension of a single
measurement, and N is the number of measurements. You can return zcorr only when filter is a
trackingABF object.

More About
JPDA Correction Algorithm for Discrete Extended Kalman Filter

In the measurement update of a regular Kalman filter, the filter usually only needs to update the state
and covariance based on one measurement. For instance, the equations for measurement update of a
discrete extended Kalman filter can be given as

xk+ = xk−+ Kk(y − h(xk−))
Pk+ = Pk−− KkSkKkT

where xk
− and xk

+ are the a priori and a posteriori state estimates, respectively, Kk is the Kalman gain,
y is the actual measurement, and h(xk

−) is the predicted measurement. Pk
− and Pk

+ are the a priori
and a posteriori state error covariance matrices, respectively. The innovation matrix Sk is defined as

Sk = HkPk−HkT

where Hk is the Jacobian matrix for the measurement function h.

In the workflow of a JPDA tracker, the filter needs to process multiple probable measurements yi (i =
1, …, N) with varied probabilities of association βi (i = 0, 1, …, N). Note that β0 is the probability that
no measurements is associated with the filter. The measurement update equations for a discrete
extended Kalman filter used for a JPDA tracker are

xk+ = xk−+ Kk ∑
i = 1

N
βi yi− h(xk−)

Pk+ = Pk−− (1− β0)KkSkKkT + Pk

where

Pk = Kk ∑
i = 1

N
βi yi− h(xk−) yi− h(xk−) T − δy δy T KkT

and

δy = ∑
j = 1

N
β j y j− h(xk−)
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Note that these equations only apply to trackingEKF and are not the exact equations used in other
tracking filters.

Version History
Introduced in R2021a

References
[1] Fortmann, T., Y. Bar-Shalom, and M. Scheffe. "Sonar Tracking of Multiple Targets Using Joint

Probabilistic Data Association." IEEE Journal of Ocean Engineering. Vol. 8, Number 3, 1983,
pp. 173–184.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

correctjpda supports only double-precision code generation, not single-precision.

See Also
clone | correct | distance | initialize | likelihood | predict | residual
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distance
Distances between current and predicted measurements of tracking filter

Syntax
dist = distance(filter,zmeas)
dist = distance(filter,zmeas,measparams)

Description
dist = distance(filter,zmeas) computes the normalized distances between one or more
current object measurements, zmeas, and the corresponding predicted measurements computed by
the input filter. Use this function to assign measurements to tracks.

This distance computation takes into account the covariance of the predicted state and the
measurement noise.

dist = distance(filter,zmeas,measparams) specifies additional parameters that are used by
the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Measurements of tracked objects
matrix

Measurements of tracked objects, specified as a matrix. Each row of the matrix contains a
measurement vector.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the filter. If filter is
a trackingKF or trackingABF object, then you cannot specify measparams.

Suppose you set the MeasurementFcn property of filter to @cameas, and then set these values:

measurementParams = {frame,sensorpos,sensorpos}
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The distance function internally calls the following:

cameas(state,frame,sensorpos,sensorvel)

Output Arguments
dist — Distances between measurements
row vector

Distances between measurements, returned as a row vector. Each element corresponds to a distance
between the predicted measurement in the input filter and a measurement contained in a row of
zmeas.

Algorithms
The distance function computes the normalized distance between the filter object and a set of
measurements. This distance computation is a variant of the Mahalanobis distance and takes into
account the residual (the difference between the object measurement and the value predicted by the
filter), the residual covariance, and the measurement noise.

Consider an extended Kalman filter with state x and measurement z. The equations used to compute
the residual, zres, and the residual covariance, S, are

zres = z – h(x),
S = R + HPHT,

where:

• h is the measurement function defined in the MeasurementFcn property of the filter.
• R is the measurement noise covariance defined in the MeasurementNoise property of the filter.
• H is the Jacobian of the measurement function defined in the MeasurementJacobianFcn

property of the filter.

The residual covariance calculation for other filters can vary slightly from the one shown because
tracking filters have different ways of propagating the covariance to the measurement space. For
example, instead of using the Jacobian of the measurement function to propagate the covariance,
unscented Kalman filters sample the covariance, and then propagate the sampled points.

The equation for the Mahalanobis distance, d2, is
d2 = zres

TS–1zres,

The distance function computes the normalized distance, dn, as
dn = d2 + log(|S|),

where log(|S|) is the logarithm of the determinant of residual covariance S.

The log(|S|) term accounts for tracks that are coasted, meaning that they are predicted but have not
had an update for a long time. Tracks in this state can make S very large, resulting in a smaller
Mahalanobis distance relative to the updated tracks. This difference in distance values can cause the
coasted tracks to incorrectly take detections from the updated tracks. The log(|S|) term compensates
for this effect by penalizing such tracks, whose predictions are highly uncertain.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | initialize | likelihood | predict | residual
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initialize
Initialize state and covariance of tracking filter

Syntax
initialize(filter,state,statecov)
initialize(filter,state,statecov,Name,Value)

Description
initialize(filter,state,statecov) initializes the filter by setting the State and
StateCovariance properties of the filter with the corresponding state and statecov inputs.

initialize(filter,state,statecov,Name,Value) also initializes properties of filter by
using one or more name-value pairs. Specify the name of the filter property and the value to which
you want to initialize it. You cannot change the size or type of the properties that you initialize.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter

state — Filter state
real-valued M-element vector

Filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

statecov — State estimation error covariance
positive-definite real-valued M-by-M matrix

State estimation error covariance, specified as a positive-definite real-valued M-by-M matrix. M is the
size of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | likelihood | predict | residual
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likelihood
Likelihood of measurement from tracking filter

Syntax
measlikelihood = likelihood(filter,zmeas)
measlikelihood = likelihood(filter,zmeas,measparams)

Description
measlikelihood = likelihood(filter,zmeas) returns the likelihood of a measurement,
zmeas, that was produced by the specified filter, filter.

measlikelihood = likelihood(filter,zmeas,measparams) specifies additional parameters
that are used by the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn of the input filter. If filter is a
trackingKF or trackingABF object, then you cannot specify measparams.

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | predict | residual
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predict
Predict state and state estimation error covariance of tracking filter

Syntax
[xpred,Ppred] = predict(filter)

[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,predparams)

[xpred,Ppred,zpred] = predict(filter)
[xpred,Ppred,zpred] = predict(filter,dt)

predict(filter, ___ )
xpred = predict(filter, ___ )

Description
[xpred,Ppred] = predict(filter) returns the predicted state, xpred, and the predicted state
estimation error covariance, Ppred, for the next time step of the input tracking filter. The predicted
values overwrite the internal state and state estimation error covariance of filter.

[xpred,Ppred] = predict(filter,dt) specifies the time step as a positive scalar in seconds,
and returns one or more of the outputs from the preceding syntaxes.

[xpred,Ppred] = predict(filter,predparams) specifies additional prediction parameters
used by the state transition function. The state transition function is defined in the
StateTransitionFcn property of filter.

[xpred,Ppred,zpred] = predict(filter) also returns the predicted measurement at the next
time step.

You can use this syntax only when filter is a trackingABF object.

[xpred,Ppred,zpred] = predict(filter,dt) returns the predicted state, state estimation
error covariance, and measurement at the specified time step.

You can use this syntax only when filter is a trackingABF object.

predict(filter, ___ ) updates filter with the predicted state and state estimation error
covariance without returning the predicted values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xpred = predict(filter, ___ ) updates filter with the predicted state and state estimation
error covariance but returns only the predicted state, xpred.

Examples
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Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
    'StateTransitionJacobianFcn',@constveljac, ...
    'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

    1.2500
    0.2500
    1.2500
    0.2500

Ppred = 4×4

   11.7500    4.7500         0         0
    4.7500    3.7500         0         0
         0         0   11.7500    4.7500
         0         0    4.7500    3.7500

Input Arguments
filter — Filter for object tracking
trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter

To use the predict function with a trackingKF linear Kalman filter, see predict (trackingKF).

dt — Time step
positive scalar

Time step for next prediction, specified as a positive scalar in seconds.
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predparams — Prediction parameters
comma-separated list of arguments

Prediction parameters used by the state transition function, specified as a comma-separated list of
arguments. These arguments are the same arguments that are passed into the state transition
function specified by the StateTransitionFcn property of the input filter.

Suppose you set the StateTransitionFcn property to @constacc and then call the predict
function:

[xpred,Ppred] = predict(filter,dt)

The predict function internally calls the following:

state = constacc(state,dt)

Output Arguments
xpred — Predicted state of filter
vector | matrix

Predicted state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Ppred — Predicted state covariance of filter
vector | matrix

Predicted state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zpred — Predicted measurement
vector | matrix

Predicted measurement, specified as a vector or matrix. You can return zpred only when filter is a
trackingABF object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual
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predict
Predict state and state estimation error covariance of linear Kalman filter

Syntax
[xpred,Ppred] = predict(filter)
[xpred,Ppred] = predict(filter,dt)

[xpred,Ppred] = predict(filter)
[xpred,Ppred] = predict(filter,A)
[xpred,Ppred] = predict(filter,A,Q)

[xpred,Ppred] = predict(filter,u)
[xpred,Ppred] = predict(filter,u,A,B)
[xpred,Ppred] = predict(filter,u,A,B,Q)

Description
Syntaxes for Predefined Motion Model

Use these syntaxes if you specify a predefined motion model in the MotionModel property of the
trackingKF object.

[xpred,Ppred] = predict(filter) returns the predicted state xpred and the predicted state
estimation error covariance Ppred after one second using the motion model specified in the filter.
The predicted values overwrite the internal state and state estimation error covariance of the
filter.

[xpred,Ppred] = predict(filter,dt) predicts the state and state estimation error covariance
at the specified time step dt.

Syntaxes for Custom Motion Model Without Control Input

Use these syntaxes if you specify the MotionModel property as "Custom" and do not use control
inputs.

[xpred,Ppred] = predict(filter) returns the predicted state xpred and the predicted state
estimation error covariance Ppred using the state transition matrix specified in the
StateTransitionModel property of the filter. The predicted values overwrite the internal state
and state estimation error covariance of the filter.

[xpred,Ppred] = predict(filter,A) specifies the state transition model A. Use this syntax
when the state transition model is time-varying.

[xpred,Ppred] = predict(filter,A,Q) specifies the state transition model A and the process
noise covariance Q. Use this syntax when the state transition model and the process noise are time-
varying.

Syntaxes for Custom Motion Model with Control Input

Use these syntaxes if you specify the MotionModel property as "Custom" and use control inputs.
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[xpred,Ppred] = predict(filter,u) returns the predicted state xpred and the predicted state
estimation error covariance Ppred using the state transition model specified in the
StateTransitionModel property of the filter and a control input u.

[xpred,Ppred] = predict(filter,u,A,B) specifies the force or control input u, the state
transition model A, and the control model B. Use this syntax when the state transition model and
control model are time-varying.

[xpred,Ppred] = predict(filter,u,A,B,Q) specifies the force or control input u, the state
transition model A, the control model B, and the process noise covariance Q. Use this syntax when the
state transition model, control model, and process noise are time-varying.

Examples

Create Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D constant velocity motion model. Assume that the
measurement consists of the xy-location of the object.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create measured positions for the object on a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T  = 0.5;
pos = [0:vx*T:2;
       5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
    pstates(k,:) = predict(KF,T);
    cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),"k.",pstates(:,1),pstates(:,3),"+", ...
    cstates(:,1),cstates(:,3),"o")
xlabel("x [m]")
ylabel("y [m]")
grid
xt  = [x-2, pos(1,1)+0.1, pos(end,1)+0.1];
yt = [y, pos(1,2), pos(end,2)];
text(xt,yt,["First measurement","First position","Last position"])
legend("Object position","Predicted position","Corrected position")
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Use Custom trackingKF with Control Inputs

Specify a simulation time of 10 seconds with a time step of 1 second.

rng(2021) % For repeatable results
simulationTime = 20;
dt = 1;
tspan = 0:dt:simulationTime;
steps = length(tspan);

Specify the motion model as a 2-D constant velocity model with a state of [x; vx; y; vy]. The
measurement is [x; y].

A1D = [1 dt; 0 1]; 
A = kron(eye(2),A1D) % State transiton model

A = 4×4

     1     1     0     0
     0     1     0     0
     0     0     1     1
     0     0     0     1

H1D = [1 0];
H = kron(eye(2),H1D) % Measurement model 
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H = 2×4

     1     0     0     0
     0     0     1     0

sigma = 0.2;
R = sigma^2*eye(2); % Measurement noise covariance

Specify a control model matrix.

B1D = [0; 1];
B = kron(eye(2),B1D) % Control model matrix

B = 4×2

     0     0
     1     0
     0     0
     0     1

Assume the control inputs are sinusoidal on the velocity components, vx and vy.

gain = 5;
Ux = gain*sin(tspan(2:end));
Uy = gain*cos(tspan(2:end));
U =[Ux; Uy]; % Control inputs

Assuming the true initial state is [1 1 1 -1], simulate the system to obtain true states and
measurements.

initialState = [1 1 1 -1]'; % [m m/s m m/s]
trueStates = NaN(4,steps);
trueStates(:,1) = initialState;

for i=2:steps
    trueStates(:,i) = A*trueStates(:,i-1) + B*U(:,i-1);
end

measurements = H*trueStates + chol(R)*randn(2,steps);

Visualize the true trajectory and the measurements.

figure
plot(trueStates(1,:),trueStates(3,:),"DisplayName","Truth")
hold on
plot(measurements(1,:),measurements(2,:),"x","DisplayName","Measurements")
xlabel("x (m)")
ylabel("y (m)")
legend
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Create a trackingKF filter with a custom motion model. Enable the control input by specifying the
control model. Specify the initial state in the filter based on the first measurement.

initialFilterState = [measurements(1,1); 0; measurements(2,1); 0];
filter = trackingKF("MotionModel","Custom", ...
    "StateTransitionModel",A, ...
    "MeasurementModel",H, ...
    "ControlModel",B, ...
    "State",initialFilterState);

Estimate states by using the predict and correct object functions.

estimateStates = NaN(4,steps);
estimateStates(:,1) = initialFilterState;
for i = 2:steps
    predict(filter,U(:,i-1));
    estimateStates(:,i) = correct(filter,measurements(:,i));
end

Visualize the state estimates.

plot(estimateStates(1,:),estimateStates(3,:),"g","DisplayName","Estimates");
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Input Arguments
filter — Linear Kalman filter for object tracking
trackingKF object

Linear Kalman filter for object tracking, specified as a trackingKF object.

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.

A — State transition model
real-valued M-by-M matrix

State transition model, specified as a real-valued M-by-M matrix, where M is the size of the state
vector.

Q — Covariance of process noise
nonnegative scalar | positive-semidefinite D-by-D matrix | positive-semidefinite M-by-M matrix

Covariance of process noise, specified as a nonnegative scalar, a positive-semidefinite D-by-D matrix,
or a positive-semidefinite M-by-M matrix.
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• When the MotionModel property of the filter is specified as one of the predefined motion
models, specify Q as a positive-semidefinite D-by-D matrix, where D is the number of dimensions of
the target motion. For example, D = 2 for the "2D Constant Velocity" or the "2D Constant
Acceleration" motion model.

In this case, if you specify Q as a nonnegative scalar, then the scalar extends to the diagonal
elements of a diagonal covariance matrix, whose size is D-by-D .

• When the MotionModel property of the filter is specified as "Custom", specify Q as a positive-
semidefinite M-by-M matrix, where M is the size of the filter state. For example, M = 6 if you
customize a 3-D motion model in which the state is (x, vx, y, vy, z, vz).

In this case, if you specify Q as a nonnegative scalar, then the scalar extends to the diagonal
elements of a diagonal covariance matrix, whose size is M-by-M.

u — Control vector
real-valued L-element vector

Control vector, specified as a real-valued L-element vector.

B — Control model
real-valued M-by-L matrix

Control model, specified as a real-valued M-by-L matrix. M is the size of the state vector. L is the
number of independent controls.

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state represents the
deducible estimate of the state vector, propagated from the previous state using the state transition
and control models.

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

Predicted state covariance matrix, returned as a real-valued M-by-M matrix. M is the size of the state
vector. The predicted state covariance matrix represents the deducible estimate of the covariance
matrix vector. The filter propagates the covariance matrix from the previous estimate.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual
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residual
Measurement residual and residual noise from tracking filter

Syntax
[zres,rescov] = residual(filter,zmeas)
[zres,rescov] = residual(filter,zmeas,measparams)

Description
[zres,rescov] = residual(filter,zmeas) computes the residual and residual covariance of
the current given measurement, zmeas, with the predicted measurement in the tracking filter,
filter. This function applies to filters that assume a Gaussian distribution for noise.

[zres,rescov] = residual(filter,zmeas,measparams) specifies additional parameters that
are used by the MeasurementFcn of the filter.

If filter is a trackingKF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the input filter. If
filter is a trackingKF object, then you cannot specify measparams.

Output Arguments
zres — Residual between current and predicted measurement
matrix

Residual between current and predicted measurement, returned as a matrix.
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rescov — Residual covariance
matrix

Residual covariance, returned as a matrix.

Algorithms
The residual is the difference between a measurement and the value predicted by the filter. For
Kalman filters, the residual calculation depends on whether the filter is linear or nonlinear.

Linear Kalman Filters

Given a linear Kalman filter with a current measurement of z, the residual zres is defined as
zres = z – Hx,

where:

• H is the measurement model set by the MeasurementModel property of the filter.
• x is the current filter state.

The covariance of the residual, S, is defined as
S = R + HPHT,

where:

• P is the state covariance matrix.
• R is the measurement noise matrix set by the MeasurementNoise property of the filter.

Nonlinear Kalman Filters

Given a nonlinear Kalman filter with a current measurement of z, the residual zres is defined as:
zres = z – h(x),

where:

• h is the measurement function set by the MeasurementFcn property.
• x is the current filter state.

The covariance of the residual, S, is defined as:
S = R + Rp,

where:

• R is the measurement noise matrix set by the MeasurementNoise property of the filter.
• Rp is the state covariance matrix projected onto the measurement space.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
clone | correct | correctjpda | distance | initialize | likelihood | predict
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insSensor
Inertial navigation system and GNSS/GPS simulation model

Description
The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements.

To output fused INS and GNSS measurements:

1 Create the insSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
INS = insSensor
INS = insSensor(Name,Value)

Description

INS = insSensor returns a System object, INS, that models a device that outputs measurements
from an INS and GNSS.

INS = insSensor(Name,Value) sets properties on page 4-871 using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MountingLocation — Location of sensor on platform (m)
[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.

Tunable: Yes
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Data Types: single | double

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Roll is the rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. RollAccuracy sets the standard deviation of the roll measurement noise.

Tunable: Yes
Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Pitch is the rotation around the y-axis of the sensor body. Pitch noise is modeled as a white noise
process. PitchAccuracy defines the standard deviation of the pitch measurement noise.

Tunable: Yes
Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Yaw is the rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation of the yaw measurement noise.

Tunable: Yes
Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
[1 1 1] (default) | nonnegative real scalar | three-element real-valued vector

Accuracy of the position measurement of the sensor body, in meters, specified as a nonnegative real
scalar or a three-element real-valued vector. The elements of the vector set the accuracy of the x-, y-,
and z-position measurements, respectively. If you specify PositionAccuracy as a scalar value, then
the object sets the accuracy of all three positions to this value.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation of the position measurement noise.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar
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Accuracy of the velocity measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation of the velocity measurement noise.

Tunable: Yes
Data Types: single | double

AccelerationAccuracy — Accuracy of acceleration measurement (m/s2)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Acceleration noise is modeled as a white noise process. AccelerationAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

AngularVelocityAccuracy — Accuracy of angular velocity measurement (deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body, in meters per second, specified as
a nonnegative real scalar.

Angular velocity is modeled as a white noise process. AngularVelocityAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

TimeInput — Enable input of simulation time
false or 0 (default) | true or 1

Enable input of simulation time, specified as a logical 0 (false) or 1 (true). Set this property to
true to input the simulation time by using the simTime argument.

Tunable: No
Data Types: logical

HasGNSSFix — Enable GNSS fix
true or 1 (default) | false or 0

Enable GNSS fix, specified as a logical 1 (true) or 0 (false). Set this property to false to simulate
the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position measurements drift at a
rate specified by the PositionErrorFactor property.

Tunable: Yes
Dependencies

To enable this property, set TimeInput to true.
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Data Types: logical

PositionErrorFactor — Position error factor without GNSS fix
[0 0 0] (default) | nonnegative scalar | 1-by-3 vector of scalars

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 vector of scalars.

When the HasGNSSFix property is set to false, the position error grows at a quadratic rate due to
constant bias in the accelerometer. The position error for a position component E(t) can be expressed
as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and t is the
time since the GNSS fix is lost. While running, the object computes t based on the simTime input.
The computed E(t) values for the x, y, and z components are added to the corresponding position
components of the gTruth input.

Tunable: Yes

Dependencies

To enable this property, set TimeInput to true and HasGNSSFix to false.
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as one of these options:

• 'Global stream' –– Generate random numbers using the current global random number
stream.

• 'mt19937ar with seed' –– Generate random numbers using the mt19937ar algorithm, with
the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
measurement = INS(gTruth)
measurement = INS(gTruth,simTime)
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Description

measurement = INS(gTruth) models the data received from an INS sensor reading and GNSS
sensor reading. The output measurement is based on the inertial ground-truth state of the sensor
body, gTruth.

measurement = INS(gTruth,simTime) additionally specifies the time of simulation, simTime. To
enable this syntax, set the TimeInput property to true.

Input Arguments

gTruth — Inertial ground-truth state of sensor body
structure

Inertial ground-truth state of sensor body, in local Cartesian coordinates, specified as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The field values must be of type double or single.

The Position, Velocity, and Orientation fields are required. The other fields are optional.
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Example: struct('Position',[0 0 0],'Velocity',[0 0
0],'Orientation',quaternion([1 0 0 0]))

simTime — Simulation time
nonnegative real scalar

Simulation time, in seconds, specified as a nonnegative real scalar.
Data Types: single | double

Output Arguments

measurement — Measurement of sensor body motion
structure

Measurement of the sensor body motion, in local Cartesian coordinates, returned as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The returned field values are of type double or single and are of the same type as the
corresponding field values in the gTruth input.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to insSensor
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
release Release resources and allow changes to System object property values and input

characteristics

Examples

Generate INS Measurements from Stationary Input

Create a motion structure that defines a stationary position at the local north-east-down (NED) origin.
Because the platform is stationary, you need to define only a single sample. Assume the ground-truth
motion is sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System
object™. Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct( ...
    'Position',zeros(1,3), ...
    'Velocity',zeros(1,3), ...
    'Orientation',ones(1,1,'quaternion'));

INS = insSensor;

positionMeasurements = zeros(numSamples,3);
velocityMeasurements = zeros(numSamples,3);
orientationMeasurements = zeros(numSamples,1,'quaternion');

In a loop, call INS with the stationary motion structure to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = 1:numSamples
    
    measurements = INS(motion);
    
    positionMeasurements(i,:) = measurements.Position;
    velocityMeasurements(i,:) = measurements.Velocity;
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    orientationMeasurements(i) = measurements.Orientation;
    
end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements,'ZYX','frame');

t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)')
legend('North','East','Down')

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
legend('North','East','Down')

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')
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Generate INS Measurements for Radar Scenario

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path. Use radarScenario to organize the simulation and visualize the
motion.

Specify the ground-truth trajectory as a figure-eight path in the North-East plane. Use a 50 Hz
sample rate and 5 second duration.

Fs = 50;
duration = 5;
numSamples = Fs*duration;
t = (0:(numSamples-1)).'/Fs;

a = 2;

x = a.*sqrt(2).*cos(t) ./ (sin(t).^2 + 1);
y = sin(t) .* x;
z = zeros(numSamples,1);

waypoints = [x,y,z];

path = waypointTrajectory('Waypoints',waypoints,'TimeOfArrival',t);
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Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Create a radar scenario with a single platform whose motion is defined by path.

scenario = radarScenario('UpdateRate',Fs);
plat = platform(scenario);
plat.Trajectory = path;

Create a theater plot to visualize the ground-truth platform motion and the platform motion
measurements modeled by insSensor.

tp = theaterPlot('XLimits',[-3, 3],'YLimits', [-3, 3]);
platPlotter = platformPlotter(tp, ...
    'DisplayName', 'Ground-Truth Motion', ...
    'Marker', 's', ...
    'MarkerFaceColor','blue');
insPlotter = detectionPlotter(tp, ...
    'DisplayName','INS Measurement', ...
    'Marker','d', ...
    'MarkerFaceColor','red');

In a loop, advance the scenario until it is complete. For each time step, get the current motion
sample, model INS measurements for the motion, and then plot the result.

while advance(scenario)
    motion = platformPoses(scenario,'quaternion');
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    insMeas = ins(motion);
    
    plotPlatform(platPlotter,motion.Position);
    plotDetection(insPlotter,insMeas.Position);
    
    pause(1/scenario.UpdateRate)
end

Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0; ...
               0,0,0; ...
               90,0,0; ...
               90,0,0];
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orientation = quaternion(eulerAngles,'eulerd','ZYX','frame');

r = 20;
waypoints = [0,0,0; ...
             100,0,0; ...
             100+r,r,0; ...
             100+r,100+r,0];

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];

Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',Fs, ...
    'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation,'ZYX','frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')
xlabel('North (m)')
ylabel('East (m)')

subplot(2,1,2)
t = (0:(numSamples-1)).'/Fs;
plot(t,orientationMeasurementEuler(:,1), ...
     t,orientationMeasurementEuler(:,2), ...
     t,orientationMeasurementEuler(:,3));
title('Orientation')
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
radarScenario

Objects
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